1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/ProfDataUtils.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 extern cl::opt<bool> UseNewDbgInfoFormat; 92 93 #define DEBUG_TYPE "local" 94 95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 97 98 static cl::opt<bool> PHICSEDebugHash( 99 "phicse-debug-hash", 100 #ifdef EXPENSIVE_CHECKS 101 cl::init(true), 102 #else 103 cl::init(false), 104 #endif 105 cl::Hidden, 106 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 107 "function is well-behaved w.r.t. its isEqual predicate")); 108 109 static cl::opt<unsigned> PHICSENumPHISmallSize( 110 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 111 cl::desc( 112 "When the basic block contains not more than this number of PHI nodes, " 113 "perform a (faster!) exhaustive search instead of set-driven one.")); 114 115 // Max recursion depth for collectBitParts used when detecting bswap and 116 // bitreverse idioms. 117 static const unsigned BitPartRecursionMaxDepth = 48; 118 119 //===----------------------------------------------------------------------===// 120 // Local constant propagation. 121 // 122 123 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 124 /// constant value, convert it into an unconditional branch to the constant 125 /// destination. This is a nontrivial operation because the successors of this 126 /// basic block must have their PHI nodes updated. 127 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 128 /// conditions and indirectbr addresses this might make dead if 129 /// DeleteDeadConditions is true. 130 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 131 const TargetLibraryInfo *TLI, 132 DomTreeUpdater *DTU) { 133 Instruction *T = BB->getTerminator(); 134 IRBuilder<> Builder(T); 135 136 // Branch - See if we are conditional jumping on constant 137 if (auto *BI = dyn_cast<BranchInst>(T)) { 138 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 139 140 BasicBlock *Dest1 = BI->getSuccessor(0); 141 BasicBlock *Dest2 = BI->getSuccessor(1); 142 143 if (Dest2 == Dest1) { // Conditional branch to same location? 144 // This branch matches something like this: 145 // br bool %cond, label %Dest, label %Dest 146 // and changes it into: br label %Dest 147 148 // Let the basic block know that we are letting go of one copy of it. 149 assert(BI->getParent() && "Terminator not inserted in block!"); 150 Dest1->removePredecessor(BI->getParent()); 151 152 // Replace the conditional branch with an unconditional one. 153 BranchInst *NewBI = Builder.CreateBr(Dest1); 154 155 // Transfer the metadata to the new branch instruction. 156 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 157 LLVMContext::MD_annotation}); 158 159 Value *Cond = BI->getCondition(); 160 BI->eraseFromParent(); 161 if (DeleteDeadConditions) 162 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 163 return true; 164 } 165 166 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 167 // Are we branching on constant? 168 // YES. Change to unconditional branch... 169 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 170 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 171 172 // Let the basic block know that we are letting go of it. Based on this, 173 // it will adjust it's PHI nodes. 174 OldDest->removePredecessor(BB); 175 176 // Replace the conditional branch with an unconditional one. 177 BranchInst *NewBI = Builder.CreateBr(Destination); 178 179 // Transfer the metadata to the new branch instruction. 180 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 181 LLVMContext::MD_annotation}); 182 183 BI->eraseFromParent(); 184 if (DTU) 185 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 186 return true; 187 } 188 189 return false; 190 } 191 192 if (auto *SI = dyn_cast<SwitchInst>(T)) { 193 // If we are switching on a constant, we can convert the switch to an 194 // unconditional branch. 195 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 196 BasicBlock *DefaultDest = SI->getDefaultDest(); 197 BasicBlock *TheOnlyDest = DefaultDest; 198 199 // If the default is unreachable, ignore it when searching for TheOnlyDest. 200 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 201 SI->getNumCases() > 0) { 202 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 203 } 204 205 bool Changed = false; 206 207 // Figure out which case it goes to. 208 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 209 // Found case matching a constant operand? 210 if (It->getCaseValue() == CI) { 211 TheOnlyDest = It->getCaseSuccessor(); 212 break; 213 } 214 215 // Check to see if this branch is going to the same place as the default 216 // dest. If so, eliminate it as an explicit compare. 217 if (It->getCaseSuccessor() == DefaultDest) { 218 MDNode *MD = getValidBranchWeightMDNode(*SI); 219 unsigned NCases = SI->getNumCases(); 220 // Fold the case metadata into the default if there will be any branches 221 // left, unless the metadata doesn't match the switch. 222 if (NCases > 1 && MD) { 223 // Collect branch weights into a vector. 224 SmallVector<uint32_t, 8> Weights; 225 extractBranchWeights(MD, Weights); 226 227 // Merge weight of this case to the default weight. 228 unsigned Idx = It->getCaseIndex(); 229 // TODO: Add overflow check. 230 Weights[0] += Weights[Idx + 1]; 231 // Remove weight for this case. 232 std::swap(Weights[Idx + 1], Weights.back()); 233 Weights.pop_back(); 234 setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD)); 235 } 236 // Remove this entry. 237 BasicBlock *ParentBB = SI->getParent(); 238 DefaultDest->removePredecessor(ParentBB); 239 It = SI->removeCase(It); 240 End = SI->case_end(); 241 242 // Removing this case may have made the condition constant. In that 243 // case, update CI and restart iteration through the cases. 244 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 245 CI = NewCI; 246 It = SI->case_begin(); 247 } 248 249 Changed = true; 250 continue; 251 } 252 253 // Otherwise, check to see if the switch only branches to one destination. 254 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 255 // destinations. 256 if (It->getCaseSuccessor() != TheOnlyDest) 257 TheOnlyDest = nullptr; 258 259 // Increment this iterator as we haven't removed the case. 260 ++It; 261 } 262 263 if (CI && !TheOnlyDest) { 264 // Branching on a constant, but not any of the cases, go to the default 265 // successor. 266 TheOnlyDest = SI->getDefaultDest(); 267 } 268 269 // If we found a single destination that we can fold the switch into, do so 270 // now. 271 if (TheOnlyDest) { 272 // Insert the new branch. 273 Builder.CreateBr(TheOnlyDest); 274 BasicBlock *BB = SI->getParent(); 275 276 SmallSet<BasicBlock *, 8> RemovedSuccessors; 277 278 // Remove entries from PHI nodes which we no longer branch to... 279 BasicBlock *SuccToKeep = TheOnlyDest; 280 for (BasicBlock *Succ : successors(SI)) { 281 if (DTU && Succ != TheOnlyDest) 282 RemovedSuccessors.insert(Succ); 283 // Found case matching a constant operand? 284 if (Succ == SuccToKeep) { 285 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 286 } else { 287 Succ->removePredecessor(BB); 288 } 289 } 290 291 // Delete the old switch. 292 Value *Cond = SI->getCondition(); 293 SI->eraseFromParent(); 294 if (DeleteDeadConditions) 295 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 296 if (DTU) { 297 std::vector<DominatorTree::UpdateType> Updates; 298 Updates.reserve(RemovedSuccessors.size()); 299 for (auto *RemovedSuccessor : RemovedSuccessors) 300 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 301 DTU->applyUpdates(Updates); 302 } 303 return true; 304 } 305 306 if (SI->getNumCases() == 1) { 307 // Otherwise, we can fold this switch into a conditional branch 308 // instruction if it has only one non-default destination. 309 auto FirstCase = *SI->case_begin(); 310 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 311 FirstCase.getCaseValue(), "cond"); 312 313 // Insert the new branch. 314 BranchInst *NewBr = Builder.CreateCondBr(Cond, 315 FirstCase.getCaseSuccessor(), 316 SI->getDefaultDest()); 317 SmallVector<uint32_t> Weights; 318 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 319 uint32_t DefWeight = Weights[0]; 320 uint32_t CaseWeight = Weights[1]; 321 // The TrueWeight should be the weight for the single case of SI. 322 NewBr->setMetadata(LLVMContext::MD_prof, 323 MDBuilder(BB->getContext()) 324 .createBranchWeights(CaseWeight, DefWeight)); 325 } 326 327 // Update make.implicit metadata to the newly-created conditional branch. 328 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 329 if (MakeImplicitMD) 330 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 331 332 // Delete the old switch. 333 SI->eraseFromParent(); 334 return true; 335 } 336 return Changed; 337 } 338 339 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 340 // indirectbr blockaddress(@F, @BB) -> br label @BB 341 if (auto *BA = 342 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 343 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 344 SmallSet<BasicBlock *, 8> RemovedSuccessors; 345 346 // Insert the new branch. 347 Builder.CreateBr(TheOnlyDest); 348 349 BasicBlock *SuccToKeep = TheOnlyDest; 350 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 351 BasicBlock *DestBB = IBI->getDestination(i); 352 if (DTU && DestBB != TheOnlyDest) 353 RemovedSuccessors.insert(DestBB); 354 if (IBI->getDestination(i) == SuccToKeep) { 355 SuccToKeep = nullptr; 356 } else { 357 DestBB->removePredecessor(BB); 358 } 359 } 360 Value *Address = IBI->getAddress(); 361 IBI->eraseFromParent(); 362 if (DeleteDeadConditions) 363 // Delete pointer cast instructions. 364 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 365 366 // Also zap the blockaddress constant if there are no users remaining, 367 // otherwise the destination is still marked as having its address taken. 368 if (BA->use_empty()) 369 BA->destroyConstant(); 370 371 // If we didn't find our destination in the IBI successor list, then we 372 // have undefined behavior. Replace the unconditional branch with an 373 // 'unreachable' instruction. 374 if (SuccToKeep) { 375 BB->getTerminator()->eraseFromParent(); 376 new UnreachableInst(BB->getContext(), BB); 377 } 378 379 if (DTU) { 380 std::vector<DominatorTree::UpdateType> Updates; 381 Updates.reserve(RemovedSuccessors.size()); 382 for (auto *RemovedSuccessor : RemovedSuccessors) 383 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 384 DTU->applyUpdates(Updates); 385 } 386 return true; 387 } 388 } 389 390 return false; 391 } 392 393 //===----------------------------------------------------------------------===// 394 // Local dead code elimination. 395 // 396 397 /// isInstructionTriviallyDead - Return true if the result produced by the 398 /// instruction is not used, and the instruction has no side effects. 399 /// 400 bool llvm::isInstructionTriviallyDead(Instruction *I, 401 const TargetLibraryInfo *TLI) { 402 if (!I->use_empty()) 403 return false; 404 return wouldInstructionBeTriviallyDead(I, TLI); 405 } 406 407 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 408 Instruction *I, const TargetLibraryInfo *TLI) { 409 // Instructions that are "markers" and have implied meaning on code around 410 // them (without explicit uses), are not dead on unused paths. 411 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 412 if (II->getIntrinsicID() == Intrinsic::stacksave || 413 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 414 II->isLifetimeStartOrEnd()) 415 return false; 416 return wouldInstructionBeTriviallyDead(I, TLI); 417 } 418 419 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 420 const TargetLibraryInfo *TLI) { 421 if (I->isTerminator()) 422 return false; 423 424 // We don't want the landingpad-like instructions removed by anything this 425 // general. 426 if (I->isEHPad()) 427 return false; 428 429 // We don't want debug info removed by anything this general. 430 if (isa<DbgVariableIntrinsic>(I)) 431 return false; 432 433 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 434 if (DLI->getLabel()) 435 return false; 436 return true; 437 } 438 439 if (auto *CB = dyn_cast<CallBase>(I)) 440 if (isRemovableAlloc(CB, TLI)) 441 return true; 442 443 if (!I->willReturn()) { 444 auto *II = dyn_cast<IntrinsicInst>(I); 445 if (!II) 446 return false; 447 448 switch (II->getIntrinsicID()) { 449 case Intrinsic::experimental_guard: { 450 // Guards on true are operationally no-ops. In the future we can 451 // consider more sophisticated tradeoffs for guards considering potential 452 // for check widening, but for now we keep things simple. 453 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 454 return Cond && Cond->isOne(); 455 } 456 // TODO: These intrinsics are not safe to remove, because this may remove 457 // a well-defined trap. 458 case Intrinsic::wasm_trunc_signed: 459 case Intrinsic::wasm_trunc_unsigned: 460 case Intrinsic::ptrauth_auth: 461 case Intrinsic::ptrauth_resign: 462 return true; 463 default: 464 return false; 465 } 466 } 467 468 if (!I->mayHaveSideEffects()) 469 return true; 470 471 // Special case intrinsics that "may have side effects" but can be deleted 472 // when dead. 473 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 474 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 475 if (II->getIntrinsicID() == Intrinsic::stacksave || 476 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 477 return true; 478 479 // Intrinsics declare sideeffects to prevent them from moving, but they are 480 // nops without users. 481 if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || 482 II->getIntrinsicID() == Intrinsic::allow_ubsan_check) 483 return true; 484 485 if (II->isLifetimeStartOrEnd()) { 486 auto *Arg = II->getArgOperand(1); 487 // Lifetime intrinsics are dead when their right-hand is undef. 488 if (isa<UndefValue>(Arg)) 489 return true; 490 // If the right-hand is an alloc, global, or argument and the only uses 491 // are lifetime intrinsics then the intrinsics are dead. 492 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 493 return llvm::all_of(Arg->uses(), [](Use &Use) { 494 if (IntrinsicInst *IntrinsicUse = 495 dyn_cast<IntrinsicInst>(Use.getUser())) 496 return IntrinsicUse->isLifetimeStartOrEnd(); 497 return false; 498 }); 499 return false; 500 } 501 502 // Assumptions are dead if their condition is trivially true. 503 if (II->getIntrinsicID() == Intrinsic::assume && 504 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 505 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 506 return !Cond->isZero(); 507 508 return false; 509 } 510 511 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 512 std::optional<fp::ExceptionBehavior> ExBehavior = 513 FPI->getExceptionBehavior(); 514 return *ExBehavior != fp::ebStrict; 515 } 516 } 517 518 if (auto *Call = dyn_cast<CallBase>(I)) { 519 if (Value *FreedOp = getFreedOperand(Call, TLI)) 520 if (Constant *C = dyn_cast<Constant>(FreedOp)) 521 return C->isNullValue() || isa<UndefValue>(C); 522 if (isMathLibCallNoop(Call, TLI)) 523 return true; 524 } 525 526 // Non-volatile atomic loads from constants can be removed. 527 if (auto *LI = dyn_cast<LoadInst>(I)) 528 if (auto *GV = dyn_cast<GlobalVariable>( 529 LI->getPointerOperand()->stripPointerCasts())) 530 if (!LI->isVolatile() && GV->isConstant()) 531 return true; 532 533 return false; 534 } 535 536 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 537 /// trivially dead instruction, delete it. If that makes any of its operands 538 /// trivially dead, delete them too, recursively. Return true if any 539 /// instructions were deleted. 540 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 541 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 542 std::function<void(Value *)> AboutToDeleteCallback) { 543 Instruction *I = dyn_cast<Instruction>(V); 544 if (!I || !isInstructionTriviallyDead(I, TLI)) 545 return false; 546 547 SmallVector<WeakTrackingVH, 16> DeadInsts; 548 DeadInsts.push_back(I); 549 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 550 AboutToDeleteCallback); 551 552 return true; 553 } 554 555 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 556 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 557 MemorySSAUpdater *MSSAU, 558 std::function<void(Value *)> AboutToDeleteCallback) { 559 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 560 for (; S != E; ++S) { 561 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 562 if (!I || !isInstructionTriviallyDead(I)) { 563 DeadInsts[S] = nullptr; 564 ++Alive; 565 } 566 } 567 if (Alive == E) 568 return false; 569 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 570 AboutToDeleteCallback); 571 return true; 572 } 573 574 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 575 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 576 MemorySSAUpdater *MSSAU, 577 std::function<void(Value *)> AboutToDeleteCallback) { 578 // Process the dead instruction list until empty. 579 while (!DeadInsts.empty()) { 580 Value *V = DeadInsts.pop_back_val(); 581 Instruction *I = cast_or_null<Instruction>(V); 582 if (!I) 583 continue; 584 assert(isInstructionTriviallyDead(I, TLI) && 585 "Live instruction found in dead worklist!"); 586 assert(I->use_empty() && "Instructions with uses are not dead."); 587 588 // Don't lose the debug info while deleting the instructions. 589 salvageDebugInfo(*I); 590 591 if (AboutToDeleteCallback) 592 AboutToDeleteCallback(I); 593 594 // Null out all of the instruction's operands to see if any operand becomes 595 // dead as we go. 596 for (Use &OpU : I->operands()) { 597 Value *OpV = OpU.get(); 598 OpU.set(nullptr); 599 600 if (!OpV->use_empty()) 601 continue; 602 603 // If the operand is an instruction that became dead as we nulled out the 604 // operand, and if it is 'trivially' dead, delete it in a future loop 605 // iteration. 606 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 607 if (isInstructionTriviallyDead(OpI, TLI)) 608 DeadInsts.push_back(OpI); 609 } 610 if (MSSAU) 611 MSSAU->removeMemoryAccess(I); 612 613 I->eraseFromParent(); 614 } 615 } 616 617 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 618 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 619 SmallVector<DbgVariableRecord *, 1> DPUsers; 620 findDbgUsers(DbgUsers, I, &DPUsers); 621 for (auto *DII : DbgUsers) 622 DII->setKillLocation(); 623 for (auto *DVR : DPUsers) 624 DVR->setKillLocation(); 625 return !DbgUsers.empty() || !DPUsers.empty(); 626 } 627 628 /// areAllUsesEqual - Check whether the uses of a value are all the same. 629 /// This is similar to Instruction::hasOneUse() except this will also return 630 /// true when there are no uses or multiple uses that all refer to the same 631 /// value. 632 static bool areAllUsesEqual(Instruction *I) { 633 Value::user_iterator UI = I->user_begin(); 634 Value::user_iterator UE = I->user_end(); 635 if (UI == UE) 636 return true; 637 638 User *TheUse = *UI; 639 for (++UI; UI != UE; ++UI) { 640 if (*UI != TheUse) 641 return false; 642 } 643 return true; 644 } 645 646 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 647 /// dead PHI node, due to being a def-use chain of single-use nodes that 648 /// either forms a cycle or is terminated by a trivially dead instruction, 649 /// delete it. If that makes any of its operands trivially dead, delete them 650 /// too, recursively. Return true if a change was made. 651 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 652 const TargetLibraryInfo *TLI, 653 llvm::MemorySSAUpdater *MSSAU) { 654 SmallPtrSet<Instruction*, 4> Visited; 655 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 656 I = cast<Instruction>(*I->user_begin())) { 657 if (I->use_empty()) 658 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 659 660 // If we find an instruction more than once, we're on a cycle that 661 // won't prove fruitful. 