1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/ProfDataUtils.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 extern cl::opt<bool> UseNewDbgInfoFormat; 92 93 #define DEBUG_TYPE "local" 94 95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 97 98 static cl::opt<bool> PHICSEDebugHash( 99 "phicse-debug-hash", 100 #ifdef EXPENSIVE_CHECKS 101 cl::init(true), 102 #else 103 cl::init(false), 104 #endif 105 cl::Hidden, 106 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 107 "function is well-behaved w.r.t. its isEqual predicate")); 108 109 static cl::opt<unsigned> PHICSENumPHISmallSize( 110 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 111 cl::desc( 112 "When the basic block contains not more than this number of PHI nodes, " 113 "perform a (faster!) exhaustive search instead of set-driven one.")); 114 115 static cl::opt<unsigned> MaxPhiEntriesIncreaseAfterRemovingEmptyBlock( 116 "max-phi-entries-increase-after-removing-empty-block", cl::init(1000), 117 cl::Hidden, 118 cl::desc("Stop removing an empty block if removing it will introduce more " 119 "than this number of phi entries in its successor")); 120 121 // Max recursion depth for collectBitParts used when detecting bswap and 122 // bitreverse idioms. 123 static const unsigned BitPartRecursionMaxDepth = 48; 124 125 //===----------------------------------------------------------------------===// 126 // Local constant propagation. 127 // 128 129 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 130 /// constant value, convert it into an unconditional branch to the constant 131 /// destination. This is a nontrivial operation because the successors of this 132 /// basic block must have their PHI nodes updated. 133 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 134 /// conditions and indirectbr addresses this might make dead if 135 /// DeleteDeadConditions is true. 136 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 137 const TargetLibraryInfo *TLI, 138 DomTreeUpdater *DTU) { 139 Instruction *T = BB->getTerminator(); 140 IRBuilder<> Builder(T); 141 142 // Branch - See if we are conditional jumping on constant 143 if (auto *BI = dyn_cast<BranchInst>(T)) { 144 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 145 146 BasicBlock *Dest1 = BI->getSuccessor(0); 147 BasicBlock *Dest2 = BI->getSuccessor(1); 148 149 if (Dest2 == Dest1) { // Conditional branch to same location? 150 // This branch matches something like this: 151 // br bool %cond, label %Dest, label %Dest 152 // and changes it into: br label %Dest 153 154 // Let the basic block know that we are letting go of one copy of it. 155 assert(BI->getParent() && "Terminator not inserted in block!"); 156 Dest1->removePredecessor(BI->getParent()); 157 158 // Replace the conditional branch with an unconditional one. 159 BranchInst *NewBI = Builder.CreateBr(Dest1); 160 161 // Transfer the metadata to the new branch instruction. 162 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 163 LLVMContext::MD_annotation}); 164 165 Value *Cond = BI->getCondition(); 166 BI->eraseFromParent(); 167 if (DeleteDeadConditions) 168 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 169 return true; 170 } 171 172 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 173 // Are we branching on constant? 174 // YES. Change to unconditional branch... 175 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 176 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 177 178 // Let the basic block know that we are letting go of it. Based on this, 179 // it will adjust it's PHI nodes. 180 OldDest->removePredecessor(BB); 181 182 // Replace the conditional branch with an unconditional one. 183 BranchInst *NewBI = Builder.CreateBr(Destination); 184 185 // Transfer the metadata to the new branch instruction. 186 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 187 LLVMContext::MD_annotation}); 188 189 BI->eraseFromParent(); 190 if (DTU) 191 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 192 return true; 193 } 194 195 return false; 196 } 197 198 if (auto *SI = dyn_cast<SwitchInst>(T)) { 199 // If we are switching on a constant, we can convert the switch to an 200 // unconditional branch. 201 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 202 BasicBlock *DefaultDest = SI->getDefaultDest(); 203 BasicBlock *TheOnlyDest = DefaultDest; 204 205 // If the default is unreachable, ignore it when searching for TheOnlyDest. 206 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 207 SI->getNumCases() > 0) { 208 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 209 } 210 211 bool Changed = false; 212 213 // Figure out which case it goes to. 214 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 215 // Found case matching a constant operand? 216 if (It->getCaseValue() == CI) { 217 TheOnlyDest = It->getCaseSuccessor(); 218 break; 219 } 220 221 // Check to see if this branch is going to the same place as the default 222 // dest. If so, eliminate it as an explicit compare. 223 if (It->getCaseSuccessor() == DefaultDest) { 224 MDNode *MD = getValidBranchWeightMDNode(*SI); 225 unsigned NCases = SI->getNumCases(); 226 // Fold the case metadata into the default if there will be any branches 227 // left, unless the metadata doesn't match the switch. 228 if (NCases > 1 && MD) { 229 // Collect branch weights into a vector. 230 SmallVector<uint32_t, 8> Weights; 231 extractBranchWeights(MD, Weights); 232 233 // Merge weight of this case to the default weight. 234 unsigned Idx = It->getCaseIndex(); 235 // TODO: Add overflow check. 236 Weights[0] += Weights[Idx + 1]; 237 // Remove weight for this case. 238 std::swap(Weights[Idx + 1], Weights.back()); 239 Weights.pop_back(); 240 setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD)); 241 } 242 // Remove this entry. 243 BasicBlock *ParentBB = SI->getParent(); 244 DefaultDest->removePredecessor(ParentBB); 245 It = SI->removeCase(It); 246 End = SI->case_end(); 247 248 // Removing this case may have made the condition constant. In that 249 // case, update CI and restart iteration through the cases. 250 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 251 CI = NewCI; 252 It = SI->case_begin(); 253 } 254 255 Changed = true; 256 continue; 257 } 258 259 // Otherwise, check to see if the switch only branches to one destination. 260 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 261 // destinations. 262 if (It->getCaseSuccessor() != TheOnlyDest) 263 TheOnlyDest = nullptr; 264 265 // Increment this iterator as we haven't removed the case. 266 ++It; 267 } 268 269 if (CI && !TheOnlyDest) { 270 // Branching on a constant, but not any of the cases, go to the default 271 // successor. 272 TheOnlyDest = SI->getDefaultDest(); 273 } 274 275 // If we found a single destination that we can fold the switch into, do so 276 // now. 277 if (TheOnlyDest) { 278 // Insert the new branch. 279 Builder.CreateBr(TheOnlyDest); 280 BasicBlock *BB = SI->getParent(); 281 282 SmallSet<BasicBlock *, 8> RemovedSuccessors; 283 284 // Remove entries from PHI nodes which we no longer branch to... 285 BasicBlock *SuccToKeep = TheOnlyDest; 286 for (BasicBlock *Succ : successors(SI)) { 287 if (DTU && Succ != TheOnlyDest) 288 RemovedSuccessors.insert(Succ); 289 // Found case matching a constant operand? 290 if (Succ == SuccToKeep) { 291 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 292 } else { 293 Succ->removePredecessor(BB); 294 } 295 } 296 297 // Delete the old switch. 298 Value *Cond = SI->getCondition(); 299 SI->eraseFromParent(); 300 if (DeleteDeadConditions) 301 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 302 if (DTU) { 303 std::vector<DominatorTree::UpdateType> Updates; 304 Updates.reserve(RemovedSuccessors.size()); 305 for (auto *RemovedSuccessor : RemovedSuccessors) 306 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 307 DTU->applyUpdates(Updates); 308 } 309 return true; 310 } 311 312 if (SI->getNumCases() == 1) { 313 // Otherwise, we can fold this switch into a conditional branch 314 // instruction if it has only one non-default destination. 315 auto FirstCase = *SI->case_begin(); 316 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 317 FirstCase.getCaseValue(), "cond"); 318 319 // Insert the new branch. 320 BranchInst *NewBr = Builder.CreateCondBr(Cond, 321 FirstCase.getCaseSuccessor(), 322 SI->getDefaultDest()); 323 SmallVector<uint32_t> Weights; 324 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 325 uint32_t DefWeight = Weights[0]; 326 uint32_t CaseWeight = Weights[1]; 327 // The TrueWeight should be the weight for the single case of SI. 328 NewBr->setMetadata(LLVMContext::MD_prof, 329 MDBuilder(BB->getContext()) 330 .createBranchWeights(CaseWeight, DefWeight)); 331 } 332 333 // Update make.implicit metadata to the newly-created conditional branch. 334 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 335 if (MakeImplicitMD) 336 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 337 338 // Delete the old switch. 339 SI->eraseFromParent(); 340 return true; 341 } 342 return Changed; 343 } 344 345 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 346 // indirectbr blockaddress(@F, @BB) -> br label @BB 347 if (auto *BA = 348 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 349 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 350 SmallSet<BasicBlock *, 8> RemovedSuccessors; 351 352 // Insert the new branch. 353 Builder.CreateBr(TheOnlyDest); 354 355 BasicBlock *SuccToKeep = TheOnlyDest; 356 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 357 BasicBlock *DestBB = IBI->getDestination(i); 358 if (DTU && DestBB != TheOnlyDest) 359 RemovedSuccessors.insert(DestBB); 360 if (IBI->getDestination(i) == SuccToKeep) { 361 SuccToKeep = nullptr; 362 } else { 363 DestBB->removePredecessor(BB); 364 } 365 } 366 Value *Address = IBI->getAddress(); 367 IBI->eraseFromParent(); 368 if (DeleteDeadConditions) 369 // Delete pointer cast instructions. 370 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 371 372 // Also zap the blockaddress constant if there are no users remaining, 373 // otherwise the destination is still marked as having its address taken. 374 if (BA->use_empty()) 375 BA->destroyConstant(); 376 377 // If we didn't find our destination in the IBI successor list, then we 378 // have undefined behavior. Replace the unconditional branch with an 379 // 'unreachable' instruction. 380 if (SuccToKeep) { 381 BB->getTerminator()->eraseFromParent(); 382 new UnreachableInst(BB->getContext(), BB); 383 } 384 385 if (DTU) { 386 std::vector<DominatorTree::UpdateType> Updates; 387 Updates.reserve(RemovedSuccessors.size()); 388 for (auto *RemovedSuccessor : RemovedSuccessors) 389 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 390 DTU->applyUpdates(Updates); 391 } 392 return true; 393 } 394 } 395 396 return false; 397 } 398 399 //===----------------------------------------------------------------------===// 400 // Local dead code elimination. 401 // 402 403 /// isInstructionTriviallyDead - Return true if the result produced by the 404 /// instruction is not used, and the instruction has no side effects. 405 /// 406 bool llvm::isInstructionTriviallyDead(Instruction *I, 407 const TargetLibraryInfo *TLI) { 408 if (!I->use_empty()) 409 return false; 410 return wouldInstructionBeTriviallyDead(I, TLI); 411 } 412 413 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 414 Instruction *I, const TargetLibraryInfo *TLI) { 415 // Instructions that are "markers" and have implied meaning on code around 416 // them (without explicit uses), are not dead on unused paths. 417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 418 if (II->getIntrinsicID() == Intrinsic::stacksave || 419 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 420 II->isLifetimeStartOrEnd()) 421 return false; 422 return wouldInstructionBeTriviallyDead(I, TLI); 423 } 424 425 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 426 const TargetLibraryInfo *TLI) { 427 if (I->isTerminator()) 428 return false; 429 430 // We don't want the landingpad-like instructions removed by anything this 431 // general. 432 if (I->isEHPad()) 433 return false; 434 435 // We don't want debug info removed by anything this general. 436 if (isa<DbgVariableIntrinsic>(I)) 437 return false; 438 439 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 440 if (DLI->getLabel()) 441 return false; 442 return true; 443 } 444 445 if (auto *CB = dyn_cast<CallBase>(I)) 446 if (isRemovableAlloc(CB, TLI)) 447 return true; 448 449 if (!I->willReturn()) { 450 auto *II = dyn_cast<IntrinsicInst>(I); 451 if (!II) 452 return false; 453 454 switch (II->getIntrinsicID()) { 455 case Intrinsic::experimental_guard: { 456 // Guards on true are operationally no-ops. In the future we can 457 // consider more sophisticated tradeoffs for guards considering potential 458 // for check widening, but for now we keep things simple. 459 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 460 return Cond && Cond->isOne(); 461 } 462 // TODO: These intrinsics are not safe to remove, because this may remove 463 // a well-defined trap. 464 case Intrinsic::wasm_trunc_signed: 465 case Intrinsic::wasm_trunc_unsigned: 466 case Intrinsic::ptrauth_auth: 467 case Intrinsic::ptrauth_resign: 468 return true; 469 default: 470 return false; 471 } 472 } 473 474 if (!I->mayHaveSideEffects()) 475 return true; 476 477 // Special case intrinsics that "may have side effects" but can be deleted 478 // when dead. 479 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 480 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 481 if (II->getIntrinsicID() == Intrinsic::stacksave || 482 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 483 return true; 484 485 // Intrinsics declare sideeffects to prevent them from moving, but they are 486 // nops without users. 487 if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || 488 II->getIntrinsicID() == Intrinsic::allow_ubsan_check) 489 return true; 490 491 if (II->isLifetimeStartOrEnd()) { 492 auto *Arg = II->getArgOperand(1); 493 // Lifetime intrinsics are dead when their right-hand is undef. 