662 if (!Visited.insert(I).second) { 663 // Break the cycle and delete the instruction and its operands. 664 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 665 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 666 return true; 667 } 668 } 669 return false; 670 } 671 672 static bool 673 simplifyAndDCEInstruction(Instruction *I, 674 SmallSetVector<Instruction *, 16> &WorkList, 675 const DataLayout &DL, 676 const TargetLibraryInfo *TLI) { 677 if (isInstructionTriviallyDead(I, TLI)) { 678 salvageDebugInfo(*I); 679 680 // Null out all of the instruction's operands to see if any operand becomes 681 // dead as we go. 682 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 683 Value *OpV = I->getOperand(i); 684 I->setOperand(i, nullptr); 685 686 if (!OpV->use_empty() || I == OpV) 687 continue; 688 689 // If the operand is an instruction that became dead as we nulled out the 690 // operand, and if it is 'trivially' dead, delete it in a future loop 691 // iteration. 692 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 693 if (isInstructionTriviallyDead(OpI, TLI)) 694 WorkList.insert(OpI); 695 } 696 697 I->eraseFromParent(); 698 699 return true; 700 } 701 702 if (Value *SimpleV = simplifyInstruction(I, DL)) { 703 // Add the users to the worklist. CAREFUL: an instruction can use itself, 704 // in the case of a phi node. 705 for (User *U : I->users()) { 706 if (U != I) { 707 WorkList.insert(cast<Instruction>(U)); 708 } 709 } 710 711 // Replace the instruction with its simplified value. 712 bool Changed = false; 713 if (!I->use_empty()) { 714 I->replaceAllUsesWith(SimpleV); 715 Changed = true; 716 } 717 if (isInstructionTriviallyDead(I, TLI)) { 718 I->eraseFromParent(); 719 Changed = true; 720 } 721 return Changed; 722 } 723 return false; 724 } 725 726 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 727 /// simplify any instructions in it and recursively delete dead instructions. 728 /// 729 /// This returns true if it changed the code, note that it can delete 730 /// instructions in other blocks as well in this block. 731 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 732 const TargetLibraryInfo *TLI) { 733 bool MadeChange = false; 734 const DataLayout &DL = BB->getDataLayout(); 735 736 #ifndef NDEBUG 737 // In debug builds, ensure that the terminator of the block is never replaced 738 // or deleted by these simplifications. The idea of simplification is that it 739 // cannot introduce new instructions, and there is no way to replace the 740 // terminator of a block without introducing a new instruction. 741 AssertingVH<Instruction> TerminatorVH(&BB->back()); 742 #endif 743 744 SmallSetVector<Instruction *, 16> WorkList; 745 // Iterate over the original function, only adding insts to the worklist 746 // if they actually need to be revisited. This avoids having to pre-init 747 // the worklist with the entire function's worth of instructions. 748 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 749 BI != E;) { 750 assert(!BI->isTerminator()); 751 Instruction *I = &*BI; 752 ++BI; 753 754 // We're visiting this instruction now, so make sure it's not in the 755 // worklist from an earlier visit. 756 if (!WorkList.count(I)) 757 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 758 } 759 760 while (!WorkList.empty()) { 761 Instruction *I = WorkList.pop_back_val(); 762 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 763 } 764 return MadeChange; 765 } 766 767 //===----------------------------------------------------------------------===// 768 // Control Flow Graph Restructuring. 769 // 770 771 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 772 DomTreeUpdater *DTU) { 773 774 // If BB has single-entry PHI nodes, fold them. 775 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 776 Value *NewVal = PN->getIncomingValue(0); 777 // Replace self referencing PHI with poison, it must be dead. 778 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 779 PN->replaceAllUsesWith(NewVal); 780 PN->eraseFromParent(); 781 } 782 783 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 784 assert(PredBB && "Block doesn't have a single predecessor!"); 785 786 bool ReplaceEntryBB = PredBB->isEntryBlock(); 787 788 // DTU updates: Collect all the edges that enter 789 // PredBB. These dominator edges will be redirected to DestBB. 790 SmallVector<DominatorTree::UpdateType, 32> Updates; 791 792 if (DTU) { 793 // To avoid processing the same predecessor more than once. 794 SmallPtrSet<BasicBlock *, 2> SeenPreds; 795 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 796 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 797 // This predecessor of PredBB may already have DestBB as a successor. 798 if (PredOfPredBB != PredBB) 799 if (SeenPreds.insert(PredOfPredBB).second) 800 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 801 SeenPreds.clear(); 802 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 803 if (SeenPreds.insert(PredOfPredBB).second) 804 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 805 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 806 } 807 808 // Zap anything that took the address of DestBB. Not doing this will give the 809 // address an invalid value. 810 if (DestBB->hasAddressTaken()) { 811 BlockAddress *BA = BlockAddress::get(DestBB); 812 Constant *Replacement = 813 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 814 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 815 BA->getType())); 816 BA->destroyConstant(); 817 } 818 819 // Anything that branched to PredBB now branches to DestBB. 820 PredBB->replaceAllUsesWith(DestBB); 821 822 // Splice all the instructions from PredBB to DestBB. 823 PredBB->getTerminator()->eraseFromParent(); 824 DestBB->splice(DestBB->begin(), PredBB); 825 new UnreachableInst(PredBB->getContext(), PredBB); 826 827 // If the PredBB is the entry block of the function, move DestBB up to 828 // become the entry block after we erase PredBB. 829 if (ReplaceEntryBB) 830 DestBB->moveAfter(PredBB); 831 832 if (DTU) { 833 assert(PredBB->size() == 1 && 834 isa<UnreachableInst>(PredBB->getTerminator()) && 835 "The successor list of PredBB isn't empty before " 836 "applying corresponding DTU updates."); 837 DTU->applyUpdatesPermissive(Updates); 838 DTU->deleteBB(PredBB); 839 // Recalculation of DomTree is needed when updating a forward DomTree and 840 // the Entry BB is replaced. 841 if (ReplaceEntryBB && DTU->hasDomTree()) { 842 // The entry block was removed and there is no external interface for 843 // the dominator tree to be notified of this change. In this corner-case 844 // we recalculate the entire tree. 845 DTU->recalculate(*(DestBB->getParent())); 846 } 847 } 848 849 else { 850 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 851 } 852 } 853 854 /// Return true if we can choose one of these values to use in place of the 855 /// other. Note that we will always choose the non-undef value to keep. 856 static bool CanMergeValues(Value *First, Value *Second) { 857 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 858 } 859 860 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 861 /// branch to Succ, into Succ. 862 /// 863 /// Assumption: Succ is the single successor for BB. 864 static bool 865 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 866 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 867 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 868 869 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 870 << Succ->getName() << "\n"); 871 // Shortcut, if there is only a single predecessor it must be BB and merging 872 // is always safe 873 if (Succ->getSinglePredecessor()) 874 return true; 875 876 // Look at all the phi nodes in Succ, to see if they present a conflict when 877 // merging these blocks 878 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 879 PHINode *PN = cast<PHINode>(I); 880 881 // If the incoming value from BB is again a PHINode in 882 // BB which has the same incoming value for *PI as PN does, we can 883 // merge the phi nodes and then the blocks can still be merged 884 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 885 if (BBPN && BBPN->getParent() == BB) { 886 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 887 BasicBlock *IBB = PN->getIncomingBlock(PI); 888 if (BBPreds.count(IBB) && 889 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 890 PN->getIncomingValue(PI))) { 891 LLVM_DEBUG(dbgs() 892 << "Can't fold, phi node " << PN->getName() << " in " 893 << Succ->getName() << " is conflicting with " 894 << BBPN->getName() << " with regard to common predecessor " 895 << IBB->getName() << "\n"); 896 return false; 897 } 898 } 899 } else { 900 Value* Val = PN->getIncomingValueForBlock(BB); 901 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 902 // See if the incoming value for the common predecessor is equal to the 903 // one for BB, in which case this phi node will not prevent the merging 904 // of the block. 905 BasicBlock *IBB = PN->getIncomingBlock(PI); 906 if (BBPreds.count(IBB) && 907 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 908 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 909 << " in " << Succ->getName() 910 << " is conflicting with regard to common " 911 << "predecessor " << IBB->getName() << "\n"); 912 return false; 913 } 914 } 915 } 916 } 917 918 return true; 919 } 920 921 using PredBlockVector = SmallVector<BasicBlock *, 16>; 922 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 923 924 /// Determines the value to use as the phi node input for a block. 925 /// 926 /// Select between \p OldVal any value that we know flows from \p BB 927 /// to a particular phi on the basis of which one (if either) is not 928 /// undef. Update IncomingValues based on the selected value. 929 /// 930 /// \param OldVal The value we are considering selecting. 931 /// \param BB The block that the value flows in from. 932 /// \param IncomingValues A map from block-to-value for other phi inputs 933 /// that we have examined. 934 /// 935 /// \returns the selected value. 936 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 937 IncomingValueMap &IncomingValues) { 938 if (!isa<UndefValue>(OldVal)) { 939 assert((!IncomingValues.count(BB) || 940 IncomingValues.find(BB)->second == OldVal) && 941 "Expected OldVal to match incoming value from BB!"); 942 943 IncomingValues.insert(std::make_pair(BB, OldVal)); 944 return OldVal; 945 } 946 947 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 948 if (It != IncomingValues.end()) return It->second; 949 950 return OldVal; 951 } 952 953 /// Create a map from block to value for the operands of a 954 /// given phi. 955 /// 956 /// Create a map from block to value for each non-undef value flowing 957 /// into \p PN. 958 /// 959 /// \param PN The phi we are collecting the map for. 960 /// \param IncomingValues [out] The map from block to value for this phi. 961 static void gatherIncomingValuesToPhi(PHINode *PN, 962 IncomingValueMap &IncomingValues) { 963 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 964 BasicBlock *BB = PN->getIncomingBlock(i); 965 Value *V = PN->getIncomingValue(i); 966 967 if (!isa<UndefValue>(V)) 968 IncomingValues.insert(std::make_pair(BB, V)); 969 } 970 } 971 972 /// Replace the incoming undef values to a phi with the values 973 /// from a block-to-value map. 974 /// 975 /// \param PN The phi we are replacing the undefs in. 976 /// \param IncomingValues A map from block to value. 977 static void replaceUndefValuesInPhi(PHINode *PN, 978 const IncomingValueMap &IncomingValues) { 979 SmallVector<unsigned> TrueUndefOps; 980 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 981 Value *V = PN->getIncomingValue(i); 982 983 if (!isa<UndefValue>(V)) continue; 984 985 BasicBlock *BB = PN->getIncomingBlock(i); 986 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 987 988 // Keep track of undef/poison incoming values. Those must match, so we fix 989 // them up below if needed. 990 // Note: this is conservatively correct, but we could try harder and group 991 // the undef values per incoming basic block. 992 if (It == IncomingValues.end()) { 993 TrueUndefOps.push_back(i); 994 continue; 995 } 996 997 // There is a defined value for this incoming block, so map this undef 998 // incoming value to the defined value. 999 PN->setIncomingValue(i, It->second); 1000 } 1001 1002 // If there are both undef and poison values incoming, then convert those 1003 // values to undef. It is invalid to have different values for the same 1004 // incoming block. 1005 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1006 return isa<PoisonValue>(PN->getIncomingValue(i)); 1007 }); 1008 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1009 for (unsigned i : TrueUndefOps) 1010 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1011 } 1012 } 1013 1014 // Only when they shares a single common predecessor, return true. 1015 // Only handles cases when BB can't be merged while its predecessors can be 1016 // redirected. 1017 static bool 1018 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1019 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1020 const SmallPtrSetImpl<BasicBlock *> &SuccPreds, 1021 BasicBlock *&CommonPred) { 1022 1023 // There must be phis in BB, otherwise BB will be merged into Succ directly 1024 if (BB->phis().empty() || Succ->phis().empty()) 1025 return false; 1026 1027 // BB must have predecessors not shared that can be redirected to Succ 1028 if (!BB->hasNPredecessorsOrMore(2)) 1029 return false; 1030 1031 if (any_of(BBPreds, [](const BasicBlock *Pred) { 1032 return isa<PHINode>(Pred->begin()) && 1033 isa<IndirectBrInst>(Pred->getTerminator()); 1034 })) 1035 return false; 1036 1037 // Get the single common predecessor of both BB and Succ. Return false 1038 // when there are more than one common predecessors. 1039 for (BasicBlock *SuccPred : SuccPreds) { 1040 if (BBPreds.count(SuccPred)) { 1041 if (CommonPred) 1042 return false; 1043 CommonPred = SuccPred; 1044 } 1045 } 1046 1047 return true; 1048 } 1049 1050 /// Replace a value flowing from a block to a phi with 1051 /// potentially multiple instances of that value flowing from the 1052 /// block's predecessors to the phi. 1053 /// 1054 /// \param BB The block with the value flowing into the phi. 1055 /// \param BBPreds The predecessors of BB. 1056 /// \param PN The phi that we are updating. 1057 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1058 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1059 const PredBlockVector &BBPreds, 1060 PHINode *PN, 1061 BasicBlock *CommonPred) { 1062 Value *OldVal = PN->removeIncomingValue(BB, false); 1063 assert(OldVal && "No entry in PHI for Pred BB!"); 1064 1065 IncomingValueMap IncomingValues; 1066 1067 // We are merging two blocks - BB, and the block containing PN - and 1068 // as a result we need to redirect edges from the predecessors of BB 1069 // to go to the block containing PN, and update PN 1070 // accordingly. Since we allow merging blocks in the case where the 1071 // predecessor and successor blocks both share some predecessors, 1072 // and where some of those common predecessors might have undef 1073 // values flowing into PN, we want to rewrite those values to be 1074 // consistent with the non-undef values. 1075 1076 gatherIncomingValuesToPhi(PN, IncomingValues); 1077 1078 // If this incoming value is one of the PHI nodes in BB, the new entries 1079 // in the PHI node are the entries from the old PHI. 1080 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1081 PHINode *OldValPN = cast<PHINode>(OldVal); 1082 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1083 // Note that, since we are merging phi nodes and BB and Succ might 1084 // have common predecessors, we could end up with a phi node with 1085 // identical incoming branches. This will be cleaned up later (and 1086 // will trigger asserts if we try to clean it up now, without also 1087 // simplifying the corresponding conditional branch). 1088 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1089 1090 if (PredBB == CommonPred) 1091 continue; 1092 1093 Value *PredVal = OldValPN->getIncomingValue(i); 1094 Value *Selected = 1095 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1096 1097 // And add a new incoming value for this predecessor for the 1098 // newly retargeted branch. 1099 PN->addIncoming(Selected, PredBB); 1100 } 1101 if (CommonPred) 1102 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1103 1104 } else { 1105 for (BasicBlock *PredBB : BBPreds) { 1106 // Update existing incoming values in PN for this 1107 // predecessor of BB. 1108 if (PredBB == CommonPred) 1109 continue; 1110 1111 Value *Selected = 1112 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1113 1114 // And add a new incoming value for this predecessor for the 1115 // newly retargeted branch. 1116 PN->addIncoming(Selected, PredBB); 1117 } 1118 if (CommonPred) 1119 PN->addIncoming(OldVal, BB); 1120 } 1121 1122 replaceUndefValuesInPhi(PN, IncomingValues); 1123 } 1124 1125 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1126 DomTreeUpdater *DTU) { 1127 assert(BB != &BB->getParent()->getEntryBlock() && 1128 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1129 1130 // We can't simplify infinite loops. 1131 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1132 if (BB == Succ) 1133 return false; 1134 1135 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1136 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1137 1138 // The single common predecessor of BB and Succ when BB cannot be killed 1139 BasicBlock *CommonPred = nullptr; 1140 1141 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1142 1143 // Even if we can not fold BB into Succ, we may be able to redirect the 1144 // predecessors of BB to Succ. 1145 bool BBPhisMergeable = 1146 BBKillable || 1147 CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred); 1148 1149 if (!BBKillable && !BBPhisMergeable) 1150 return false; 1151 1152 // Check to see if merging these blocks/phis would cause conflicts for any of 1153 // the phi nodes in BB or Succ. If not, we can safely merge. 1154 1155 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1156 // has uses which will not disappear when the PHI nodes are merged. It is 1157 // possible to handle such cases, but difficult: it requires checking whether 1158 // BB dominates Succ, which is non-trivial to calculate in the case where 1159 // Succ has multiple predecessors. Also, it requires checking whether 1160 // constructing the necessary self-referential PHI node doesn't introduce any 1161 // conflicts; this isn't too difficult, but the previous code for doing this 1162 // was incorrect. 