494 if (isa<UndefValue>(Arg)) 495 return true; 496 // If the right-hand is an alloc, global, or argument and the only uses 497 // are lifetime intrinsics then the intrinsics are dead. 498 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 499 return llvm::all_of(Arg->uses(), [](Use &Use) { 500 if (IntrinsicInst *IntrinsicUse = 501 dyn_cast<IntrinsicInst>(Use.getUser())) 502 return IntrinsicUse->isLifetimeStartOrEnd(); 503 return false; 504 }); 505 return false; 506 } 507 508 // Assumptions are dead if their condition is trivially true. 509 if (II->getIntrinsicID() == Intrinsic::assume && 510 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 511 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 512 return !Cond->isZero(); 513 514 return false; 515 } 516 517 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 518 std::optional<fp::ExceptionBehavior> ExBehavior = 519 FPI->getExceptionBehavior(); 520 return *ExBehavior != fp::ebStrict; 521 } 522 } 523 524 if (auto *Call = dyn_cast<CallBase>(I)) { 525 if (Value *FreedOp = getFreedOperand(Call, TLI)) 526 if (Constant *C = dyn_cast<Constant>(FreedOp)) 527 return C->isNullValue() || isa<UndefValue>(C); 528 if (isMathLibCallNoop(Call, TLI)) 529 return true; 530 } 531 532 // Non-volatile atomic loads from constants can be removed. 533 if (auto *LI = dyn_cast<LoadInst>(I)) 534 if (auto *GV = dyn_cast<GlobalVariable>( 535 LI->getPointerOperand()->stripPointerCasts())) 536 if (!LI->isVolatile() && GV->isConstant()) 537 return true; 538 539 return false; 540 } 541 542 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 543 /// trivially dead instruction, delete it. If that makes any of its operands 544 /// trivially dead, delete them too, recursively. Return true if any 545 /// instructions were deleted. 546 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 547 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 548 std::function<void(Value *)> AboutToDeleteCallback) { 549 Instruction *I = dyn_cast<Instruction>(V); 550 if (!I || !isInstructionTriviallyDead(I, TLI)) 551 return false; 552 553 SmallVector<WeakTrackingVH, 16> DeadInsts; 554 DeadInsts.push_back(I); 555 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 556 AboutToDeleteCallback); 557 558 return true; 559 } 560 561 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 562 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 563 MemorySSAUpdater *MSSAU, 564 std::function<void(Value *)> AboutToDeleteCallback) { 565 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 566 for (; S != E; ++S) { 567 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 568 if (!I || !isInstructionTriviallyDead(I)) { 569 DeadInsts[S] = nullptr; 570 ++Alive; 571 } 572 } 573 if (Alive == E) 574 return false; 575 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 576 AboutToDeleteCallback); 577 return true; 578 } 579 580 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 581 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 582 MemorySSAUpdater *MSSAU, 583 std::function<void(Value *)> AboutToDeleteCallback) { 584 // Process the dead instruction list until empty. 585 while (!DeadInsts.empty()) { 586 Value *V = DeadInsts.pop_back_val(); 587 Instruction *I = cast_or_null<Instruction>(V); 588 if (!I) 589 continue; 590 assert(isInstructionTriviallyDead(I, TLI) && 591 "Live instruction found in dead worklist!"); 592 assert(I->use_empty() && "Instructions with uses are not dead."); 593 594 // Don't lose the debug info while deleting the instructions. 595 salvageDebugInfo(*I); 596 597 if (AboutToDeleteCallback) 598 AboutToDeleteCallback(I); 599 600 // Null out all of the instruction's operands to see if any operand becomes 601 // dead as we go. 602 for (Use &OpU : I->operands()) { 603 Value *OpV = OpU.get(); 604 OpU.set(nullptr); 605 606 if (!OpV->use_empty()) 607 continue; 608 609 // If the operand is an instruction that became dead as we nulled out the 610 // operand, and if it is 'trivially' dead, delete it in a future loop 611 // iteration. 612 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 613 if (isInstructionTriviallyDead(OpI, TLI)) 614 DeadInsts.push_back(OpI); 615 } 616 if (MSSAU) 617 MSSAU->removeMemoryAccess(I); 618 619 I->eraseFromParent(); 620 } 621 } 622 623 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 624 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 625 SmallVector<DbgVariableRecord *, 1> DPUsers; 626 findDbgUsers(DbgUsers, I, &DPUsers); 627 for (auto *DII : DbgUsers) 628 DII->setKillLocation(); 629 for (auto *DVR : DPUsers) 630 DVR->setKillLocation(); 631 return !DbgUsers.empty() || !DPUsers.empty(); 632 } 633 634 /// areAllUsesEqual - Check whether the uses of a value are all the same. 635 /// This is similar to Instruction::hasOneUse() except this will also return 636 /// true when there are no uses or multiple uses that all refer to the same 637 /// value. 638 static bool areAllUsesEqual(Instruction *I) { 639 Value::user_iterator UI = I->user_begin(); 640 Value::user_iterator UE = I->user_end(); 641 if (UI == UE) 642 return true; 643 644 User *TheUse = *UI; 645 for (++UI; UI != UE; ++UI) { 646 if (*UI != TheUse) 647 return false; 648 } 649 return true; 650 } 651 652 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 653 /// dead PHI node, due to being a def-use chain of single-use nodes that 654 /// either forms a cycle or is terminated by a trivially dead instruction, 655 /// delete it. If that makes any of its operands trivially dead, delete them 656 /// too, recursively. Return true if a change was made. 657 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 658 const TargetLibraryInfo *TLI, 659 llvm::MemorySSAUpdater *MSSAU) { 660 SmallPtrSet<Instruction*, 4> Visited; 661 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 662 I = cast<Instruction>(*I->user_begin())) { 663 if (I->use_empty()) 664 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 665 666 // If we find an instruction more than once, we're on a cycle that 667 // won't prove fruitful. 668 if (!Visited.insert(I).second) { 669 // Break the cycle and delete the instruction and its operands. 670 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 671 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 672 return true; 673 } 674 } 675 return false; 676 } 677 678 static bool 679 simplifyAndDCEInstruction(Instruction *I, 680 SmallSetVector<Instruction *, 16> &WorkList, 681 const DataLayout &DL, 682 const TargetLibraryInfo *TLI) { 683 if (isInstructionTriviallyDead(I, TLI)) { 684 salvageDebugInfo(*I); 685 686 // Null out all of the instruction's operands to see if any operand becomes 687 // dead as we go. 688 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 689 Value *OpV = I->getOperand(i); 690 I->setOperand(i, nullptr); 691 692 if (!OpV->use_empty() || I == OpV) 693 continue; 694 695 // If the operand is an instruction that became dead as we nulled out the 696 // operand, and if it is 'trivially' dead, delete it in a future loop 697 // iteration. 