1163 // 1164 // Note that if this check finds a live use, BB dominates Succ, so BB is 1165 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1166 // folding the branch isn't profitable in that case anyway. 1167 if (!Succ->getSinglePredecessor()) { 1168 BasicBlock::iterator BBI = BB->begin(); 1169 while (isa<PHINode>(*BBI)) { 1170 for (Use &U : BBI->uses()) { 1171 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1172 if (PN->getIncomingBlock(U) != BB) 1173 return false; 1174 } else { 1175 return false; 1176 } 1177 } 1178 ++BBI; 1179 } 1180 } 1181 1182 if (BBPhisMergeable && CommonPred) 1183 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1184 << " and " << Succ->getName() << " : " 1185 << CommonPred->getName() << "\n"); 1186 1187 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1188 // metadata. 1189 // 1190 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1191 // current status (that loop metadata is implemented as metadata attached to 1192 // the branch instruction in the loop latch block). To quote from review 1193 // comments, "the current representation of loop metadata (using a loop latch 1194 // terminator attachment) is known to be fundamentally broken. Loop latches 1195 // are not uniquely associated with loops (both in that a latch can be part of 1196 // multiple loops and a loop may have multiple latches). Loop headers are. The 1197 // solution to this problem is also known: Add support for basic block 1198 // metadata, and attach loop metadata to the loop header." 1199 // 1200 // Why bail out: 1201 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1202 // the latch for inner-loop (see reason below), so bail out to prerserve 1203 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1204 // to this inner-loop. 1205 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1206 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1207 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1208 // one self-looping basic block, which is contradictory with the assumption. 1209 // 1210 // To illustrate how inner-loop metadata is dropped: 1211 // 1212 // CFG Before 1213 // 1214 // BB is while.cond.exit, attached with loop metdata md2. 1215 // BB->Pred is for.body, attached with loop metadata md1. 1216 // 1217 // entry 1218 // | 1219 // v 1220 // ---> while.cond -------------> while.end 1221 // | | 1222 // | v 1223 // | while.body 1224 // | | 1225 // | v 1226 // | for.body <---- (md1) 1227 // | | |______| 1228 // | v 1229 // | while.cond.exit (md2) 1230 // | | 1231 // |_______| 1232 // 1233 // CFG After 1234 // 1235 // while.cond1 is the merge of while.cond.exit and while.cond above. 1236 // for.body is attached with md2, and md1 is dropped. 1237 // If LoopSimplify runs later (as a part of loop pass), it could create 1238 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1239 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1240 // 1241 // entry 1242 // | 1243 // v 1244 // ---> while.cond1 -------------> while.end 1245 // | | 1246 // | v 1247 // | while.body 1248 // | | 1249 // | v 1250 // | for.body <---- (md2) 1251 // |_______| |______| 1252 if (Instruction *TI = BB->getTerminator()) 1253 if (TI->hasMetadata(LLVMContext::MD_loop)) 1254 for (BasicBlock *Pred : predecessors(BB)) 1255 if (Instruction *PredTI = Pred->getTerminator()) 1256 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1257 return false; 1258 1259 if (BBKillable) 1260 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1261 else if (BBPhisMergeable) 1262 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1263 1264 SmallVector<DominatorTree::UpdateType, 32> Updates; 1265 1266 if (DTU) { 1267 // To avoid processing the same predecessor more than once. 1268 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1269 // All predecessors of BB (except the common predecessor) will be moved to 1270 // Succ. 1271 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1272 1273 for (auto *PredOfBB : predecessors(BB)) { 1274 // Do not modify those common predecessors of BB and Succ 1275 if (!SuccPreds.contains(PredOfBB)) 1276 if (SeenPreds.insert(PredOfBB).second) 1277 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1278 } 1279 1280 SeenPreds.clear(); 1281 1282 for (auto *PredOfBB : predecessors(BB)) 1283 // When BB cannot be killed, do not remove the edge between BB and 1284 // CommonPred. 1285 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1286 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1287 1288 if (BBKillable) 1289 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1290 } 1291 1292 if (isa<PHINode>(Succ->begin())) { 1293 // If there is more than one pred of succ, and there are PHI nodes in 1294 // the successor, then we need to add incoming edges for the PHI nodes 1295 // 1296 const PredBlockVector BBPreds(predecessors(BB)); 1297 1298 // Loop over all of the PHI nodes in the successor of BB. 1299 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1300 PHINode *PN = cast<PHINode>(I); 1301 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1302 } 1303 } 1304 1305 if (Succ->getSinglePredecessor()) { 1306 // BB is the only predecessor of Succ, so Succ will end up with exactly 1307 // the same predecessors BB had. 1308 // Copy over any phi, debug or lifetime instruction. 1309 BB->getTerminator()->eraseFromParent(); 1310 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1311 } else { 1312 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1313 // We explicitly check for such uses for merging phis. 1314 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1315 PN->eraseFromParent(); 1316 } 1317 } 1318 1319 // If the unconditional branch we replaced contains llvm.loop metadata, we 1320 // add the metadata to the branch instructions in the predecessors. 1321 if (Instruction *TI = BB->getTerminator()) 1322 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1323 for (BasicBlock *Pred : predecessors(BB)) 1324 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1325 1326 if (BBKillable) { 1327 // Everything that jumped to BB now goes to Succ. 1328 BB->replaceAllUsesWith(Succ); 1329 1330 if (!Succ->hasName()) 1331 Succ->takeName(BB); 1332 1333 // Clear the successor list of BB to match updates applying to DTU later. 1334 if (BB->getTerminator()) 1335 BB->back().eraseFromParent(); 1336 1337 new UnreachableInst(BB->getContext(), BB); 1338 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1339 "applying corresponding DTU updates."); 1340 } else if (BBPhisMergeable) { 1341 // Everything except CommonPred that jumped to BB now goes to Succ. 1342 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1343 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1344 return UseInst->getParent() != CommonPred && 1345 BBPreds.contains(UseInst->getParent()); 1346 return false; 1347 }); 1348 } 1349 1350 if (DTU) 1351 DTU->applyUpdates(Updates); 1352 1353 if (BBKillable) 1354 DeleteDeadBlock(BB, DTU); 1355 1356 return true; 1357 } 1358 1359 static bool 1360 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1361 SmallPtrSetImpl<PHINode *> &ToRemove) { 1362 // This implementation doesn't currently consider undef operands 1363 // specially. Theoretically, two phis which are identical except for 1364 // one having an undef where the other doesn't could be collapsed. 1365 1366 bool Changed = false; 1367 1368 // Examine each PHI. 1369 // Note that increment of I must *NOT* be in the iteration_expression, since 1370 // we don't want to immediately advance when we restart from the beginning. 1371 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1372 ++I; 1373 // Is there an identical PHI node in this basic block? 1374 // Note that we only look in the upper square's triangle, 1375 // we already checked that the lower triangle PHI's aren't identical. 1376 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1377 if (ToRemove.contains(DuplicatePN)) 1378 continue; 1379 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1380 continue; 1381 // A duplicate. Replace this PHI with the base PHI. 1382 ++NumPHICSEs; 1383 DuplicatePN->replaceAllUsesWith(PN); 1384 ToRemove.insert(DuplicatePN); 1385 Changed = true; 1386 1387 // The RAUW can change PHIs that we already visited. 1388 I = BB->begin(); 1389 break; // Start over from the beginning. 1390 } 1391 } 1392 return Changed; 1393 } 1394 1395 static bool 1396 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1397 SmallPtrSetImpl<PHINode *> &ToRemove) { 1398 // This implementation doesn't currently consider undef operands 1399 // specially. Theoretically, two phis which are identical except for 1400 // one having an undef where the other doesn't could be collapsed. 1401 1402 struct PHIDenseMapInfo { 1403 static PHINode *getEmptyKey() { 1404 return DenseMapInfo<PHINode *>::getEmptyKey(); 1405 } 1406 1407 static PHINode *getTombstoneKey() { 1408 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1409 } 1410 1411 static bool isSentinel(PHINode *PN) { 1412 return PN == getEmptyKey() || PN == getTombstoneKey(); 1413 } 1414 1415 // WARNING: this logic must be kept in sync with 1416 // Instruction::isIdenticalToWhenDefined()! 1417 static unsigned getHashValueImpl(PHINode *PN) { 1418 // Compute a hash value on the operands. Instcombine will likely have 1419 // sorted them, which helps expose duplicates, but we have to check all 1420 // the operands to be safe in case instcombine hasn't run. 1421 return static_cast<unsigned>(hash_combine( 1422 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1423 hash_combine_range(PN->block_begin(), PN->block_end()))); 1424 } 1425 1426 static unsigned getHashValue(PHINode *PN) { 1427 #ifndef NDEBUG 1428 // If -phicse-debug-hash was specified, return a constant -- this 1429 // will force all hashing to collide, so we'll exhaustively search 1430 // the table for a match, and the assertion in isEqual will fire if 1431 // there's a bug causing equal keys to hash differently. 1432 if (PHICSEDebugHash) 1433 return 0; 1434 #endif 1435 return getHashValueImpl(PN); 1436 } 1437 1438 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1439 if (isSentinel(LHS) || isSentinel(RHS)) 1440 return LHS == RHS; 1441 return LHS->isIdenticalTo(RHS); 1442 } 1443 1444 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1445 // These comparisons are nontrivial, so assert that equality implies 1446 // hash equality (DenseMap demands this as an invariant). 1447 bool Result = isEqualImpl(LHS, RHS); 1448 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1449 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1450 return Result; 1451 } 1452 }; 1453 1454 // Set of unique PHINodes. 1455 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1456 PHISet.reserve(4 * PHICSENumPHISmallSize); 1457 1458 // Examine each PHI. 1459 bool Changed = false; 1460 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1461 if (ToRemove.contains(PN)) 1462 continue; 1463 auto Inserted = PHISet.insert(PN); 1464 if (!Inserted.second) { 1465 // A duplicate. Replace this PHI with its duplicate. 1466 ++NumPHICSEs; 1467 PN->replaceAllUsesWith(*Inserted.first); 1468 ToRemove.insert(PN); 1469 Changed = true; 1470 1471 // The RAUW can change PHIs that we already visited. Start over from the 1472 // beginning. 1473 PHISet.clear(); 1474 I = BB->begin(); 1475 } 1476 } 1477 1478 return Changed; 1479 } 1480 1481 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1482 SmallPtrSetImpl<PHINode *> &ToRemove) { 1483 if ( 1484 #ifndef NDEBUG 1485 !PHICSEDebugHash && 1486 #endif 1487 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1488 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1489 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1490 } 1491 1492 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1493 SmallPtrSet<PHINode *, 8> ToRemove; 1494 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1495 for (PHINode *PN : ToRemove) 1496 PN->eraseFromParent(); 1497 return Changed; 1498 } 1499 1500 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1501 const DataLayout &DL) { 1502 V = V->stripPointerCasts(); 1503 1504 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1505 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1506 // than the current alignment, as the known bits calculation should have 1507 // already taken it into account. However, this is not always the case, 1508 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1509 // doesn't. 1510 Align CurrentAlign = AI->getAlign(); 1511 if (PrefAlign <= CurrentAlign) 1512 return CurrentAlign; 1513 1514 // If the preferred alignment is greater than the natural stack alignment 1515 // then don't round up. This avoids dynamic stack realignment. 1516 MaybeAlign StackAlign = DL.getStackAlignment(); 1517 if (StackAlign && PrefAlign > *StackAlign) 1518 return CurrentAlign; 1519 AI->setAlignment(PrefAlign); 1520 return PrefAlign; 1521 } 1522 1523 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1524 // TODO: as above, this shouldn't be necessary. 1525 Align CurrentAlign = GO->getPointerAlignment(DL); 1526 if (PrefAlign <= CurrentAlign) 1527 return CurrentAlign; 1528 1529 // If there is a large requested alignment and we can, bump up the alignment 1530 // of the global. If the memory we set aside for the global may not be the 1531 // memory used by the final program then it is impossible for us to reliably 1532 // enforce the preferred alignment. 1533 if (!GO->canIncreaseAlignment()) 1534 return CurrentAlign; 1535 1536 if (GO->isThreadLocal()) { 1537 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1538 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1539 PrefAlign = Align(MaxTLSAlign); 1540 } 1541 1542 GO->setAlignment(PrefAlign); 1543 return PrefAlign; 1544 } 1545 1546 return Align(1); 1547 } 1548 1549 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1550 const DataLayout &DL, 1551 const Instruction *CxtI, 1552 AssumptionCache *AC, 1553 const DominatorTree *DT) { 1554 assert(V->getType()->isPointerTy() && 1555 "getOrEnforceKnownAlignment expects a pointer!"); 1556 1557 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1558 unsigned TrailZ = Known.countMinTrailingZeros(); 1559 1560 // Avoid trouble with ridiculously large TrailZ values, such as 1561 // those computed from a null pointer. 1562 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1563 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1564 1565 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1566 1567 if (PrefAlign && *PrefAlign > Alignment) 1568 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1569 1570 // We don't need to make any adjustment. 1571 return Alignment; 1572 } 1573 1574 ///===---------------------------------------------------------------------===// 1575 /// Dbg Intrinsic utilities 1576 /// 1577 1578 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1579 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1580 DIExpression *DIExpr, 1581 PHINode *APN) { 1582 // Since we can't guarantee that the original dbg.declare intrinsic 1583 // is removed by LowerDbgDeclare(), we need to make sure that we are 1584 // not inserting the same dbg.value intrinsic over and over. 1585 SmallVector<DbgValueInst *, 1> DbgValues; 1586 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 1587 findDbgValues(DbgValues, APN, &DbgVariableRecords); 1588 for (auto *DVI : DbgValues) { 1589 assert(is_contained(DVI->getValues(), APN)); 1590 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1591 return true; 1592 } 1593 for (auto *DVR : DbgVariableRecords) { 1594 assert(is_contained(DVR->location_ops(), APN)); 1595 if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) 1596 return true; 1597 } 1598 return false; 1599 } 1600 1601 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1602 /// (or fragment of the variable) described by \p DII. 1603 /// 1604 /// This is primarily intended as a helper for the different 1605 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1606 /// describes an alloca'd variable, so we need to use the alloc size of the 1607 /// value when doing the comparison. E.g. an i1 value will be identified as 1608 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1609 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1610 const DataLayout &DL = DII->getDataLayout(); 1611 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1612 if (std::optional<uint64_t> FragmentSize = 1613 DII->getExpression()->getActiveBits(DII->getVariable())) 1614 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1615 1616 // We can't always calculate the size of the DI variable (e.g. if it is a 1617 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1618 // intead. 1619 if (DII->isAddressOfVariable()) { 1620 // DII should have exactly 1 location when it is an address. 1621 assert(DII->getNumVariableLocationOps() == 1 && 1622 "address of variable must have exactly 1 location operand."); 1623 if (auto *AI = 1624 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1625 if (std::optional<TypeSize> FragmentSize = 1626 AI->getAllocationSizeInBits(DL)) { 1627 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1628 } 1629 } 1630 } 1631 // Could not determine size of variable. Conservatively return false. 1632 return false; 1633 } 1634 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, 1635 // the replacement for dbg.values. 1636 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { 1637 const DataLayout &DL = DVR->getModule()->getDataLayout(); 1638 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1639 if (std::optional<uint64_t> FragmentSize = 1640 DVR->getExpression()->getActiveBits(DVR->getVariable())) 1641 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1642 1643 // We can't always calculate the size of the DI variable (e.g. if it is a 1644 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1645 // intead. 1646 if (DVR->isAddressOfVariable()) { 1647 // DVR should have exactly 1 location when it is an address. 1648 assert(DVR->getNumVariableLocationOps() == 1 && 1649 "address of variable must have exactly 1 location operand."); 1650 if (auto *AI = 1651 dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) { 1652 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1653 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1654 } 1655 } 1656 } 1657 // Could not determine size of variable. Conservatively return false. 1658 return false; 1659 } 1660 1661 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, 1662 DILocalVariable *DIVar, 1663 DIExpression *DIExpr, 1664 const DebugLoc &NewLoc, 1665 BasicBlock::iterator Instr) { 1666 if (!UseNewDbgInfoFormat) { 1667 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1668 (Instruction *)nullptr); 1669 DbgVal.get<Instruction *>()->insertBefore(Instr); 1670 } else { 1671 // RemoveDIs: if we're using the new debug-info format, allocate a 1672 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1673 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1674 DbgVariableRecord *DV = 1675 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1676 Instr->getParent()->insertDbgRecordBefore(DV, Instr); 1677 } 1678 } 1679 1680 static void insertDbgValueOrDbgVariableRecordAfter( 1681 DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, 1682 const DebugLoc &NewLoc, BasicBlock::iterator Instr) { 1683 if (!UseNewDbgInfoFormat) { 1684 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1685 (Instruction *)nullptr); 1686 DbgVal.get<Instruction *>()->insertAfter(&*Instr); 1687 } else { 1688 // RemoveDIs: if we're using the new debug-info format, allocate a 1689 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1690 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1691 DbgVariableRecord *DV = 1692 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1693 Instr->getParent()->insertDbgRecordAfter(DV, &*Instr); 1694 } 1695 } 1696 1697 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1698 /// that has an associated llvm.dbg.declare intrinsic. 