698 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 699 if (isInstructionTriviallyDead(OpI, TLI)) 700 WorkList.insert(OpI); 701 } 702 703 I->eraseFromParent(); 704 705 return true; 706 } 707 708 if (Value *SimpleV = simplifyInstruction(I, DL)) { 709 // Add the users to the worklist. CAREFUL: an instruction can use itself, 710 // in the case of a phi node. 711 for (User *U : I->users()) { 712 if (U != I) { 713 WorkList.insert(cast<Instruction>(U)); 714 } 715 } 716 717 // Replace the instruction with its simplified value. 718 bool Changed = false; 719 if (!I->use_empty()) { 720 I->replaceAllUsesWith(SimpleV); 721 Changed = true; 722 } 723 if (isInstructionTriviallyDead(I, TLI)) { 724 I->eraseFromParent(); 725 Changed = true; 726 } 727 return Changed; 728 } 729 return false; 730 } 731 732 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 733 /// simplify any instructions in it and recursively delete dead instructions. 734 /// 735 /// This returns true if it changed the code, note that it can delete 736 /// instructions in other blocks as well in this block. 737 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 738 const TargetLibraryInfo *TLI) { 739 bool MadeChange = false; 740 const DataLayout &DL = BB->getDataLayout(); 741 742 #ifndef NDEBUG 743 // In debug builds, ensure that the terminator of the block is never replaced 744 // or deleted by these simplifications. The idea of simplification is that it 745 // cannot introduce new instructions, and there is no way to replace the 746 // terminator of a block without introducing a new instruction. 747 AssertingVH<Instruction> TerminatorVH(&BB->back()); 748 #endif 749 750 SmallSetVector<Instruction *, 16> WorkList; 751 // Iterate over the original function, only adding insts to the worklist 752 // if they actually need to be revisited. This avoids having to pre-init 753 // the worklist with the entire function's worth of instructions. 754 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 755 BI != E;) { 756 assert(!BI->isTerminator()); 757 Instruction *I = &*BI; 758 ++BI; 759 760 // We're visiting this instruction now, so make sure it's not in the 761 // worklist from an earlier visit. 762 if (!WorkList.count(I)) 763 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 764 } 765 766 while (!WorkList.empty()) { 767 Instruction *I = WorkList.pop_back_val(); 768 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 769 } 770 return MadeChange; 771 } 772 773 //===----------------------------------------------------------------------===// 774 // Control Flow Graph Restructuring. 775 // 776 777 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 778 DomTreeUpdater *DTU) { 779 780 // If BB has single-entry PHI nodes, fold them. 781 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 782 Value *NewVal = PN->getIncomingValue(0); 783 // Replace self referencing PHI with poison, it must be dead. 784 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 785 PN->replaceAllUsesWith(NewVal); 786 PN->eraseFromParent(); 787 } 788 789 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 790 assert(PredBB && "Block doesn't have a single predecessor!"); 791 792 bool ReplaceEntryBB = PredBB->isEntryBlock(); 793 794 // DTU updates: Collect all the edges that enter 795 // PredBB. These dominator edges will be redirected to DestBB. 796 SmallVector<DominatorTree::UpdateType, 32> Updates; 797 798 if (DTU) { 799 // To avoid processing the same predecessor more than once. 800 SmallPtrSet<BasicBlock *, 2> SeenPreds; 801 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 802 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 803 // This predecessor of PredBB may already have DestBB as a successor. 804 if (PredOfPredBB != PredBB) 805 if (SeenPreds.insert(PredOfPredBB).second) 806 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 807 SeenPreds.clear(); 808 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 809 if (SeenPreds.insert(PredOfPredBB).second) 810 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 811 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 812 } 813 814 // Zap anything that took the address of DestBB. Not doing this will give the 815 // address an invalid value. 816 if (DestBB->hasAddressTaken()) { 817 BlockAddress *BA = BlockAddress::get(DestBB); 818 Constant *Replacement = 819 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 820 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 821 BA->getType())); 822 BA->destroyConstant(); 823 } 824 825 // Anything that branched to PredBB now branches to DestBB. 826 PredBB->replaceAllUsesWith(DestBB); 827 828 // Splice all the instructions from PredBB to DestBB. 829 PredBB->getTerminator()->eraseFromParent(); 830 DestBB->splice(DestBB->begin(), PredBB); 831 new UnreachableInst(PredBB->getContext(), PredBB); 832 833 // If the PredBB is the entry block of the function, move DestBB up to 834 // become the entry block after we erase PredBB. 835 if (ReplaceEntryBB) 836 DestBB->moveAfter(PredBB); 837 838 if (DTU) { 839 assert(PredBB->size() == 1 && 840 isa<UnreachableInst>(PredBB->getTerminator()) && 841 "The successor list of PredBB isn't empty before " 842 "applying corresponding DTU updates."); 843 DTU->applyUpdatesPermissive(Updates); 844 DTU->deleteBB(PredBB); 845 // Recalculation of DomTree is needed when updating a forward DomTree and 846 // the Entry BB is replaced. 847 if (ReplaceEntryBB && DTU->hasDomTree()) { 848 // The entry block was removed and there is no external interface for 849 // the dominator tree to be notified of this change. In this corner-case 850 // we recalculate the entire tree. 851 DTU->recalculate(*(DestBB->getParent())); 852 } 853 } 854 855 else { 856 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 857 } 858 } 859 860 /// Return true if we can choose one of these values to use in place of the 861 /// other. Note that we will always choose the non-undef value to keep. 862 static bool CanMergeValues(Value *First, Value *Second) { 863 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 864 } 865 866 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 867 /// branch to Succ, into Succ. 868 /// 869 /// Assumption: Succ is the single successor for BB. 870 static bool 871 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 872 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 873 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 874 875 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 876 << Succ->getName() << "\n"); 877 // Shortcut, if there is only a single predecessor it must be BB and merging 878 // is always safe 879 if (Succ->getSinglePredecessor()) 880 return true; 881 882 // Look at all the phi nodes in Succ, to see if they present a conflict when 883 // merging these blocks 884 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 885 PHINode *PN = cast<PHINode>(I); 886 887 // If the incoming value from BB is again a PHINode in 888 // BB which has the same incoming value for *PI as PN does, we can 889 // merge the phi nodes and then the blocks can still be merged 890 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 891 if (BBPN && BBPN->getParent() == BB) { 892 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 893 BasicBlock *IBB = PN->getIncomingBlock(PI); 894 if (BBPreds.count(IBB) && 895 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 896 PN->getIncomingValue(PI))) { 897 LLVM_DEBUG(dbgs() 898 << "Can't fold, phi node " << PN->getName() << " in " 899 << Succ->getName() << " is conflicting with " 900 << BBPN->getName() << " with regard to common predecessor " 901 << IBB->getName() << "\n"); 902 return false; 903 } 904 } 905 } else { 906 Value* Val = PN->getIncomingValueForBlock(BB); 907 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 908 // See if the incoming value for the common predecessor is equal to the 909 // one for BB, in which case this phi node will not prevent the merging 910 // of the block. 911 BasicBlock *IBB = PN->getIncomingBlock(PI); 912 if (BBPreds.count(IBB) && 913 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 914 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 915 << " in " << Succ->getName() 916 << " is conflicting with regard to common " 917 << "predecessor " << IBB->getName() << "\n"); 918 return false; 919 } 920 } 921 } 922 } 923 924 return true; 925 } 926 927 using PredBlockVector = SmallVector<BasicBlock *, 16>; 928 using IncomingValueMap = SmallDenseMap<BasicBlock *, Value *, 16>; 929 930 /// Determines the value to use as the phi node input for a block. 931 /// 932 /// Select between \p OldVal any value that we know flows from \p BB 933 /// to a particular phi on the basis of which one (if either) is not 934 /// undef. Update IncomingValues based on the selected value. 935 /// 936 /// \param OldVal The value we are considering selecting. 937 /// \param BB The block that the value flows in from. 938 /// \param IncomingValues A map from block-to-value for other phi inputs 939 /// that we have examined. 940 /// 941 /// \returns the selected value. 942 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 943 IncomingValueMap &IncomingValues) { 944 if (!isa<UndefValue>(OldVal)) { 945 assert((!IncomingValues.count(BB) || 946 IncomingValues.find(BB)->second == OldVal) && 947 "Expected OldVal to match incoming value from BB!"); 948 949 IncomingValues.insert(std::make_pair(BB, OldVal)); 950 return OldVal; 951 } 952 953 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 954 if (It != IncomingValues.end()) return It->second; 955 956 return OldVal; 957 } 958 959 /// Create a map from block to value for the operands of a 960 /// given phi. 961 /// 962 /// Create a map from block to value for each non-undef value flowing 963 /// into \p PN. 964 /// 965 /// \param PN The phi we are collecting the map for. 966 /// \param IncomingValues [out] The map from block to value for this phi. 967 static void gatherIncomingValuesToPhi(PHINode *PN, 968 IncomingValueMap &IncomingValues) { 969 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 970 BasicBlock *BB = PN->getIncomingBlock(i); 971 Value *V = PN->getIncomingValue(i); 972 973 if (!isa<UndefValue>(V)) 974 IncomingValues.insert(std::make_pair(BB, V)); 975 } 976 } 977 978 /// Replace the incoming undef values to a phi with the values 979 /// from a block-to-value map. 980 /// 981 /// \param PN The phi we are replacing the undefs in. 982 /// \param IncomingValues A map from block to value. 983 static void replaceUndefValuesInPhi(PHINode *PN, 984 const IncomingValueMap &IncomingValues) { 985 SmallVector<unsigned> TrueUndefOps; 986 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 987 Value *V = PN->getIncomingValue(i); 988 989 if (!isa<UndefValue>(V)) continue; 990 991 BasicBlock *BB = PN->getIncomingBlock(i); 992 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 993 994 // Keep track of undef/poison incoming values. Those must match, so we fix 995 // them up below if needed. 996 // Note: this is conservatively correct, but we could try harder and group 997 // the undef values per incoming basic block. 998 if (It == IncomingValues.end()) { 999 TrueUndefOps.push_back(i); 1000 continue; 1001 } 1002 1003 // There is a defined value for this incoming block, so map this undef 1004 // incoming value to the defined value. 1005 PN->setIncomingValue(i, It->second); 1006 } 1007 1008 // If there are both undef and poison values incoming, then convert those 1009 // values to undef. It is invalid to have different values for the same 1010 // incoming block. 1011 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1012 return isa<PoisonValue>(PN->getIncomingValue(i)); 1013 }); 1014 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1015 for (unsigned i : TrueUndefOps) 1016 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1017 } 1018 } 1019 1020 // Only when they shares a single common predecessor, return true. 1021 // Only handles cases when BB can't be merged while its predecessors can be 1022 // redirected. 1023 static bool 1024 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1025 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1026 BasicBlock *&CommonPred) { 1027 1028 // There must be phis in BB, otherwise BB will be merged into Succ directly 1029 if (BB->phis().empty() || Succ->phis().empty()) 1030 return false; 1031 1032 // BB must have predecessors not shared that can be redirected to Succ 1033 if (!BB->hasNPredecessorsOrMore(2)) 1034 return false; 1035 1036 if (any_of(BBPreds, [](const BasicBlock *Pred) { 1037 return isa<IndirectBrInst>(Pred->getTerminator()); 1038 })) 1039 return false; 1040 1041 // Get the single common predecessor of both BB and Succ. Return false 1042 // when there are more than one common predecessors. 1043 for (BasicBlock *SuccPred : predecessors(Succ)) { 1044 if (BBPreds.count(SuccPred)) { 1045 if (CommonPred) 1046 return false; 1047 CommonPred = SuccPred; 1048 } 1049 } 1050 1051 return true; 1052 } 1053 1054 /// Check whether removing \p BB will make the phis in its \p Succ have too 1055 /// many incoming entries. This function does not check whether \p BB is 1056 /// foldable or not. 1057 static bool introduceTooManyPhiEntries(BasicBlock *BB, BasicBlock *Succ) { 1058 // If BB only has one predecessor, then removing it will not introduce more 1059 // incoming edges for phis. 1060 if (BB->hasNPredecessors(1)) 1061 return false; 1062 unsigned NumPreds = pred_size(BB); 1063 unsigned NumChangedPhi = 0; 1064 for (auto &Phi : Succ->phis()) { 1065 // If the incoming value is a phi and the phi is defined in BB, 1066 // then removing BB will not increase the total phi entries of the ir. 1067 if (auto *IncomingPhi = dyn_cast<PHINode>(Phi.getIncomingValueForBlock(BB))) 1068 if (IncomingPhi->getParent() == BB) 1069 continue; 1070 // Otherwise, we need to add entries to the phi 1071 NumChangedPhi++; 1072 } 1073 // For every phi that needs to be changed, (NumPreds - 1) new entries will be 1074 // added. If the total increase in phi entries exceeds 1075 // MaxPhiEntriesIncreaseAfterRemovingEmptyBlock, it will be considered as 1076 // introducing too many new phi entries. 