1699 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1700 StoreInst *SI, DIBuilder &Builder) { 1701 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1702 auto *DIVar = DII->getVariable(); 1703 assert(DIVar && "Missing variable"); 1704 auto *DIExpr = DII->getExpression(); 1705 Value *DV = SI->getValueOperand(); 1706 1707 DebugLoc NewLoc = getDebugValueLoc(DII); 1708 1709 // If the alloca describes the variable itself, i.e. the expression in the 1710 // dbg.declare doesn't start with a dereference, we can perform the 1711 // conversion if the value covers the entire fragment of DII. 1712 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1713 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1714 // We conservatively ignore other dereferences, because the following two are 1715 // not equivalent: 1716 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1717 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1718 // The former is adding 2 to the address of the variable, whereas the latter 1719 // is adding 2 to the value of the variable. As such, we insist on just a 1720 // deref expression. 1721 bool CanConvert = 1722 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1723 valueCoversEntireFragment(DV->getType(), DII)); 1724 if (CanConvert) { 1725 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1726 SI->getIterator()); 1727 return; 1728 } 1729 1730 // FIXME: If storing to a part of the variable described by the dbg.declare, 1731 // then we want to insert a dbg.value for the corresponding fragment. 1732 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1733 << '\n'); 1734 // For now, when there is a store to parts of the variable (but we do not 1735 // know which part) we insert an dbg.value intrinsic to indicate that we 1736 // know nothing about the variable's content. 1737 DV = PoisonValue::get(DV->getType()); 1738 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1739 SI->getIterator()); 1740 } 1741 1742 static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { 1743 int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; 1744 return DIExpression::get(DIExpr->getContext(), 1745 DIExpr->getElements().drop_front(NumEltDropped)); 1746 } 1747 1748 void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, 1749 DIBuilder &Builder) { 1750 auto *DIVar = DII->getVariable(); 1751 assert(DIVar && "Missing variable"); 1752 auto *DIExpr = DII->getExpression(); 1753 DIExpr = dropInitialDeref(DIExpr); 1754 Value *DV = SI->getValueOperand(); 1755 1756 DebugLoc NewLoc = getDebugValueLoc(DII); 1757 1758 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1759 SI->getIterator()); 1760 } 1761 1762 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1763 /// that has an associated llvm.dbg.declare intrinsic. 1764 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1765 LoadInst *LI, DIBuilder &Builder) { 1766 auto *DIVar = DII->getVariable(); 1767 auto *DIExpr = DII->getExpression(); 1768 assert(DIVar && "Missing variable"); 1769 1770 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1771 // FIXME: If only referring to a part of the variable described by the 1772 // dbg.declare, then we want to insert a dbg.value for the corresponding 1773 // fragment. 1774 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1775 << *DII << '\n'); 1776 return; 1777 } 1778 1779 DebugLoc NewLoc = getDebugValueLoc(DII); 1780 1781 // We are now tracking the loaded value instead of the address. In the 1782 // future if multi-location support is added to the IR, it might be 1783 // preferable to keep tracking both the loaded value and the original 1784 // address in case the alloca can not be elided. 1785 insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1786 LI->getIterator()); 1787 } 1788 1789 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, 1790 StoreInst *SI, DIBuilder &Builder) { 1791 assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); 1792 auto *DIVar = DVR->getVariable(); 1793 assert(DIVar && "Missing variable"); 1794 auto *DIExpr = DVR->getExpression(); 1795 Value *DV = SI->getValueOperand(); 1796 1797 DebugLoc NewLoc = getDebugValueLoc(DVR); 1798 1799 // If the alloca describes the variable itself, i.e. the expression in the 1800 // dbg.declare doesn't start with a dereference, we can perform the 1801 // conversion if the value covers the entire fragment of DII. 1802 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1803 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1804 // We conservatively ignore other dereferences, because the following two are 1805 // not equivalent: 1806 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1807 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1808 // The former is adding 2 to the address of the variable, whereas the latter 1809 // is adding 2 to the value of the variable. As such, we insist on just a 1810 // deref expression. 1811 bool CanConvert = 1812 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1813 valueCoversEntireFragment(DV->getType(), DVR)); 1814 if (CanConvert) { 1815 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1816 SI->getIterator()); 1817 return; 1818 } 1819 1820 // FIXME: If storing to a part of the variable described by the dbg.declare, 1821 // then we want to insert a dbg.value for the corresponding fragment. 1822 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR 1823 << '\n'); 1824 assert(UseNewDbgInfoFormat); 1825 1826 // For now, when there is a store to parts of the variable (but we do not 1827 // know which part) we insert an dbg.value intrinsic to indicate that we 1828 // know nothing about the variable's content. 1829 DV = PoisonValue::get(DV->getType()); 1830 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1831 DbgVariableRecord *NewDVR = 1832 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1833 SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator()); 1834 } 1835 1836 void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, 1837 DIBuilder &Builder) { 1838 auto *DIVar = DVR->getVariable(); 1839 assert(DIVar && "Missing variable"); 1840 auto *DIExpr = DVR->getExpression(); 1841 DIExpr = dropInitialDeref(DIExpr); 1842 Value *DV = SI->getValueOperand(); 1843 1844 DebugLoc NewLoc = getDebugValueLoc(DVR); 1845 1846 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1847 SI->getIterator()); 1848 } 1849 1850 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1851 /// llvm.dbg.declare intrinsic. 1852 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1853 PHINode *APN, DIBuilder &Builder) { 1854 auto *DIVar = DII->getVariable(); 1855 auto *DIExpr = DII->getExpression(); 1856 assert(DIVar && "Missing variable"); 1857 1858 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1859 return; 1860 1861 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1862 // FIXME: If only referring to a part of the variable described by the 1863 // dbg.declare, then we want to insert a dbg.value for the corresponding 1864 // fragment. 1865 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1866 << *DII << '\n'); 1867 return; 1868 } 1869 1870 BasicBlock *BB = APN->getParent(); 1871 auto InsertionPt = BB->getFirstInsertionPt(); 1872 1873 DebugLoc NewLoc = getDebugValueLoc(DII); 1874 1875 // The block may be a catchswitch block, which does not have a valid 1876 // insertion point. 1877 // FIXME: Insert dbg.value markers in the successors when appropriate. 1878 if (InsertionPt != BB->end()) { 1879 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1880 InsertionPt); 1881 } 1882 } 1883 1884 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 1885 DIBuilder &Builder) { 1886 auto *DIVar = DVR->getVariable(); 1887 auto *DIExpr = DVR->getExpression(); 1888 assert(DIVar && "Missing variable"); 1889 1890 if (!valueCoversEntireFragment(LI->getType(), DVR)) { 1891 // FIXME: If only referring to a part of the variable described by the 1892 // dbg.declare, then we want to insert a DbgVariableRecord for the 1893 // corresponding fragment. 1894 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1895 << *DVR << '\n'); 1896 return; 1897 } 1898 1899 DebugLoc NewLoc = getDebugValueLoc(DVR); 1900 1901 // We are now tracking the loaded value instead of the address. In the 1902 // future if multi-location support is added to the IR, it might be 1903 // preferable to keep tracking both the loaded value and the original 1904 // address in case the alloca can not be elided. 1905 assert(UseNewDbgInfoFormat); 1906 1907 // Create a DbgVariableRecord directly and insert. 1908 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1909 DbgVariableRecord *DV = 1910 new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); 1911 LI->getParent()->insertDbgRecordAfter(DV, LI); 1912 } 1913 1914 /// Determine whether this alloca is either a VLA or an array. 1915 static bool isArray(AllocaInst *AI) { 1916 return AI->isArrayAllocation() || 1917 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1918 } 1919 1920 /// Determine whether this alloca is a structure. 1921 static bool isStructure(AllocaInst *AI) { 1922 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1923 } 1924 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, 1925 DIBuilder &Builder) { 1926 auto *DIVar = DVR->getVariable(); 1927 auto *DIExpr = DVR->getExpression(); 1928 assert(DIVar && "Missing variable"); 1929 1930 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1931 return; 1932 1933 if (!valueCoversEntireFragment(APN->getType(), DVR)) { 1934 // FIXME: If only referring to a part of the variable described by the 1935 // dbg.declare, then we want to insert a DbgVariableRecord for the 1936 // corresponding fragment. 1937 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1938 << *DVR << '\n'); 1939 return; 1940 } 1941 1942 BasicBlock *BB = APN->getParent(); 1943 auto InsertionPt = BB->getFirstInsertionPt(); 1944 1945 DebugLoc NewLoc = getDebugValueLoc(DVR); 1946 1947 // The block may be a catchswitch block, which does not have a valid 1948 // insertion point. 1949 // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. 1950 if (InsertionPt != BB->end()) { 1951 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1952 InsertionPt); 1953 } 1954 } 1955 1956 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1957 /// of llvm.dbg.value intrinsics. 1958 bool llvm::LowerDbgDeclare(Function &F) { 1959 bool Changed = false; 1960 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1961 SmallVector<DbgDeclareInst *, 4> Dbgs; 1962 SmallVector<DbgVariableRecord *> DVRs; 1963 for (auto &FI : F) { 1964 for (Instruction &BI : FI) { 1965 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1966 Dbgs.push_back(DDI); 1967 for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) { 1968 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 1969 DVRs.push_back(&DVR); 1970 } 1971 } 1972 } 1973 1974 if (Dbgs.empty() && DVRs.empty()) 1975 return Changed; 1976 1977 auto LowerOne = [&](auto *DDI) { 1978 AllocaInst *AI = 1979 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 1980 // If this is an alloca for a scalar variable, insert a dbg.value 1981 // at each load and store to the alloca and erase the dbg.declare. 1982 // The dbg.values allow tracking a variable even if it is not 1983 // stored on the stack, while the dbg.declare can only describe 1984 // the stack slot (and at a lexical-scope granularity). Later 1985 // passes will attempt to elide the stack slot. 1986 if (!AI || isArray(AI) || isStructure(AI)) 1987 return; 1988 1989 // A volatile load/store means that the alloca can't be elided anyway. 1990 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1991 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1992 return LI->isVolatile(); 1993 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1994 return SI->isVolatile(); 1995 return false; 1996 })) 1997 return; 1998 1999 SmallVector<const Value *, 8> WorkList; 2000 WorkList.push_back(AI); 2001 while (!WorkList.empty()) { 2002 const Value *V = WorkList.pop_back_val(); 2003 for (const auto &AIUse : V->uses()) { 2004 User *U = AIUse.getUser(); 2005 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2006 if (AIUse.getOperandNo() == 1) 2007 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 2008 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 2009 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 2010 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 2011 // This is a call by-value or some other instruction that takes a 2012 // pointer to the variable. Insert a *value* intrinsic that describes 2013 // the variable by dereferencing the alloca. 2014 if (!CI->isLifetimeStartOrEnd()) { 2015 DebugLoc NewLoc = getDebugValueLoc(DDI); 2016 auto *DerefExpr = 2017 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 2018 insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), 2019 DerefExpr, NewLoc, 2020 CI->getIterator()); 2021 } 2022 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 2023 if (BI->getType()->isPointerTy()) 2024 WorkList.push_back(BI); 2025 } 2026 } 2027 } 2028 DDI->eraseFromParent(); 2029 Changed = true; 2030 }; 2031 2032 for_each(Dbgs, LowerOne); 2033 for_each(DVRs, LowerOne); 2034 2035 if (Changed) 2036 for (BasicBlock &BB : F) 2037 RemoveRedundantDbgInstrs(&BB); 2038 2039 return Changed; 2040 } 2041 2042 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2043 // debug-info out of the block's DbgVariableRecords rather than dbg.value 2044 // intrinsics. 2045 static void 2046 insertDbgVariableRecordsForPHIs(BasicBlock *BB, 2047 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2048 assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from."); 2049 if (InsertedPHIs.size() == 0) 2050 return; 2051 2052 // Map existing PHI nodes to their DbgVariableRecords. 2053 DenseMap<Value *, DbgVariableRecord *> DbgValueMap; 2054 for (auto &I : *BB) { 2055 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 2056 for (Value *V : DVR.location_ops()) 2057 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2058 DbgValueMap.insert({Loc, &DVR}); 2059 } 2060 } 2061 if (DbgValueMap.size() == 0) 2062 return; 2063 2064 // Map a pair of the destination BB and old DbgVariableRecord to the new 2065 // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use 2066 // more than one of the inserted PHIs in the same destination BB, we can 2067 // update the same DbgVariableRecord with all the new PHIs instead of creating 2068 // one copy for each. 2069 MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> 2070 NewDbgValueMap; 2071 // Then iterate through the new PHIs and look to see if they use one of the 2072 // previously mapped PHIs. If so, create a new DbgVariableRecord that will 2073 // propagate the info through the new PHI. If we use more than one new PHI in 2074 // a single destination BB with the same old dbg.value, merge the updates so 2075 // that we get a single new DbgVariableRecord with all the new PHIs. 2076 for (auto PHI : InsertedPHIs) { 2077 BasicBlock *Parent = PHI->getParent(); 2078 // Avoid inserting a debug-info record into an EH block. 2079 if (Parent->getFirstNonPHI()->isEHPad()) 2080 continue; 2081 for (auto VI : PHI->operand_values()) { 2082 auto V = DbgValueMap.find(VI); 2083 if (V != DbgValueMap.end()) { 2084 DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second); 2085 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2086 if (NewDI == NewDbgValueMap.end()) { 2087 DbgVariableRecord *NewDbgII = DbgII->clone(); 2088 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2089 } 2090 DbgVariableRecord *NewDbgII = NewDI->second; 2091 // If PHI contains VI as an operand more than once, we may 2092 // replaced it in NewDbgII; confirm that it is present. 2093 if (is_contained(NewDbgII->location_ops(), VI)) 2094 NewDbgII->replaceVariableLocationOp(VI, PHI); 2095 } 2096 } 2097 } 2098 // Insert the new DbgVariableRecords into their destination blocks. 2099 for (auto DI : NewDbgValueMap) { 2100 BasicBlock *Parent = DI.first.first; 2101 DbgVariableRecord *NewDbgII = DI.second; 2102 auto InsertionPt = Parent->getFirstInsertionPt(); 2103 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2104 2105 Parent->insertDbgRecordBefore(NewDbgII, InsertionPt); 2106 } 2107 } 2108 2109 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2110 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2111 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2112 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2113 if (InsertedPHIs.size() == 0) 2114 return; 2115 2116 insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); 2117 2118 // Map existing PHI nodes to their dbg.values. 2119 ValueToValueMapTy DbgValueMap; 2120 for (auto &I : *BB) { 2121 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2122 for (Value *V : DbgII->location_ops()) 2123 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2124 DbgValueMap.insert({Loc, DbgII}); 2125 } 2126 } 2127 if (DbgValueMap.size() == 0) 2128 return; 2129 2130 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2131 // so that if a dbg.value is being rewritten to use more than one of the 2132 // inserted PHIs in the same destination BB, we can update the same dbg.value 2133 // with all the new PHIs instead of creating one copy for each. 2134 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2135 DbgVariableIntrinsic *> 2136 NewDbgValueMap; 2137 // Then iterate through the new PHIs and look to see if they use one of the 2138 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2139 // propagate the info through the new PHI. If we use more than one new PHI in 2140 // a single destination BB with the same old dbg.value, merge the updates so 2141 // that we get a single new dbg.value with all the new PHIs. 2142 for (auto *PHI : InsertedPHIs) { 2143 BasicBlock *Parent = PHI->getParent(); 2144 // Avoid inserting an intrinsic into an EH block. 2145 if (Parent->getFirstNonPHI()->isEHPad()) 2146 continue; 2147 for (auto *VI : PHI->operand_values()) { 2148 auto V = DbgValueMap.find(VI); 2149 if (V != DbgValueMap.end()) { 2150 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2151 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2152 if (NewDI == NewDbgValueMap.end()) { 2153 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 2154 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2155 } 2156 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2157 // If PHI contains VI as an operand more than once, we may 2158 // replaced it in NewDbgII; confirm that it is present. 2159 if (is_contained(NewDbgII->location_ops(), VI)) 2160 NewDbgII->replaceVariableLocationOp(VI, PHI); 2161 } 2162 } 2163 } 2164 // Insert thew new dbg.values into their destination blocks. 