1077 return (NumPreds - 1) * NumChangedPhi > 1078 MaxPhiEntriesIncreaseAfterRemovingEmptyBlock; 1079 } 1080 1081 /// Replace a value flowing from a block to a phi with 1082 /// potentially multiple instances of that value flowing from the 1083 /// block's predecessors to the phi. 1084 /// 1085 /// \param BB The block with the value flowing into the phi. 1086 /// \param BBPreds The predecessors of BB. 1087 /// \param PN The phi that we are updating. 1088 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1089 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1090 const PredBlockVector &BBPreds, 1091 PHINode *PN, 1092 BasicBlock *CommonPred) { 1093 Value *OldVal = PN->removeIncomingValue(BB, false); 1094 assert(OldVal && "No entry in PHI for Pred BB!"); 1095 1096 IncomingValueMap IncomingValues; 1097 1098 // We are merging two blocks - BB, and the block containing PN - and 1099 // as a result we need to redirect edges from the predecessors of BB 1100 // to go to the block containing PN, and update PN 1101 // accordingly. Since we allow merging blocks in the case where the 1102 // predecessor and successor blocks both share some predecessors, 1103 // and where some of those common predecessors might have undef 1104 // values flowing into PN, we want to rewrite those values to be 1105 // consistent with the non-undef values. 1106 1107 gatherIncomingValuesToPhi(PN, IncomingValues); 1108 1109 // If this incoming value is one of the PHI nodes in BB, the new entries 1110 // in the PHI node are the entries from the old PHI. 1111 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1112 PHINode *OldValPN = cast<PHINode>(OldVal); 1113 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1114 // Note that, since we are merging phi nodes and BB and Succ might 1115 // have common predecessors, we could end up with a phi node with 1116 // identical incoming branches. This will be cleaned up later (and 1117 // will trigger asserts if we try to clean it up now, without also 1118 // simplifying the corresponding conditional branch). 1119 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1120 1121 if (PredBB == CommonPred) 1122 continue; 1123 1124 Value *PredVal = OldValPN->getIncomingValue(i); 1125 Value *Selected = 1126 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1127 1128 // And add a new incoming value for this predecessor for the 1129 // newly retargeted branch. 1130 PN->addIncoming(Selected, PredBB); 1131 } 1132 if (CommonPred) 1133 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1134 1135 } else { 1136 for (BasicBlock *PredBB : BBPreds) { 1137 // Update existing incoming values in PN for this 1138 // predecessor of BB. 1139 if (PredBB == CommonPred) 1140 continue; 1141 1142 Value *Selected = 1143 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1144 1145 // And add a new incoming value for this predecessor for the 1146 // newly retargeted branch. 1147 PN->addIncoming(Selected, PredBB); 1148 } 1149 if (CommonPred) 1150 PN->addIncoming(OldVal, BB); 1151 } 1152 1153 replaceUndefValuesInPhi(PN, IncomingValues); 1154 } 1155 1156 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1157 DomTreeUpdater *DTU) { 1158 assert(BB != &BB->getParent()->getEntryBlock() && 1159 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1160 1161 // We can't simplify infinite loops. 1162 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1163 if (BB == Succ) 1164 return false; 1165 1166 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1167 1168 // The single common predecessor of BB and Succ when BB cannot be killed 1169 BasicBlock *CommonPred = nullptr; 1170 1171 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1172 1173 // Even if we can not fold BB into Succ, we may be able to redirect the 1174 // predecessors of BB to Succ. 1175 bool BBPhisMergeable = BBKillable || CanRedirectPredsOfEmptyBBToSucc( 1176 BB, Succ, BBPreds, CommonPred); 1177 1178 if ((!BBKillable && !BBPhisMergeable) || introduceTooManyPhiEntries(BB, Succ)) 1179 return false; 1180 1181 // Check to see if merging these blocks/phis would cause conflicts for any of 1182 // the phi nodes in BB or Succ. If not, we can safely merge. 1183 1184 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1185 // has uses which will not disappear when the PHI nodes are merged. It is 1186 // possible to handle such cases, but difficult: it requires checking whether 1187 // BB dominates Succ, which is non-trivial to calculate in the case where 1188 // Succ has multiple predecessors. Also, it requires checking whether 1189 // constructing the necessary self-referential PHI node doesn't introduce any 1190 // conflicts; this isn't too difficult, but the previous code for doing this 1191 // was incorrect. 1192 // 1193 // Note that if this check finds a live use, BB dominates Succ, so BB is 1194 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1195 // folding the branch isn't profitable in that case anyway. 1196 if (!Succ->getSinglePredecessor()) { 1197 BasicBlock::iterator BBI = BB->begin(); 1198 while (isa<PHINode>(*BBI)) { 1199 for (Use &U : BBI->uses()) { 1200 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1201 if (PN->getIncomingBlock(U) != BB) 1202 return false; 1203 } else { 1204 return false; 1205 } 1206 } 1207 ++BBI; 1208 } 1209 } 1210 1211 if (BBPhisMergeable && CommonPred) 1212 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1213 << " and " << Succ->getName() << " : " 1214 << CommonPred->getName() << "\n"); 1215 1216 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1217 // metadata. 1218 // 1219 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1220 // current status (that loop metadata is implemented as metadata attached to 1221 // the branch instruction in the loop latch block). To quote from review 1222 // comments, "the current representation of loop metadata (using a loop latch 1223 // terminator attachment) is known to be fundamentally broken. Loop latches 1224 // are not uniquely associated with loops (both in that a latch can be part of 1225 // multiple loops and a loop may have multiple latches). Loop headers are. The 1226 // solution to this problem is also known: Add support for basic block 1227 // metadata, and attach loop metadata to the loop header." 1228 // 1229 // Why bail out: 1230 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1231 // the latch for inner-loop (see reason below), so bail out to prerserve 1232 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1233 // to this inner-loop. 1234 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1235 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1236 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1237 // one self-looping basic block, which is contradictory with the assumption. 