2165 for (auto DI : NewDbgValueMap) { 2166 BasicBlock *Parent = DI.first.first; 2167 auto *NewDbgII = DI.second; 2168 auto InsertionPt = Parent->getFirstInsertionPt(); 2169 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2170 NewDbgII->insertBefore(&*InsertionPt); 2171 } 2172 } 2173 2174 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2175 DIBuilder &Builder, uint8_t DIExprFlags, 2176 int Offset) { 2177 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); 2178 TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address); 2179 2180 auto ReplaceOne = [&](auto *DII) { 2181 assert(DII->getVariable() && "Missing variable"); 2182 auto *DIExpr = DII->getExpression(); 2183 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2184 DII->setExpression(DIExpr); 2185 DII->replaceVariableLocationOp(Address, NewAddress); 2186 }; 2187 2188 for_each(DbgDeclares, ReplaceOne); 2189 for_each(DVRDeclares, ReplaceOne); 2190 2191 return !DbgDeclares.empty() || !DVRDeclares.empty(); 2192 } 2193 2194 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2195 DILocalVariable *DIVar, 2196 DIExpression *DIExpr, Value *NewAddress, 2197 DbgValueInst *DVI, 2198 DbgVariableRecord *DVR, 2199 DIBuilder &Builder, int Offset) { 2200 assert(DIVar && "Missing variable"); 2201 2202 // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it 2203 // should do with the alloca pointer is dereference it. Otherwise we don't 2204 // know how to handle it and give up. 2205 if (!DIExpr || DIExpr->getNumElements() < 1 || 2206 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2207 return; 2208 2209 // Insert the offset before the first deref. 2210 if (Offset) 2211 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2212 2213 if (DVI) { 2214 DVI->setExpression(DIExpr); 2215 DVI->replaceVariableLocationOp(0u, NewAddress); 2216 } else { 2217 assert(DVR); 2218 DVR->setExpression(DIExpr); 2219 DVR->replaceVariableLocationOp(0u, NewAddress); 2220 } 2221 } 2222 2223 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2224 DIBuilder &Builder, int Offset) { 2225 SmallVector<DbgValueInst *, 1> DbgUsers; 2226 SmallVector<DbgVariableRecord *, 1> DPUsers; 2227 findDbgValues(DbgUsers, AI, &DPUsers); 2228 2229 // Attempt to replace dbg.values that use this alloca. 2230 for (auto *DVI : DbgUsers) 2231 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2232 DVI->getExpression(), NewAllocaAddress, DVI, 2233 nullptr, Builder, Offset); 2234 2235 // Replace any DbgVariableRecords that use this alloca. 2236 for (DbgVariableRecord *DVR : DPUsers) 2237 updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(), 2238 DVR->getExpression(), NewAllocaAddress, nullptr, 2239 DVR, Builder, Offset); 2240 } 2241 2242 /// Where possible to salvage debug information for \p I do so. 2243 /// If not possible mark undef. 2244 void llvm::salvageDebugInfo(Instruction &I) { 2245 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2246 SmallVector<DbgVariableRecord *, 1> DPUsers; 2247 findDbgUsers(DbgUsers, &I, &DPUsers); 2248 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2249 } 2250 2251 template <typename T> static void salvageDbgAssignAddress(T *Assign) { 2252 Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); 2253 // Only instructions can be salvaged at the moment. 2254 if (!I) 2255 return; 2256 2257 assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && 2258 "address-expression shouldn't have fragment info"); 2259 2260 // The address component of a dbg.assign cannot be variadic. 2261 uint64_t CurrentLocOps = 0; 2262 SmallVector<Value *, 4> AdditionalValues; 2263 SmallVector<uint64_t, 16> Ops; 2264 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2265 2266 // Check if the salvage failed. 2267 if (!NewV) 2268 return; 2269 2270 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2271 Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2272 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2273 "address-expression shouldn't have fragment info"); 2274 2275 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2276 2277 // Salvage succeeds if no additional values are required. 2278 if (AdditionalValues.empty()) { 2279 Assign->setAddress(NewV); 2280 Assign->setAddressExpression(SalvagedExpr); 2281 } else { 2282 Assign->setKillAddress(); 2283 } 2284 } 2285 2286 void llvm::salvageDebugInfoForDbgValues( 2287 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2288 ArrayRef<DbgVariableRecord *> DPUsers) { 2289 // These are arbitrary chosen limits on the maximum number of values and the 2290 // maximum size of a debug expression we can salvage up to, used for 2291 // performance reasons. 2292 const unsigned MaxDebugArgs = 16; 2293 const unsigned MaxExpressionSize = 128; 2294 bool Salvaged = false; 2295 2296 for (auto *DII : DbgUsers) { 2297 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2298 if (DAI->getAddress() == &I) { 2299 salvageDbgAssignAddress(DAI); 2300 Salvaged = true; 2301 } 2302 if (DAI->getValue() != &I) 2303 continue; 2304 } 2305 2306 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2307 // pointing out the value as a DWARF memory location description. 2308 bool StackValue = isa<DbgValueInst>(DII); 2309 auto DIILocation = DII->location_ops(); 2310 assert( 2311 is_contained(DIILocation, &I) && 2312 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2313 SmallVector<Value *, 4> AdditionalValues; 2314 // `I` may appear more than once in DII's location ops, and each use of `I` 2315 // must be updated in the DIExpression and potentially have additional 2316 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2317 // DIILocation. 2318 Value *Op0 = nullptr; 2319 DIExpression *SalvagedExpr = DII->getExpression(); 2320 auto LocItr = find(DIILocation, &I); 2321 while (SalvagedExpr && LocItr != DIILocation.end()) { 2322 SmallVector<uint64_t, 16> Ops; 2323 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2324 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2325 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2326 if (!Op0) 2327 break; 2328 SalvagedExpr = 2329 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2330 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2331 } 2332 // salvageDebugInfoImpl should fail on examining the first element of 2333 // DbgUsers, or none of them. 2334 if (!Op0) 2335 break; 2336 2337 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2338 DII->replaceVariableLocationOp(&I, Op0); 2339 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2340 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2341 DII->setExpression(SalvagedExpr); 2342 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2343 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2344 MaxDebugArgs) { 2345 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2346 } else { 2347 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2348 // supported in those instructions. Also do not salvage if the resulting 2349 // DIArgList would contain an unreasonably large number of values. 2350 DII->setKillLocation(); 2351 } 2352 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2353 Salvaged = true; 2354 } 2355 // Duplicate of above block for DbgVariableRecords. 2356 for (auto *DVR : DPUsers) { 2357 if (DVR->isDbgAssign()) { 2358 if (DVR->getAddress() == &I) { 2359 salvageDbgAssignAddress(DVR); 2360 Salvaged = true; 2361 } 2362 if (DVR->getValue() != &I) 2363 continue; 2364 } 2365 2366 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2367 // are implicitly pointing out the value as a DWARF memory location 2368 // description. 2369 bool StackValue = 2370 DVR->getType() != DbgVariableRecord::LocationType::Declare; 2371 auto DVRLocation = DVR->location_ops(); 2372 assert( 2373 is_contained(DVRLocation, &I) && 2374 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2375 SmallVector<Value *, 4> AdditionalValues; 2376 // 'I' may appear more than once in DVR's location ops, and each use of 'I' 2377 // must be updated in the DIExpression and potentially have additional 2378 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2379 // DVRLocation. 2380 Value *Op0 = nullptr; 2381 DIExpression *SalvagedExpr = DVR->getExpression(); 2382 auto LocItr = find(DVRLocation, &I); 2383 while (SalvagedExpr && LocItr != DVRLocation.end()) { 2384 SmallVector<uint64_t, 16> Ops; 2385 unsigned LocNo = std::distance(DVRLocation.begin(), LocItr); 2386 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2387 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2388 if (!Op0) 2389 break; 2390 SalvagedExpr = 2391 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2392 LocItr = std::find(++LocItr, DVRLocation.end(), &I); 2393 } 2394 // salvageDebugInfoImpl should fail on examining the first element of 2395 // DbgUsers, or none of them. 2396 if (!Op0) 2397 break; 2398 2399 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2400 DVR->replaceVariableLocationOp(&I, Op0); 2401 bool IsValidSalvageExpr = 2402 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2403 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2404 DVR->setExpression(SalvagedExpr); 2405 } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && 2406 IsValidSalvageExpr && 2407 DVR->getNumVariableLocationOps() + AdditionalValues.size() <= 2408 MaxDebugArgs) { 2409 DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2410 } else { 2411 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2412 // currently only valid for stack value expressions. 2413 // Also do not salvage if the resulting DIArgList would contain an 2414 // unreasonably large number of values. 2415 DVR->setKillLocation(); 2416 } 2417 LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); 2418 Salvaged = true; 2419 } 2420 2421 if (Salvaged) 2422 return; 2423 2424 for (auto *DII : DbgUsers) 2425 DII->setKillLocation(); 2426 2427 for (auto *DVR : DPUsers) 2428 DVR->setKillLocation(); 2429 } 2430 2431 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2432 uint64_t CurrentLocOps, 2433 SmallVectorImpl<uint64_t> &Opcodes, 2434 SmallVectorImpl<Value *> &AdditionalValues) { 2435 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2436 // Rewrite a GEP into a DIExpression. 2437 MapVector<Value *, APInt> VariableOffsets; 2438 APInt ConstantOffset(BitWidth, 0); 2439 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2440 return nullptr; 2441 if (!VariableOffsets.empty() && !CurrentLocOps) { 2442 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2443 CurrentLocOps = 1; 2444 } 2445 for (const auto &Offset : VariableOffsets) { 2446 AdditionalValues.push_back(Offset.first); 2447 assert(Offset.second.isStrictlyPositive() && 2448 "Expected strictly positive multiplier for offset."); 2449 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2450 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2451 dwarf::DW_OP_plus}); 2452 } 2453 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2454 return GEP->getOperand(0); 2455 } 2456 2457 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2458 switch (Opcode) { 2459 case Instruction::Add: 2460 return dwarf::DW_OP_plus; 2461 case Instruction::Sub: 2462 return dwarf::DW_OP_minus; 2463 case Instruction::Mul: 2464 return dwarf::DW_OP_mul; 2465 case Instruction::SDiv: 2466 return dwarf::DW_OP_div; 2467 case Instruction::SRem: 2468 return dwarf::DW_OP_mod; 2469 case Instruction::Or: 2470 return dwarf::DW_OP_or; 2471 case Instruction::And: 2472 return dwarf::DW_OP_and; 2473 case Instruction::Xor: 2474 return dwarf::DW_OP_xor; 2475 case Instruction::Shl: 2476 return dwarf::DW_OP_shl; 2477 case Instruction::LShr: 2478 return dwarf::DW_OP_shr; 2479 case Instruction::AShr: 2480 return dwarf::DW_OP_shra; 2481 default: 2482 // TODO: Salvage from each kind of binop we know about. 2483 return 0; 2484 } 2485 } 2486 2487 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2488 SmallVectorImpl<uint64_t> &Opcodes, 2489 SmallVectorImpl<Value *> &AdditionalValues, 2490 Instruction *I) { 2491 if (!CurrentLocOps) { 2492 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2493 CurrentLocOps = 1; 2494 } 2495 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2496 AdditionalValues.push_back(I->getOperand(1)); 2497 } 2498 2499 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2500 SmallVectorImpl<uint64_t> &Opcodes, 2501 SmallVectorImpl<Value *> &AdditionalValues) { 2502 // Handle binary operations with constant integer operands as a special case. 2503 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2504 // Values wider than 64 bits cannot be represented within a DIExpression. 2505 if (ConstInt && ConstInt->getBitWidth() > 64) 2506 return nullptr; 2507 2508 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2509 // Push any Constant Int operand onto the expression stack. 2510 if (ConstInt) { 2511 uint64_t Val = ConstInt->getSExtValue(); 2512 // Add or Sub Instructions with a constant operand can potentially be 2513 // simplified. 2514 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2515 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2516 DIExpression::appendOffset(Opcodes, Offset); 2517 return BI->getOperand(0); 2518 } 2519 Opcodes.append({dwarf::DW_OP_constu, Val}); 2520 } else { 2521 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2522 } 2523 2524 // Add salvaged binary operator to expression stack, if it has a valid 2525 // representation in a DIExpression. 2526 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2527 if (!DwarfBinOp) 2528 return nullptr; 2529 Opcodes.push_back(DwarfBinOp); 2530 return BI->getOperand(0); 2531 } 2532 2533 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2534 // The signedness of the operation is implicit in the typed stack, signed and 2535 // unsigned instructions map to the same DWARF opcode. 2536 switch (Pred) { 2537 case CmpInst::ICMP_EQ: 2538 return dwarf::DW_OP_eq; 2539 case CmpInst::ICMP_NE: 2540 return dwarf::DW_OP_ne; 2541 case CmpInst::ICMP_UGT: 2542 case CmpInst::ICMP_SGT: 2543 return dwarf::DW_OP_gt; 2544 case CmpInst::ICMP_UGE: 2545 case CmpInst::ICMP_SGE: 2546 return dwarf::DW_OP_ge; 2547 case CmpInst::ICMP_ULT: 2548 case CmpInst::ICMP_SLT: 2549 return dwarf::DW_OP_lt; 2550 case CmpInst::ICMP_ULE: 2551 case CmpInst::ICMP_SLE: 2552 return dwarf::DW_OP_le; 2553 default: 2554 return 0; 2555 } 2556 } 2557 2558 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2559 SmallVectorImpl<uint64_t> &Opcodes, 2560 SmallVectorImpl<Value *> &AdditionalValues) { 2561 // Handle icmp operations with constant integer operands as a special case. 2562 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2563 // Values wider than 64 bits cannot be represented within a DIExpression. 2564 if (ConstInt && ConstInt->getBitWidth() > 64) 2565 return nullptr; 2566 // Push any Constant Int operand onto the expression stack. 2567 if (ConstInt) { 2568 if (Icmp->isSigned()) 2569 Opcodes.push_back(dwarf::DW_OP_consts); 2570 else 2571 Opcodes.push_back(dwarf::DW_OP_constu); 2572 uint64_t Val = ConstInt->getSExtValue(); 2573 Opcodes.push_back(Val); 2574 } else { 2575 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2576 } 2577 2578 // Add salvaged binary operator to expression stack, if it has a valid 2579 // representation in a DIExpression. 2580 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2581 if (!DwarfIcmpOp) 2582 return nullptr; 2583 Opcodes.push_back(DwarfIcmpOp); 2584 return Icmp->getOperand(0); 2585 } 2586 2587 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2588 SmallVectorImpl<uint64_t> &Ops, 2589 SmallVectorImpl<Value *> &AdditionalValues) { 2590 auto &M = *I.getModule(); 2591 auto &DL = M.getDataLayout(); 2592 2593 if (auto *CI = dyn_cast<CastInst>(&I)) { 2594 Value *FromValue = CI->getOperand(0); 2595 // No-op casts are irrelevant for debug info. 2596 if (CI->isNoopCast(DL)) { 2597 return FromValue; 2598 } 2599 2600 Type *Type = CI->getType(); 2601 if (Type->isPointerTy()) 2602 Type = DL.getIntPtrType(Type); 2603 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2604 if (Type->isVectorTy() || 2605 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2606 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2607 return nullptr; 2608 2609 llvm::Type *FromType = FromValue->getType(); 2610 if (FromType->isPointerTy()) 2611 FromType = DL.getIntPtrType(FromType); 2612 2613 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2614 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2615 2616 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2617 isa<SExtInst>(&I)); 2618 Ops.append(ExtOps.begin(), ExtOps.end()); 2619 return FromValue; 2620 } 2621 2622 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2623 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2624 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2625 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2626 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2627 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2628 2629 // *Not* to do: we should not attempt to salvage load instructions, 2630 // because the validity and lifetime of a dbg.value containing 2631 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2632 return nullptr; 2633 } 2634 2635 /// A replacement for a dbg.value expression. 2636 using DbgValReplacement = std::optional<DIExpression *>; 2637 2638 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2639 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2640 /// changes are made. 2641 static bool rewriteDebugUsers( 2642 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2643 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2644 function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { 2645 // Find debug users of From. 2646 SmallVector<DbgVariableIntrinsic *, 1> Users; 2647 SmallVector<DbgVariableRecord *, 1> DPUsers; 2648 findDbgUsers(Users, &From, &DPUsers); 2649 if (Users.empty() && DPUsers.empty()) 2650 return false; 2651 2652 // Prevent use-before-def of To. 2653 bool Changed = false; 2654 2655 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2656 SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; 2657 if (isa<Instruction>(&To)) { 2658 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2659 2660 for (auto *DII : Users) { 2661 // It's common to see a debug user between From and DomPoint. Move it 2662 // after DomPoint to preserve the variable update without any reordering. 2663 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2664 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2665 DII->moveAfter(&DomPoint); 2666 Changed = true; 2667 2668 // Users which otherwise aren't dominated by the replacement value must 2669 // be salvaged or deleted. 2670 } else if (!DT.dominates(&DomPoint, DII)) { 2671 UndefOrSalvage.insert(DII); 2672 } 2673 } 2674 2675 // DbgVariableRecord implementation of the above. 2676 for (auto *DVR : DPUsers) { 2677 Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; 2678 Instruction *NextNonDebug = MarkedInstr; 2679 // The next instruction might still be a dbg.declare, skip over it. 2680 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2681 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2682 2683 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2684 LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); 2685 DVR->removeFromParent(); 2686 // Ensure there's a marker. 2687 DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint); 2688 Changed = true; 2689 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2690 UndefOrSalvageDVR.insert(DVR); 2691 } 2692 } 2693 } 2694 2695 // Update debug users without use-before-def risk. 2696 for (auto *DII : Users) { 2697 if (UndefOrSalvage.count(DII)) 2698 continue; 2699 2700 DbgValReplacement DVRepl = RewriteExpr(*DII); 2701 if (!DVRepl) 2702 continue; 2703 2704 DII->replaceVariableLocationOp(&From, &To); 2705 DII->setExpression(*DVRepl); 2706 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2707 Changed = true; 2708 } 2709 for (auto *DVR : DPUsers) { 2710 if (UndefOrSalvageDVR.count(DVR)) 2711 continue; 2712 2713 DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); 2714 if (!DVRepl) 2715 continue; 2716 2717 DVR->replaceVariableLocationOp(&From, &To); 2718 DVR->setExpression(*DVRepl); 2719 LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); 2720 Changed = true; 2721 } 2722 2723 if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { 2724 // Try to salvage the remaining debug users. 2725 salvageDebugInfo(From); 2726 Changed = true; 2727 } 2728 2729 return Changed; 2730 } 2731 2732 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2733 /// losslessly preserve the bits and semantics of the value. This predicate is 2734 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2735 /// 2736 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2737 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2738 /// and also does not allow lossless pointer <-> integer conversions. 2739 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2740 Type *ToTy) { 2741 // Trivially compatible types. 2742 if (FromTy == ToTy) 2743 return true; 2744 2745 // Handle compatible pointer <-> integer conversions. 2746 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2747 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2748 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2749 !DL.isNonIntegralPointerType(ToTy); 2750 return SameSize && LosslessConversion; 2751 } 2752 2753 // TODO: This is not exhaustive. 2754 return false; 2755 } 2756 2757 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2758 Instruction &DomPoint, DominatorTree &DT) { 2759 // Exit early if From has no debug users. 2760 if (!From.isUsedByMetadata()) 2761 return false; 2762 2763 assert(&From != &To && "Can't replace something with itself"); 2764 2765 Type *FromTy = From.getType(); 2766 Type *ToTy = To.getType(); 2767 2768 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2769 return DII.getExpression(); 2770 }; 2771 auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2772 return DVR.getExpression(); 2773 }; 2774 2775 // Handle no-op conversions. 2776 Module &M = *From.getModule(); 2777 const DataLayout &DL = M.getDataLayout(); 2778 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2779 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2780 2781 // Handle integer-to-integer widening and narrowing. 2782 // FIXME: Use DW_OP_convert when it's available everywhere. 2783 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2784 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2785 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2786 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2787 2788 // When the width of the result grows, assume that a debugger will only 2789 // access the low `FromBits` bits when inspecting the source variable. 2790 if (FromBits < ToBits) 2791 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2792 2793 // The width of the result has shrunk. Use sign/zero extension to describe 2794 // the source variable's high bits. 2795 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2796 DILocalVariable *Var = DII.getVariable(); 2797 2798 // Without knowing signedness, sign/zero extension isn't possible. 2799 auto Signedness = Var->getSignedness(); 2800 if (!Signedness) 2801 return std::nullopt; 2802 2803 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2804 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2805 Signed); 2806 }; 2807 // RemoveDIs: duplicate implementation working on DbgVariableRecords rather 2808 // than on dbg.value intrinsics. 2809 auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2810 DILocalVariable *Var = DVR.getVariable(); 2811 2812 // Without knowing signedness, sign/zero extension isn't possible. 2813 auto Signedness = Var->getSignedness(); 2814 if (!Signedness) 2815 return std::nullopt; 2816 2817 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2818 return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits, 2819 Signed); 2820 }; 2821 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2822 SignOrZeroExtDVR); 2823 } 2824 2825 // TODO: Floating-point conversions, vectors. 2826 return false; 2827 } 2828 2829 bool llvm::handleUnreachableTerminator( 2830 Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { 2831 bool Changed = false; 2832 // RemoveDIs: erase debug-info on this instruction manually. 2833 I->dropDbgRecords(); 2834 for (Use &U : I->operands()) { 2835 Value *Op = U.get(); 2836 if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) { 2837 U.set(PoisonValue::get(Op->getType())); 2838 PoisonedValues.push_back(Op); 2839 Changed = true; 2840 } 2841 } 2842 2843 return Changed; 2844 } 2845 2846 std::pair<unsigned, unsigned> 2847 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2848 unsigned NumDeadInst = 0; 2849 unsigned NumDeadDbgInst = 0; 2850 // Delete the instructions backwards, as it has a reduced likelihood of 2851 // having to update as many def-use and use-def chains. 2852 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2853 SmallVector<Value *> Uses; 2854 handleUnreachableTerminator(EndInst, Uses); 2855 2856 while (EndInst != &BB->front()) { 2857 // Delete the next to last instruction. 2858 Instruction *Inst = &*--EndInst->getIterator(); 2859 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2860 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2861 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2862 // EHPads can't have DbgVariableRecords attached to them, but it might be 2863 // possible for things with token type. 2864 Inst->dropDbgRecords(); 2865 EndInst = Inst; 2866 continue; 2867 } 2868 if (isa<DbgInfoIntrinsic>(Inst)) 2869 ++NumDeadDbgInst; 2870 else 2871 ++NumDeadInst; 2872 // RemoveDIs: erasing debug-info must be done manually. 2873 Inst->dropDbgRecords(); 2874 Inst->eraseFromParent(); 2875 } 2876 return {NumDeadInst, NumDeadDbgInst}; 2877 } 2878 2879 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2880 DomTreeUpdater *DTU, 2881 MemorySSAUpdater *MSSAU) { 2882 BasicBlock *BB = I->getParent(); 2883 2884 if (MSSAU) 2885 MSSAU->changeToUnreachable(I); 2886 2887 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2888 2889 // Loop over all of the successors, removing BB's entry from any PHI 2890 // nodes. 2891 for (BasicBlock *Successor : successors(BB)) { 2892 Successor->removePredecessor(BB, PreserveLCSSA); 2893 if (DTU) 2894 UniqueSuccessors.insert(Successor); 2895 } 2896 auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); 2897 UI->setDebugLoc(I->getDebugLoc()); 2898 2899 // All instructions after this are dead. 2900 unsigned NumInstrsRemoved = 0; 2901 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2902 while (BBI != BBE) { 2903 if (!BBI->use_empty()) 2904 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2905 BBI++->eraseFromParent(); 2906 ++NumInstrsRemoved; 2907 } 2908 if (DTU) { 2909 SmallVector<DominatorTree::UpdateType, 8> Updates; 2910 Updates.reserve(UniqueSuccessors.size()); 2911 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2912 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2913 DTU->applyUpdates(Updates); 2914 } 2915 BB->flushTerminatorDbgRecords(); 2916 return NumInstrsRemoved; 2917 } 2918 2919 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2920 SmallVector<Value *, 8> Args(II->args()); 2921 SmallVector<OperandBundleDef, 1> OpBundles; 2922 II->getOperandBundlesAsDefs(OpBundles); 2923 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2924 II->getCalledOperand(), Args, OpBundles); 2925 NewCall->setCallingConv(II->getCallingConv()); 2926 NewCall->setAttributes(II->getAttributes()); 2927 NewCall->setDebugLoc(II->getDebugLoc()); 2928 NewCall->copyMetadata(*II); 2929 2930 // If the invoke had profile metadata, try converting them for CallInst. 2931 uint64_t TotalWeight; 2932 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2933 // Set the total weight if it fits into i32, otherwise reset. 2934 MDBuilder MDB(NewCall->getContext()); 2935 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2936 ? nullptr 2937 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2938 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2939 } 2940 2941 return NewCall; 2942 } 2943 2944 // changeToCall - Convert the specified invoke into a normal call. 2945 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2946 CallInst *NewCall = createCallMatchingInvoke(II); 2947 NewCall->takeName(II); 2948 NewCall->insertBefore(II); 2949 II->replaceAllUsesWith(NewCall); 2950 2951 // Follow the call by a branch to the normal destination. 2952 BasicBlock *NormalDestBB = II->getNormalDest(); 2953 BranchInst::Create(NormalDestBB, II->getIterator()); 2954 2955 // Update PHI nodes in the unwind destination 2956 BasicBlock *BB = II->getParent(); 2957 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2958 UnwindDestBB->removePredecessor(BB); 2959 II->eraseFromParent(); 2960 if (DTU) 2961 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2962 return NewCall; 2963 } 2964 2965 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2966 BasicBlock *UnwindEdge, 2967 DomTreeUpdater *DTU) { 2968 BasicBlock *BB = CI->getParent(); 2969 2970 // Convert this function call into an invoke instruction. First, split the 2971 // basic block. 2972 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2973 CI->getName() + ".noexc"); 2974 2975 // Delete the unconditional branch inserted by SplitBlock 2976 BB->back().eraseFromParent(); 2977 2978 // Create the new invoke instruction. 2979 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2980 SmallVector<OperandBundleDef, 1> OpBundles; 2981 2982 CI->getOperandBundlesAsDefs(OpBundles); 2983 2984 // Note: we're round tripping operand bundles through memory here, and that 2985 // can potentially be avoided with a cleverer API design that we do not have 2986 // as of this time. 2987 2988 InvokeInst *II = 2989 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2990 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2991 II->setDebugLoc(CI->getDebugLoc()); 2992 II->setCallingConv(CI->getCallingConv()); 2993 II->setAttributes(CI->getAttributes()); 2994 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 2995 2996 if (DTU) 2997 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2998 2999 // Make sure that anything using the call now uses the invoke! This also 3000 // updates the CallGraph if present, because it uses a WeakTrackingVH. 3001 CI->replaceAllUsesWith(II); 3002 3003 // Delete the original call 3004 Split->front().eraseFromParent(); 3005 return Split; 3006 } 3007 3008 static bool markAliveBlocks(Function &F, 3009 SmallPtrSetImpl<BasicBlock *> &Reachable, 3010 DomTreeUpdater *DTU = nullptr) { 3011 SmallVector<BasicBlock*, 128> Worklist; 3012 BasicBlock *BB = &F.front(); 3013 Worklist.push_back(BB); 3014 Reachable.insert(BB); 3015 bool Changed = false; 3016 do { 3017 BB = Worklist.pop_back_val(); 3018 3019 // Do a quick scan of the basic block, turning any obviously unreachable 3020 // instructions into LLVM unreachable insts. The instruction combining pass 3021 // canonicalizes unreachable insts into stores to null or undef. 3022 for (Instruction &I : *BB) { 3023 if (auto *CI = dyn_cast<CallInst>(&I)) { 3024 Value *Callee = CI->getCalledOperand(); 3025 // Handle intrinsic calls. 3026 if (Function *F = dyn_cast<Function>(Callee)) { 3027 auto IntrinsicID = F->getIntrinsicID(); 3028 // Assumptions that are known to be false are equivalent to 3029 // unreachable. Also, if the condition is undefined, then we make the 3030 // choice most beneficial to the optimizer, and choose that to also be 3031 // unreachable. 3032 if (IntrinsicID == Intrinsic::assume) { 3033 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 3034 // Don't insert a call to llvm.trap right before the unreachable. 3035 changeToUnreachable(CI, false, DTU); 3036 Changed = true; 3037 break; 3038 } 3039 } else if (IntrinsicID == Intrinsic::experimental_guard) { 3040 // A call to the guard intrinsic bails out of the current 3041 // compilation unit if the predicate passed to it is false. If the 3042 // predicate is a constant false, then we know the guard will bail 3043 // out of the current compile unconditionally, so all code following 3044 // it is dead. 3045 // 3046 // Note: unlike in llvm.assume, it is not "obviously profitable" for 3047 // guards to treat `undef` as `false` since a guard on `undef` can 3048 // still be useful for widening. 3049 if (match(CI->getArgOperand(0), m_Zero())) 3050 if (!isa<UnreachableInst>(CI->getNextNode())) { 3051 changeToUnreachable(CI->getNextNode(), false, DTU); 3052 Changed = true; 3053 break; 3054 } 3055 } 3056 } else if ((isa<ConstantPointerNull>(Callee) && 3057 !NullPointerIsDefined(CI->getFunction(), 3058 cast<PointerType>(Callee->getType()) 3059 ->getAddressSpace())) || 3060 isa<UndefValue>(Callee)) { 3061 changeToUnreachable(CI, false, DTU); 3062 Changed = true; 3063 break; 3064 } 3065 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 3066 // If we found a call to a no-return function, insert an unreachable 3067 // instruction after it. Make sure there isn't *already* one there 3068 // though. 3069 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 3070 // Don't insert a call to llvm.trap right before the unreachable. 3071 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 3072 Changed = true; 3073 } 3074 break; 3075 } 3076 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3077 // Store to undef and store to null are undefined and used to signal 3078 // that they should be changed to unreachable by passes that can't 3079 // modify the CFG. 3080 3081 // Don't touch volatile stores. 3082 if (SI->isVolatile()) continue; 3083 3084 Value *Ptr = SI->getOperand(1); 3085 3086 if (isa<UndefValue>(Ptr) || 3087 (isa<ConstantPointerNull>(Ptr) && 3088 !NullPointerIsDefined(SI->getFunction(), 3089 SI->getPointerAddressSpace()))) { 3090 changeToUnreachable(SI, false, DTU); 3091 Changed = true; 3092 break; 3093 } 3094 } 3095 } 3096 3097 Instruction *Terminator = BB->getTerminator(); 3098 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3099 // Turn invokes that call 'nounwind' functions into ordinary calls. 3100 Value *Callee = II->getCalledOperand(); 3101 if ((isa<ConstantPointerNull>(Callee) && 3102 !NullPointerIsDefined(BB->getParent())) || 3103 isa<UndefValue>(Callee)) { 3104 changeToUnreachable(II, false, DTU); 3105 Changed = true; 3106 } else { 3107 if (II->doesNotReturn() && 3108 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3109 // If we found an invoke of a no-return function, 3110 // create a new empty basic block with an `unreachable` terminator, 3111 // and set it as the normal destination for the invoke, 3112 // unless that is already the case. 3113 // Note that the original normal destination could have other uses. 3114 BasicBlock *OrigNormalDest = II->getNormalDest(); 3115 OrigNormalDest->removePredecessor(II->getParent()); 3116 LLVMContext &Ctx = II->getContext(); 3117 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3118 Ctx, OrigNormalDest->getName() + ".unreachable", 3119 II->getFunction(), OrigNormalDest); 3120 new UnreachableInst(Ctx, UnreachableNormalDest); 3121 II->setNormalDest(UnreachableNormalDest); 3122 if (DTU) 3123 DTU->applyUpdates( 3124 {{DominatorTree::Delete, BB, OrigNormalDest}, 3125 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3126 Changed = true; 3127 } 3128 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3129 if (II->use_empty() && !II->mayHaveSideEffects()) { 3130 // jump to the normal destination branch. 3131 BasicBlock *NormalDestBB = II->getNormalDest(); 3132 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3133 BranchInst::Create(NormalDestBB, II->getIterator()); 3134 UnwindDestBB->removePredecessor(II->getParent()); 3135 II->eraseFromParent(); 3136 if (DTU) 3137 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3138 } else 3139 changeToCall(II, DTU); 3140 Changed = true; 3141 } 3142 } 3143 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3144 // Remove catchpads which cannot be reached. 3145 struct CatchPadDenseMapInfo { 3146 static CatchPadInst *getEmptyKey() { 3147 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3148 } 3149 3150 static CatchPadInst *getTombstoneKey() { 3151 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3152 } 3153 3154 static unsigned getHashValue(CatchPadInst *CatchPad) { 3155 return static_cast<unsigned>(hash_combine_range( 3156 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3157 } 3158 3159 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3160 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3161 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3162 return LHS == RHS; 3163 return LHS->isIdenticalTo(RHS); 3164 } 3165 }; 3166 3167 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3168 // Set of unique CatchPads. 3169 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3170 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3171 HandlerSet; 3172 detail::DenseSetEmpty Empty; 3173 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3174 E = CatchSwitch->handler_end(); 3175 I != E; ++I) { 3176 BasicBlock *HandlerBB = *I; 3177 if (DTU) 3178 ++NumPerSuccessorCases[HandlerBB]; 3179 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 3180 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3181 if (DTU) 3182 --NumPerSuccessorCases[HandlerBB]; 3183 CatchSwitch->removeHandler(I); 3184 --I; 3185 --E; 3186 Changed = true; 3187 } 3188 } 3189 if (DTU) { 3190 std::vector<DominatorTree::UpdateType> Updates; 3191 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3192 if (I.second == 0) 3193 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3194 DTU->applyUpdates(Updates); 3195 } 3196 } 3197 3198 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3199 for (BasicBlock *Successor : successors(BB)) 3200 if (Reachable.insert(Successor).second) 3201 Worklist.push_back(Successor); 3202 } while (!Worklist.empty()); 3203 return Changed; 3204 } 3205 3206 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3207 Instruction *TI = BB->getTerminator(); 3208 3209 if (auto *II = dyn_cast<InvokeInst>(TI)) 3210 return changeToCall(II, DTU); 3211 3212 Instruction *NewTI; 3213 BasicBlock *UnwindDest; 3214 3215 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3216 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator()); 3217 UnwindDest = CRI->getUnwindDest(); 3218 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3219 auto *NewCatchSwitch = CatchSwitchInst::Create( 3220 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3221 CatchSwitch->getName(), CatchSwitch->getIterator()); 3222 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3223 NewCatchSwitch->addHandler(PadBB); 3224 3225 NewTI = NewCatchSwitch; 3226 UnwindDest = CatchSwitch->getUnwindDest(); 3227 } else { 3228 llvm_unreachable("Could not find unwind successor"); 3229 } 3230 3231 NewTI->takeName(TI); 3232 NewTI->setDebugLoc(TI->getDebugLoc()); 3233 UnwindDest->removePredecessor(BB); 3234 TI->replaceAllUsesWith(NewTI); 3235 TI->eraseFromParent(); 3236 if (DTU) 3237 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3238 return NewTI; 3239 } 3240 3241 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3242 /// if they are in a dead cycle. Return true if a change was made, false 3243 /// otherwise. 