1238 // 1239 // To illustrate how inner-loop metadata is dropped: 1240 // 1241 // CFG Before 1242 // 1243 // BB is while.cond.exit, attached with loop metdata md2. 1244 // BB->Pred is for.body, attached with loop metadata md1. 1245 // 1246 // entry 1247 // | 1248 // v 1249 // ---> while.cond -------------> while.end 1250 // | | 1251 // | v 1252 // | while.body 1253 // | | 1254 // | v 1255 // | for.body <---- (md1) 1256 // | | |______| 1257 // | v 1258 // | while.cond.exit (md2) 1259 // | | 1260 // |_______| 1261 // 1262 // CFG After 1263 // 1264 // while.cond1 is the merge of while.cond.exit and while.cond above. 1265 // for.body is attached with md2, and md1 is dropped. 1266 // If LoopSimplify runs later (as a part of loop pass), it could create 1267 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1268 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1269 // 1270 // entry 1271 // | 1272 // v 1273 // ---> while.cond1 -------------> while.end 1274 // | | 1275 // | v 1276 // | while.body 1277 // | | 1278 // | v 1279 // | for.body <---- (md2) 1280 // |_______| |______| 1281 if (Instruction *TI = BB->getTerminator()) 1282 if (TI->hasMetadata(LLVMContext::MD_loop)) 1283 for (BasicBlock *Pred : predecessors(BB)) 1284 if (Instruction *PredTI = Pred->getTerminator()) 1285 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1286 return false; 1287 1288 if (BBKillable) 1289 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1290 else if (BBPhisMergeable) 1291 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1292 1293 SmallVector<DominatorTree::UpdateType, 32> Updates; 1294 1295 if (DTU) { 1296 // To avoid processing the same predecessor more than once. 1297 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1298 // All predecessors of BB (except the common predecessor) will be moved to 1299 // Succ. 1300 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1301 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1302 for (auto *PredOfBB : predecessors(BB)) { 1303 // Do not modify those common predecessors of BB and Succ 1304 if (!SuccPreds.contains(PredOfBB)) 1305 if (SeenPreds.insert(PredOfBB).second) 1306 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1307 } 1308 1309 SeenPreds.clear(); 1310 1311 for (auto *PredOfBB : predecessors(BB)) 1312 // When BB cannot be killed, do not remove the edge between BB and 1313 // CommonPred. 1314 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1315 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1316 1317 if (BBKillable) 1318 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1319 } 1320 1321 if (isa<PHINode>(Succ->begin())) { 1322 // If there is more than one pred of succ, and there are PHI nodes in 1323 // the successor, then we need to add incoming edges for the PHI nodes 1324 // 1325 const PredBlockVector BBPreds(predecessors(BB)); 1326 1327 // Loop over all of the PHI nodes in the successor of BB. 1328 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1329 PHINode *PN = cast<PHINode>(I); 1330 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1331 } 1332 } 1333 1334 if (Succ->getSinglePredecessor()) { 1335 // BB is the only predecessor of Succ, so Succ will end up with exactly 1336 // the same predecessors BB had. 1337 // Copy over any phi, debug or lifetime instruction. 1338 BB->getTerminator()->eraseFromParent(); 1339 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1340 } else { 1341 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1342 // We explicitly check for such uses for merging phis. 1343 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1344 PN->eraseFromParent(); 1345 } 1346 } 1347 1348 // If the unconditional branch we replaced contains llvm.loop metadata, we 1349 // add the metadata to the branch instructions in the predecessors. 1350 if (Instruction *TI = BB->getTerminator()) 1351 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1352 for (BasicBlock *Pred : predecessors(BB)) 1353 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1354 1355 if (BBKillable) { 1356 // Everything that jumped to BB now goes to Succ. 1357 BB->replaceAllUsesWith(Succ); 1358 1359 if (!Succ->hasName()) 1360 Succ->takeName(BB); 1361 1362 // Clear the successor list of BB to match updates applying to DTU later. 1363 if (BB->getTerminator()) 1364 BB->back().eraseFromParent(); 1365 1366 new UnreachableInst(BB->getContext(), BB); 1367 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1368 "applying corresponding DTU updates."); 1369 } else if (BBPhisMergeable) { 1370 // Everything except CommonPred that jumped to BB now goes to Succ. 1371 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1372 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1373 return UseInst->getParent() != CommonPred && 1374 BBPreds.contains(UseInst->getParent()); 1375 return false; 1376 }); 1377 } 1378 1379 if (DTU) 1380 DTU->applyUpdates(Updates); 1381 1382 if (BBKillable) 1383 DeleteDeadBlock(BB, DTU); 1384 1385 return true; 1386 } 1387 1388 static bool 1389 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1390 SmallPtrSetImpl<PHINode *> &ToRemove) { 1391 // This implementation doesn't currently consider undef operands 1392 // specially. Theoretically, two phis which are identical except for 1393 // one having an undef where the other doesn't could be collapsed. 1394 1395 bool Changed = false; 1396 1397 // Examine each PHI. 1398 // Note that increment of I must *NOT* be in the iteration_expression, since 1399 // we don't want to immediately advance when we restart from the beginning. 1400 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1401 ++I; 1402 // Is there an identical PHI node in this basic block? 1403 // Note that we only look in the upper square's triangle, 1404 // we already checked that the lower triangle PHI's aren't identical. 1405 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1406 if (ToRemove.contains(DuplicatePN)) 1407 continue; 1408 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1409 continue; 1410 // A duplicate. Replace this PHI with the base PHI. 1411 ++NumPHICSEs; 1412 DuplicatePN->replaceAllUsesWith(PN); 1413 ToRemove.insert(DuplicatePN); 1414 Changed = true; 1415 1416 // The RAUW can change PHIs that we already visited. 1417 I = BB->begin(); 1418 break; // Start over from the beginning. 1419 } 1420 } 1421 return Changed; 1422 } 1423 1424 static bool 1425 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1426 SmallPtrSetImpl<PHINode *> &ToRemove) { 1427 // This implementation doesn't currently consider undef operands 1428 // specially. Theoretically, two phis which are identical except for 1429 // one having an undef where the other doesn't could be collapsed. 1430 1431 struct PHIDenseMapInfo { 1432 static PHINode *getEmptyKey() { 1433 return DenseMapInfo<PHINode *>::getEmptyKey(); 1434 } 1435 1436 static PHINode *getTombstoneKey() { 1437 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1438 } 1439 1440 static bool isSentinel(PHINode *PN) { 1441 return PN == getEmptyKey() || PN == getTombstoneKey(); 1442 } 1443 1444 // WARNING: this logic must be kept in sync with 1445 // Instruction::isIdenticalToWhenDefined()! 