3244 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3245 MemorySSAUpdater *MSSAU) { 3246 SmallPtrSet<BasicBlock *, 16> Reachable; 3247 bool Changed = markAliveBlocks(F, Reachable, DTU); 3248 3249 // If there are unreachable blocks in the CFG... 3250 if (Reachable.size() == F.size()) 3251 return Changed; 3252 3253 assert(Reachable.size() < F.size()); 3254 3255 // Are there any blocks left to actually delete? 3256 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3257 for (BasicBlock &BB : F) { 3258 // Skip reachable basic blocks 3259 if (Reachable.count(&BB)) 3260 continue; 3261 // Skip already-deleted blocks 3262 if (DTU && DTU->isBBPendingDeletion(&BB)) 3263 continue; 3264 BlocksToRemove.insert(&BB); 3265 } 3266 3267 if (BlocksToRemove.empty()) 3268 return Changed; 3269 3270 Changed = true; 3271 NumRemoved += BlocksToRemove.size(); 3272 3273 if (MSSAU) 3274 MSSAU->removeBlocks(BlocksToRemove); 3275 3276 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3277 3278 return Changed; 3279 } 3280 3281 void llvm::combineMetadata(Instruction *K, const Instruction *J, 3282 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 3283 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3284 K->dropUnknownNonDebugMetadata(KnownIDs); 3285 K->getAllMetadataOtherThanDebugLoc(Metadata); 3286 for (const auto &MD : Metadata) { 3287 unsigned Kind = MD.first; 3288 MDNode *JMD = J->getMetadata(Kind); 3289 MDNode *KMD = MD.second; 3290 3291 switch (Kind) { 3292 default: 3293 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3294 break; 3295 case LLVMContext::MD_dbg: 3296 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3297 case LLVMContext::MD_DIAssignID: 3298 K->mergeDIAssignID(J); 3299 break; 3300 case LLVMContext::MD_tbaa: 3301 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3302 break; 3303 case LLVMContext::MD_alias_scope: 3304 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3305 break; 3306 case LLVMContext::MD_noalias: 3307 case LLVMContext::MD_mem_parallel_loop_access: 3308 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3309 break; 3310 case LLVMContext::MD_access_group: 3311 K->setMetadata(LLVMContext::MD_access_group, 3312 intersectAccessGroups(K, J)); 3313 break; 3314 case LLVMContext::MD_range: 3315 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3316 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3317 break; 3318 case LLVMContext::MD_fpmath: 3319 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3320 break; 3321 case LLVMContext::MD_invariant_load: 3322 // If K moves, only set the !invariant.load if it is present in both 3323 // instructions. 3324 if (DoesKMove) 3325 K->setMetadata(Kind, JMD); 3326 break; 3327 case LLVMContext::MD_nonnull: 3328 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3329 K->setMetadata(Kind, JMD); 3330 break; 3331 case LLVMContext::MD_invariant_group: 3332 // Preserve !invariant.group in K. 3333 break; 3334 case LLVMContext::MD_mmra: 3335 // Combine MMRAs 3336 break; 3337 case LLVMContext::MD_align: 3338 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3339 K->setMetadata( 3340 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3341 break; 3342 case LLVMContext::MD_dereferenceable: 3343 case LLVMContext::MD_dereferenceable_or_null: 3344 if (DoesKMove) 3345 K->setMetadata(Kind, 3346 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3347 break; 3348 case LLVMContext::MD_preserve_access_index: 3349 // Preserve !preserve.access.index in K. 3350 break; 3351 case LLVMContext::MD_noundef: 3352 // If K does move, keep noundef if it is present in both instructions. 3353 if (DoesKMove) 3354 K->setMetadata(Kind, JMD); 3355 break; 3356 case LLVMContext::MD_nontemporal: 3357 // Preserve !nontemporal if it is present on both instructions. 3358 K->setMetadata(Kind, JMD); 3359 break; 3360 case LLVMContext::MD_prof: 3361 if (DoesKMove) 3362 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3363 break; 3364 } 3365 } 3366 // Set !invariant.group from J if J has it. If both instructions have it 3367 // then we will just pick it from J - even when they are different. 3368 // Also make sure that K is load or store - f.e. combining bitcast with load 3369 // could produce bitcast with invariant.group metadata, which is invalid. 3370 // FIXME: we should try to preserve both invariant.group md if they are 3371 // different, but right now instruction can only have one invariant.group. 3372 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3373 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3374 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3375 3376 // Merge MMRAs. 3377 // This is handled separately because we also want to handle cases where K 3378 // doesn't have tags but J does. 3379 auto JMMRA = J->getMetadata(LLVMContext::MD_mmra); 3380 auto KMMRA = K->getMetadata(LLVMContext::MD_mmra); 3381 if (JMMRA || KMMRA) { 3382 K->setMetadata(LLVMContext::MD_mmra, 3383 MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA)); 3384 } 3385 } 3386 3387 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3388 bool KDominatesJ) { 3389 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 3390 LLVMContext::MD_alias_scope, 3391 LLVMContext::MD_noalias, 3392 LLVMContext::MD_range, 3393 LLVMContext::MD_fpmath, 3394 LLVMContext::MD_invariant_load, 3395 LLVMContext::MD_nonnull, 3396 LLVMContext::MD_invariant_group, 3397 LLVMContext::MD_align, 3398 LLVMContext::MD_dereferenceable, 3399 LLVMContext::MD_dereferenceable_or_null, 3400 LLVMContext::MD_access_group, 3401 LLVMContext::MD_preserve_access_index, 3402 LLVMContext::MD_prof, 3403 LLVMContext::MD_nontemporal, 3404 LLVMContext::MD_noundef, 3405 LLVMContext::MD_mmra}; 3406 combineMetadata(K, J, KnownIDs, KDominatesJ); 3407 } 3408 3409 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3410 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3411 Source.getAllMetadata(MD); 3412 MDBuilder MDB(Dest.getContext()); 3413 Type *NewType = Dest.getType(); 3414 const DataLayout &DL = Source.getDataLayout(); 3415 for (const auto &MDPair : MD) { 3416 unsigned ID = MDPair.first; 3417 MDNode *N = MDPair.second; 3418 // Note, essentially every kind of metadata should be preserved here! This 3419 // routine is supposed to clone a load instruction changing *only its type*. 3420 // The only metadata it makes sense to drop is metadata which is invalidated 3421 // when the pointer type changes. This should essentially never be the case 3422 // in LLVM, but we explicitly switch over only known metadata to be 3423 // conservatively correct. If you are adding metadata to LLVM which pertains 3424 // to loads, you almost certainly want to add it here. 3425 switch (ID) { 3426 case LLVMContext::MD_dbg: 3427 case LLVMContext::MD_tbaa: 3428 case LLVMContext::MD_prof: 3429 case LLVMContext::MD_fpmath: 3430 case LLVMContext::MD_tbaa_struct: 3431 case LLVMContext::MD_invariant_load: 3432 case LLVMContext::MD_alias_scope: 3433 case LLVMContext::MD_noalias: 3434 case LLVMContext::MD_nontemporal: 3435 case LLVMContext::MD_mem_parallel_loop_access: 3436 case LLVMContext::MD_access_group: 3437 case LLVMContext::MD_noundef: 3438 // All of these directly apply. 3439 Dest.setMetadata(ID, N); 3440 break; 3441 3442 case LLVMContext::MD_nonnull: 3443 copyNonnullMetadata(Source, N, Dest); 3444 break; 3445 3446 case LLVMContext::MD_align: 3447 case LLVMContext::MD_dereferenceable: 3448 case LLVMContext::MD_dereferenceable_or_null: 3449 // These only directly apply if the new type is also a pointer. 3450 if (NewType->isPointerTy()) 3451 Dest.setMetadata(ID, N); 3452 break; 3453 3454 case LLVMContext::MD_range: 3455 copyRangeMetadata(DL, Source, N, Dest); 3456 break; 3457 } 3458 } 3459 } 3460 3461 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3462 auto *ReplInst = dyn_cast<Instruction>(Repl); 3463 if (!ReplInst) 3464 return; 3465 3466 // Patch the replacement so that it is not more restrictive than the value 3467 // being replaced. 3468 WithOverflowInst *UnusedWO; 3469 // When replacing the result of a llvm.*.with.overflow intrinsic with a 3470 // overflowing binary operator, nuw/nsw flags may no longer hold. 3471 if (isa<OverflowingBinaryOperator>(ReplInst) && 3472 match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO)))) 3473 ReplInst->dropPoisonGeneratingFlags(); 3474 // Note that if 'I' is a load being replaced by some operation, 3475 // for example, by an arithmetic operation, then andIRFlags() 3476 // would just erase all math flags from the original arithmetic 3477 // operation, which is clearly not wanted and not needed. 3478 else if (!isa<LoadInst>(I)) 3479 ReplInst->andIRFlags(I); 3480 3481 // FIXME: If both the original and replacement value are part of the 3482 // same control-flow region (meaning that the execution of one 3483 // guarantees the execution of the other), then we can combine the 3484 // noalias scopes here and do better than the general conservative 3485 // answer used in combineMetadata(). 3486 3487 // In general, GVN unifies expressions over different control-flow 3488 // regions, and so we need a conservative combination of the noalias 3489 // scopes. 3490 combineMetadataForCSE(ReplInst, I, false); 3491 } 3492 3493 template <typename RootType, typename ShouldReplaceFn> 3494 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3495 const RootType &Root, 3496 const ShouldReplaceFn &ShouldReplace) { 3497 assert(From->getType() == To->getType()); 3498 3499 unsigned Count = 0; 3500 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3501 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 3502 if (II && II->getIntrinsicID() == Intrinsic::fake_use) 3503 continue; 3504 if (!ShouldReplace(Root, U)) 3505 continue; 3506 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3507 From->printAsOperand(dbgs()); 3508 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3509 U.set(To); 3510 ++Count; 3511 } 3512 return Count; 3513 } 3514 3515 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3516 assert(From->getType() == To->getType()); 3517 auto *BB = From->getParent(); 3518 unsigned Count = 0; 3519 3520 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3521 auto *I = cast<Instruction>(U.getUser()); 3522 if (I->getParent() == BB) 3523 continue; 3524 U.set(To); 3525 ++Count; 3526 } 3527 return Count; 3528 } 3529 3530 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3531 DominatorTree &DT, 3532 const BasicBlockEdge &Root) { 3533 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3534 return DT.dominates(Root, U); 3535 }; 3536 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3537 } 3538 3539 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3540 DominatorTree &DT, 3541 const BasicBlock *BB) { 3542 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3543 return DT.dominates(BB, U); 3544 }; 3545 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3546 } 3547 3548 unsigned llvm::replaceDominatedUsesWithIf( 3549 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, 3550 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3551 auto DominatesAndShouldReplace = 3552 [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { 3553 return DT.dominates(Root, U) && ShouldReplace(U, To); 3554 }; 3555 return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace); 3556 } 3557 3558 unsigned llvm::replaceDominatedUsesWithIf( 3559 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 3560 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3561 auto DominatesAndShouldReplace = [&DT, &ShouldReplace, 3562 To](const BasicBlock *BB, const Use &U) { 3563 return DT.dominates(BB, U) && ShouldReplace(U, To); 3564 }; 3565 return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace); 3566 } 3567 3568 bool llvm::callsGCLeafFunction(const CallBase *Call, 3569 const TargetLibraryInfo &TLI) { 3570 // Check if the function is specifically marked as a gc leaf function. 3571 if (Call->hasFnAttr("gc-leaf-function")) 3572 return true; 3573 if (const Function *F = Call->getCalledFunction()) { 3574 if (F->hasFnAttribute("gc-leaf-function")) 3575 return true; 3576 3577 if (auto IID = F->getIntrinsicID()) { 3578 // Most LLVM intrinsics do not take safepoints. 3579 return IID != Intrinsic::experimental_gc_statepoint && 3580 IID != Intrinsic::experimental_deoptimize && 3581 IID != Intrinsic::memcpy_element_unordered_atomic && 3582 IID != Intrinsic::memmove_element_unordered_atomic; 3583 } 3584 } 3585 3586 // Lib calls can be materialized by some passes, and won't be 3587 // marked as 'gc-leaf-function.' All available Libcalls are 3588 // GC-leaf. 3589 LibFunc LF; 3590 if (TLI.getLibFunc(*Call, LF)) { 3591 return TLI.has(LF); 3592 } 3593 3594 return false; 3595 } 3596 3597 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3598 LoadInst &NewLI) { 3599 auto *NewTy = NewLI.getType(); 3600 3601 // This only directly applies if the new type is also a pointer. 3602 if (NewTy->isPointerTy()) { 3603 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3604 return; 3605 } 3606 3607 // The only other translation we can do is to integral loads with !range 3608 // metadata. 3609 if (!NewTy->isIntegerTy()) 3610 return; 3611 3612 MDBuilder MDB(NewLI.getContext()); 3613 const Value *Ptr = OldLI.getPointerOperand(); 3614 auto *ITy = cast<IntegerType>(NewTy); 3615 auto *NullInt = ConstantExpr::getPtrToInt( 3616 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3617 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3618 NewLI.setMetadata(LLVMContext::MD_range, 3619 MDB.createRange(NonNullInt, NullInt)); 3620 } 3621 3622 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3623 MDNode *N, LoadInst &NewLI) { 3624 auto *NewTy = NewLI.getType(); 3625 // Simply copy the metadata if the type did not change. 3626 if (NewTy == OldLI.getType()) { 3627 NewLI.setMetadata(LLVMContext::MD_range, N); 3628 return; 3629 } 3630 3631 // Give up unless it is converted to a pointer where there is a single very 3632 // valuable mapping we can do reliably. 3633 // FIXME: It would be nice to propagate this in more ways, but the type 3634 // conversions make it hard. 3635 if (!NewTy->isPointerTy()) 3636 return; 3637 3638 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3639 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3640 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3641 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt); 3642 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3643 } 3644 } 3645 3646 void llvm::dropDebugUsers(Instruction &I) { 3647 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3648 SmallVector<DbgVariableRecord *, 1> DPUsers; 3649 findDbgUsers(DbgUsers, &I, &DPUsers); 3650 for (auto *DII : DbgUsers) 3651 DII->eraseFromParent(); 3652 for (auto *DVR : DPUsers) 3653 DVR->eraseFromParent(); 3654 } 3655 3656 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3657 BasicBlock *BB) { 3658 // Since we are moving the instructions out of its basic block, we do not 3659 // retain their original debug locations (DILocations) and debug intrinsic 3660 // instructions. 3661 // 3662 // Doing so would degrade the debugging experience and adversely affect the 3663 // accuracy of profiling information. 3664 // 3665 // Currently, when hoisting the instructions, we take the following actions: 3666 // - Remove their debug intrinsic instructions. 3667 // - Set their debug locations to the values from the insertion point. 3668 // 3669 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3670 // need to be deleted, is because there will not be any instructions with a 3671 // DILocation in either branch left after performing the transformation. We 3672 // can only insert a dbg.value after the two branches are joined again. 3673 // 3674 // See PR38762, PR39243 for more details. 3675 // 3676 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3677 // encode predicated DIExpressions that yield different results on different 3678 // code paths. 3679 3680 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3681 Instruction *I = &*II; 3682 I->dropUBImplyingAttrsAndMetadata(); 3683 if (I->isUsedByMetadata()) 3684 dropDebugUsers(*I); 3685 // RemoveDIs: drop debug-info too as the following code does. 3686 I->dropDbgRecords(); 3687 if (I->isDebugOrPseudoInst()) { 3688 // Remove DbgInfo and pseudo probe Intrinsics. 3689 II = I->eraseFromParent(); 3690 continue; 3691 } 3692 I->setDebugLoc(InsertPt->getDebugLoc()); 3693 ++II; 3694 } 3695 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3696 BB->getTerminator()->getIterator()); 3697 } 3698 3699 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3700 Type &Ty) { 3701 // Create integer constant expression. 3702 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3703 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3704 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3705 return InitIntOpt ? DIB.createConstantValueExpression( 3706 static_cast<uint64_t>(*InitIntOpt)) 3707 : nullptr; 3708 }; 3709 3710 if (isa<ConstantInt>(C)) 3711 return createIntegerExpression(C); 3712 3713 auto *FP = dyn_cast<ConstantFP>(&C); 3714 if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { 3715 const APFloat &APF = FP->getValueAPF(); 3716 APInt const &API = APF.bitcastToAPInt(); 3717 if (auto Temp = API.getZExtValue()) 3718 return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp)); 3719 return DIB.createConstantValueExpression(*API.getRawData()); 3720 } 3721 3722 if (!Ty.isPointerTy()) 3723 return nullptr; 3724 3725 if (isa<ConstantPointerNull>(C)) 3726 return DIB.createConstantValueExpression(0); 3727 3728 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3729 if (CE->getOpcode() == Instruction::IntToPtr) { 3730 const Value *V = CE->getOperand(0); 3731 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3732 return createIntegerExpression(*CI); 3733 } 3734 return nullptr; 3735 } 3736 3737 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { 3738 auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { 3739 for (auto *Op : Set) { 3740 auto I = Mapping.find(Op); 3741 if (I != Mapping.end()) 3742 DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); 3743 } 3744 }; 3745 auto RemapAssignAddress = [&Mapping](auto *DA) { 3746 auto I = Mapping.find(DA->getAddress()); 3747 if (I != Mapping.end()) 3748 DA->setAddress(I->second); 3749 }; 3750 if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst)) 3751 RemapDebugOperands(DVI, DVI->location_ops()); 3752 if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst)) 3753 RemapAssignAddress(DAI); 3754 for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) { 3755 RemapDebugOperands(&DVR, DVR.location_ops()); 3756 if (DVR.isDbgAssign()) 3757 RemapAssignAddress(&DVR); 3758 } 3759 } 3760 3761 namespace { 3762 3763 /// A potential constituent of a bitreverse or bswap expression. See 3764 /// collectBitParts for a fuller explanation. 3765 struct BitPart { 3766 BitPart(Value *P, unsigned BW) : Provider(P) { 3767 Provenance.resize(BW); 3768 } 3769 3770 /// The Value that this is a bitreverse/bswap of. 3771 Value *Provider; 3772 3773 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3774 /// in Provider becomes bit B in the result of this expression. 3775 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3776 3777 enum { Unset = -1 }; 3778 }; 3779 3780 } // end anonymous namespace 3781 3782 /// Analyze the specified subexpression and see if it is capable of providing 3783 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3784 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3785 /// the output of the expression came from a corresponding bit in some other 3786 /// value. This function is recursive, and the end result is a mapping of 3787 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3788 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3789 /// 3790 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3791 /// that the expression deposits the low byte of %X into the high byte of the 3792 /// result and that all other bits are zero. This expression is accepted and a 3793 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3794 /// [0-7]. 3795 /// 3796 /// For vector types, all analysis is performed at the per-element level. No 3797 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3798 /// constant masks must be splatted across all elements. 3799 /// 3800 /// To avoid revisiting values, the BitPart results are memoized into the 3801 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3802 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3803 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3804 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3805 /// type instead to provide the same functionality. 3806 /// 3807 /// Because we pass around references into \c BPS, we must use a container that 3808 /// does not invalidate internal references (std::map instead of DenseMap). 3809 static const std::optional<BitPart> & 3810 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3811 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3812 bool &FoundRoot) { 3813 auto I = BPS.find(V); 3814 if (I != BPS.end()) 3815 return I->second; 3816 3817 auto &Result = BPS[V] = std::nullopt; 3818 auto BitWidth = V->getType()->getScalarSizeInBits(); 3819 3820 // Can't do integer/elements > 128 bits. 3821 if (BitWidth > 128) 3822 return Result; 3823 3824 // Prevent stack overflow by limiting the recursion depth 3825 if (Depth == BitPartRecursionMaxDepth) { 3826 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3827 return Result; 3828 } 3829 3830 if (auto *I = dyn_cast<Instruction>(V)) { 3831 Value *X, *Y; 3832 const APInt *C; 3833 3834 // If this is an or instruction, it may be an inner node of the bswap. 3835 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3836 // Check we have both sources and they are from the same provider. 3837 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3838 Depth + 1, FoundRoot); 3839 if (!A || !A->Provider) 3840 return Result; 3841 3842 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3843 Depth + 1, FoundRoot); 3844 if (!B || A->Provider != B->Provider) 3845 return Result; 3846 3847 // Try and merge the two together. 3848 Result = BitPart(A->Provider, BitWidth); 3849 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3850 if (A->Provenance[BitIdx] != BitPart::Unset && 3851 B->Provenance[BitIdx] != BitPart::Unset && 3852 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3853 return Result = std::nullopt; 3854 3855 if (A->Provenance[BitIdx] == BitPart::Unset) 3856 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3857 else 3858 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3859 } 3860 3861 return Result; 3862 } 3863 3864 // If this is a logical shift by a constant, recurse then shift the result. 3865 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3866 const APInt &BitShift = *C; 3867 3868 // Ensure the shift amount is defined. 3869 if (BitShift.uge(BitWidth)) 3870 return Result; 3871 3872 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3873 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3874 return Result; 3875 3876 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3877 Depth + 1, FoundRoot); 3878 if (!Res) 3879 return Result; 3880 Result = Res; 3881 3882 // Perform the "shift" on BitProvenance. 3883 auto &P = Result->Provenance; 3884 if (I->getOpcode() == Instruction::Shl) { 3885 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3886 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3887 } else { 3888 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3889 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3890 } 3891 3892 return Result; 3893 } 3894 3895 // If this is a logical 'and' with a mask that clears bits, recurse then 3896 // unset the appropriate bits. 3897 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3898 const APInt &AndMask = *C; 3899 3900 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3901 // early exit. 3902 unsigned NumMaskedBits = AndMask.popcount(); 3903 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3904 return Result; 3905 3906 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3907 Depth + 1, FoundRoot); 3908 if (!Res) 3909 return Result; 3910 Result = Res; 3911 3912 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3913 // If the AndMask is zero for this bit, clear the bit. 3914 if (AndMask[BitIdx] == 0) 3915 Result->Provenance[BitIdx] = BitPart::Unset; 3916 return Result; 3917 } 3918 3919 // If this is a zext instruction zero extend the result. 3920 if (match(V, m_ZExt(m_Value(X)))) { 3921 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3922 Depth + 1, FoundRoot); 3923 if (!Res) 3924 return Result; 3925 3926 Result = BitPart(Res->Provider, BitWidth); 3927 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3928 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3929 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3930 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3931 Result->Provenance[BitIdx] = BitPart::Unset; 3932 return Result; 3933 } 3934 3935 // If this is a truncate instruction, extract the lower bits. 3936 if (match(V, m_Trunc(m_Value(X)))) { 3937 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3938 Depth + 1, FoundRoot); 3939 if (!Res) 3940 return Result; 3941 3942 Result = BitPart(Res->Provider, BitWidth); 3943 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3944 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3945 return Result; 3946 } 3947 3948 // BITREVERSE - most likely due to us previous matching a partial 3949 // bitreverse. 3950 if (match(V, m_BitReverse(m_Value(X)))) { 3951 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3952 Depth + 1, FoundRoot); 3953 if (!Res) 3954 return Result; 3955 3956 Result = BitPart(Res->Provider, BitWidth); 3957 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3958 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3959 return Result; 3960 } 3961 3962 // BSWAP - most likely due to us previous matching a partial bswap. 3963 if (match(V, m_BSwap(m_Value(X)))) { 3964 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3965 Depth + 1, FoundRoot); 3966 if (!Res) 3967 return Result; 3968 3969 unsigned ByteWidth = BitWidth / 8; 3970 Result = BitPart(Res->Provider, BitWidth); 3971 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3972 unsigned ByteBitOfs = ByteIdx * 8; 3973 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3974 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3975 Res->Provenance[ByteBitOfs + BitIdx]; 3976 } 3977 return Result; 3978 } 3979 3980 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3981 // amount (modulo). 3982 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3983 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3984 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3985 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3986 // We can treat fshr as a fshl by flipping the modulo amount. 3987 unsigned ModAmt = C->urem(BitWidth); 3988 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3989 ModAmt = BitWidth - ModAmt; 3990 3991 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3992 if (!MatchBitReversals && (ModAmt % 8) != 0) 3993 return Result; 3994 3995 // Check we have both sources and they are from the same provider. 3996 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3997 Depth + 1, FoundRoot); 3998 if (!LHS || !LHS->Provider) 3999 return Result; 4000 4001 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 4002 Depth + 1, FoundRoot); 4003 if (!RHS || LHS->Provider != RHS->Provider) 4004 return Result; 4005 4006 unsigned StartBitRHS = BitWidth - ModAmt; 4007 Result = BitPart(LHS->Provider, BitWidth); 4008 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 4009 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 4010 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 4011 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 4012 return Result; 4013 } 4014 } 4015 4016 // If we've already found a root input value then we're never going to merge 4017 // these back together. 4018 if (FoundRoot) 4019 return Result; 4020 4021 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 4022 // be the root input value to the bswap/bitreverse. 4023 FoundRoot = true; 4024 Result = BitPart(V, BitWidth); 4025 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4026 Result->Provenance[BitIdx] = BitIdx; 4027 return Result; 4028 } 4029 4030 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 4031 unsigned BitWidth) { 4032 if (From % 8 != To % 8) 4033 return false; 4034 // Convert from bit indices to byte indices and check for a byte reversal. 4035 From >>= 3; 4036 To >>= 3; 4037 BitWidth >>= 3; 4038 return From == BitWidth - To - 1; 4039 } 4040 4041 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 4042 unsigned BitWidth) { 4043 return From == BitWidth - To - 1; 4044 } 4045 4046 bool llvm::recognizeBSwapOrBitReverseIdiom( 4047 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 4048 SmallVectorImpl<Instruction *> &InsertedInsts) { 4049 if (!match(I, m_Or(m_Value(), m_Value())) && 4050 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 4051 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && 4052 !match(I, m_BSwap(m_Value()))) 4053 return false; 4054 if (!MatchBSwaps && !MatchBitReversals) 4055 return false; 4056 Type *ITy = I->getType(); 4057 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 4058 return false; // Can't do integer/elements > 128 bits. 4059 4060 // Try to find all the pieces corresponding to the bswap. 4061 bool FoundRoot = false; 4062 std::map<Value *, std::optional<BitPart>> BPS; 4063 const auto &Res = 4064 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 4065 if (!Res) 4066 return false; 4067 ArrayRef<int8_t> BitProvenance = Res->Provenance; 4068 assert(all_of(BitProvenance, 4069 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 4070 "Illegal bit provenance index"); 4071 4072 // If the upper bits are zero, then attempt to perform as a truncated op. 4073 Type *DemandedTy = ITy; 4074 if (BitProvenance.back() == BitPart::Unset) { 4075 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 4076 BitProvenance = BitProvenance.drop_back(); 4077 if (BitProvenance.empty()) 4078 return false; // TODO - handle null value? 4079 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 4080 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 4081 DemandedTy = VectorType::get(DemandedTy, IVecTy); 4082 } 4083 4084 // Check BitProvenance hasn't found a source larger than the result type. 4085 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 4086 if (DemandedBW > ITy->getScalarSizeInBits()) 4087 return false; 4088 4089 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 4090 // only byteswap values with an even number of bytes. 4091 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 4092 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 4093 bool OKForBitReverse = MatchBitReversals; 4094 for (unsigned BitIdx = 0; 4095 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 4096 if (BitProvenance[BitIdx] == BitPart::Unset) { 4097 DemandedMask.clearBit(BitIdx); 4098 continue; 4099 } 4100 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 4101 DemandedBW); 4102 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 4103 BitIdx, DemandedBW); 4104 } 4105 4106 Intrinsic::ID Intrin; 4107 if (OKForBSwap) 4108 Intrin = Intrinsic::bswap; 4109 else if (OKForBitReverse) 4110 Intrin = Intrinsic::bitreverse; 4111 else 4112 return false; 4113 4114 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 4115 Value *Provider = Res->Provider; 4116 4117 // We may need to truncate the provider. 4118 if (DemandedTy != Provider->getType()) { 4119 auto *Trunc = 4120 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator()); 4121 InsertedInsts.push_back(Trunc); 4122 Provider = Trunc; 4123 } 4124 4125 Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator()); 4126 InsertedInsts.push_back(Result); 4127 4128 if (!DemandedMask.isAllOnes()) { 4129 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 4130 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator()); 4131 InsertedInsts.push_back(Result); 4132 } 4133 4134 // We may need to zeroextend back to the result type. 4135 if (ITy != Result->getType()) { 4136 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator()); 4137 InsertedInsts.push_back(ExtInst); 4138 } 4139 4140 return true; 4141 } 4142 4143 // CodeGen has special handling for some string functions that may replace 4144 // them with target-specific intrinsics. Since that'd skip our interceptors 4145 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4146 // we mark affected calls as NoBuiltin, which will disable optimization 4147 // in CodeGen. 4148 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4149 CallInst *CI, const TargetLibraryInfo *TLI) { 4150 Function *F = CI->getCalledFunction(); 4151 LibFunc Func; 4152 if (F && !F->hasLocalLinkage() && F->hasName() && 4153 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4154 !F->doesNotAccessMemory()) 4155 CI->addFnAttr(Attribute::NoBuiltin); 4156 } 4157 4158 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4159 // We can't have a PHI with a metadata type. 4160 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4161 return false; 4162 4163 // Early exit. 4164 if (!isa<Constant>(I->getOperand(OpIdx))) 4165 return true; 4166 4167 switch (I->getOpcode()) { 4168 default: 4169 return true; 4170 case Instruction::Call: 4171 case Instruction::Invoke: { 4172 const auto &CB = cast<CallBase>(*I); 4173 4174 // Can't handle inline asm. Skip it. 4175 if (CB.isInlineAsm()) 4176 return false; 4177 4178 // Constant bundle operands may need to retain their constant-ness for 4179 // correctness. 4180 if (CB.isBundleOperand(OpIdx)) 4181 return false; 4182 4183 if (OpIdx < CB.arg_size()) { 4184 // Some variadic intrinsics require constants in the variadic arguments, 4185 // which currently aren't markable as immarg. 4186 if (isa<IntrinsicInst>(CB) && 4187 OpIdx >= CB.getFunctionType()->getNumParams()) { 4188 // This is known to be OK for stackmap. 4189 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4190 } 4191 4192 // gcroot is a special case, since it requires a constant argument which 4193 // isn't also required to be a simple ConstantInt. 4194 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4195 return false; 4196 4197 // Some intrinsic operands are required to be immediates. 4198 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4199 } 4200 4201 // It is never allowed to replace the call argument to an intrinsic, but it 4202 // may be possible for a call. 4203 return !isa<IntrinsicInst>(CB); 4204 } 4205 case Instruction::ShuffleVector: 4206 // Shufflevector masks are constant. 4207 return OpIdx != 2; 4208 case Instruction::Switch: 4209 case Instruction::ExtractValue: 4210 // All operands apart from the first are constant. 4211 return OpIdx == 0; 4212 case Instruction::InsertValue: 4213 // All operands apart from the first and the second are constant. 4214 return OpIdx < 2; 4215 case Instruction::Alloca: 4216 // Static allocas (constant size in the entry block) are handled by 4217 // prologue/epilogue insertion so they're free anyway. We definitely don't 4218 // want to make them non-constant. 4219 return !cast<AllocaInst>(I)->isStaticAlloca(); 4220 case Instruction::GetElementPtr: 4221 if (OpIdx == 0) 4222 return true; 4223 gep_type_iterator It = gep_type_begin(I); 4224 for (auto E = std::next(It, OpIdx); It != E; ++It) 4225 if (It.isStruct()) 4226 return false; 4227 return true; 4228 } 4229 } 4230 4231 Value *llvm::invertCondition(Value *Condition) { 4232 // First: Check if it's a constant 4233 if (Constant *C = dyn_cast<Constant>(Condition)) 4234 return ConstantExpr::getNot(C); 4235 4236 // Second: If the condition is already inverted, return the original value 4237 Value *NotCondition; 4238 if (match(Condition, m_Not(m_Value(NotCondition)))) 4239 return NotCondition; 4240 4241 BasicBlock *Parent = nullptr; 4242 Instruction *Inst = dyn_cast<Instruction>(Condition); 4243 if (Inst) 4244 Parent = Inst->getParent(); 4245 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4246 Parent = &Arg->getParent()->getEntryBlock(); 4247 assert(Parent && "Unsupported condition to invert"); 4248 4249 // Third: Check all the users for an invert 4250 for (User *U : Condition->users()) 4251 if (Instruction *I = dyn_cast<Instruction>(U)) 4252 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4253 return I; 4254 4255 // Last option: Create a new instruction 4256 auto *Inverted = 4257 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4258 if (Inst && !isa<PHINode>(Inst)) 4259 Inverted->insertAfter(Inst); 4260 else 4261 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 4262 return Inverted; 4263 } 4264 4265 bool llvm::inferAttributesFromOthers(Function &F) { 4266 // Note: We explicitly check for attributes rather than using cover functions 4267 // because some of the cover functions include the logic being implemented. 4268 4269 bool Changed = false; 4270 // readnone + not convergent implies nosync 4271 if (!F.hasFnAttribute(Attribute::NoSync) && 4272 F.doesNotAccessMemory() && !F.isConvergent()) { 4273 F.setNoSync(); 4274 Changed = true; 4275 } 4276 4277 // readonly implies nofree 4278 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4279 F.setDoesNotFreeMemory(); 4280 Changed = true; 4281 } 4282 4283 // willreturn implies mustprogress 4284 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4285 F.setMustProgress(); 4286 Changed = true; 4287 } 4288 4289 // TODO: There are a bunch of cases of restrictive memory effects we 4290 // can infer by inspecting arguments of argmemonly-ish functions. 4291 4292 return Changed; 4293 } 4294