1446 static unsigned getHashValueImpl(PHINode *PN) { 1447 // Compute a hash value on the operands. Instcombine will likely have 1448 // sorted them, which helps expose duplicates, but we have to check all 1449 // the operands to be safe in case instcombine hasn't run. 1450 return static_cast<unsigned>(hash_combine( 1451 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1452 hash_combine_range(PN->block_begin(), PN->block_end()))); 1453 } 1454 1455 static unsigned getHashValue(PHINode *PN) { 1456 #ifndef NDEBUG 1457 // If -phicse-debug-hash was specified, return a constant -- this 1458 // will force all hashing to collide, so we'll exhaustively search 1459 // the table for a match, and the assertion in isEqual will fire if 1460 // there's a bug causing equal keys to hash differently. 1461 if (PHICSEDebugHash) 1462 return 0; 1463 #endif 1464 return getHashValueImpl(PN); 1465 } 1466 1467 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1468 if (isSentinel(LHS) || isSentinel(RHS)) 1469 return LHS == RHS; 1470 return LHS->isIdenticalTo(RHS); 1471 } 1472 1473 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1474 // These comparisons are nontrivial, so assert that equality implies 1475 // hash equality (DenseMap demands this as an invariant). 1476 bool Result = isEqualImpl(LHS, RHS); 1477 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1478 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1479 return Result; 1480 } 1481 }; 1482 1483 // Set of unique PHINodes. 1484 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1485 PHISet.reserve(4 * PHICSENumPHISmallSize); 1486 1487 // Examine each PHI. 1488 bool Changed = false; 1489 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1490 if (ToRemove.contains(PN)) 1491 continue; 1492 auto Inserted = PHISet.insert(PN); 1493 if (!Inserted.second) { 1494 // A duplicate. Replace this PHI with its duplicate. 1495 ++NumPHICSEs; 1496 PN->replaceAllUsesWith(*Inserted.first); 1497 ToRemove.insert(PN); 1498 Changed = true; 1499 1500 // The RAUW can change PHIs that we already visited. Start over from the 1501 // beginning. 1502 PHISet.clear(); 1503 I = BB->begin(); 1504 } 1505 } 1506 1507 return Changed; 1508 } 1509 1510 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1511 SmallPtrSetImpl<PHINode *> &ToRemove) { 1512 if ( 1513 #ifndef NDEBUG 1514 !PHICSEDebugHash && 1515 #endif 1516 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1517 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1518 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1519 } 1520 1521 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1522 SmallPtrSet<PHINode *, 8> ToRemove; 1523 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1524 for (PHINode *PN : ToRemove) 1525 PN->eraseFromParent(); 1526 return Changed; 1527 } 1528 1529 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1530 const DataLayout &DL) { 1531 V = V->stripPointerCasts(); 1532 1533 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1534 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1535 // than the current alignment, as the known bits calculation should have 1536 // already taken it into account. However, this is not always the case, 1537 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1538 // doesn't. 1539 Align CurrentAlign = AI->getAlign(); 1540 if (PrefAlign <= CurrentAlign) 1541 return CurrentAlign; 1542 1543 // If the preferred alignment is greater than the natural stack alignment 1544 // then don't round up. This avoids dynamic stack realignment. 1545 MaybeAlign StackAlign = DL.getStackAlignment(); 1546 if (StackAlign && PrefAlign > *StackAlign) 1547 return CurrentAlign; 1548 AI->setAlignment(PrefAlign); 1549 return PrefAlign; 1550 } 1551 1552 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1553 // TODO: as above, this shouldn't be necessary. 1554 Align CurrentAlign = GO->getPointerAlignment(DL); 1555 if (PrefAlign <= CurrentAlign) 1556 return CurrentAlign; 1557 1558 // If there is a large requested alignment and we can, bump up the alignment 1559 // of the global. If the memory we set aside for the global may not be the 1560 // memory used by the final program then it is impossible for us to reliably 1561 // enforce the preferred alignment. 1562 if (!GO->canIncreaseAlignment()) 1563 return CurrentAlign; 1564 1565 if (GO->isThreadLocal()) { 1566 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1567 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1568 PrefAlign = Align(MaxTLSAlign); 1569 } 1570 1571 GO->setAlignment(PrefAlign); 1572 return PrefAlign; 1573 } 1574 1575 return Align(1); 1576 } 1577 1578 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1579 const DataLayout &DL, 1580 const Instruction *CxtI, 1581 AssumptionCache *AC, 1582 const DominatorTree *DT) { 1583 assert(V->getType()->isPointerTy() && 1584 "getOrEnforceKnownAlignment expects a pointer!"); 1585 1586 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1587 unsigned TrailZ = Known.countMinTrailingZeros(); 1588 1589 // Avoid trouble with ridiculously large TrailZ values, such as 1590 // those computed from a null pointer. 1591 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1592 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1593 1594 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1595 1596 if (PrefAlign && *PrefAlign > Alignment) 1597 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1598 1599 // We don't need to make any adjustment. 1600 return Alignment; 1601 } 1602 1603 ///===---------------------------------------------------------------------===// 1604 /// Dbg Intrinsic utilities 1605 /// 1606 1607 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1608 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1609 DIExpression *DIExpr, 1610 PHINode *APN) { 1611 // Since we can't guarantee that the original dbg.declare intrinsic 1612 // is removed by LowerDbgDeclare(), we need to make sure that we are 1613 // not inserting the same dbg.value intrinsic over and over. 1614 SmallVector<DbgValueInst *, 1> DbgValues; 1615 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 1616 findDbgValues(DbgValues, APN, &DbgVariableRecords); 1617 for (auto *DVI : DbgValues) { 1618 assert(is_contained(DVI->getValues(), APN)); 1619 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1620 return true; 1621 } 1622 for (auto *DVR : DbgVariableRecords) { 1623 assert(is_contained(DVR->location_ops(), APN)); 1624 if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) 1625 return true; 1626 } 1627 return false; 1628 } 1629 1630 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1631 /// (or fragment of the variable) described by \p DII. 1632 /// 1633 /// This is primarily intended as a helper for the different 1634 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1635 /// describes an alloca'd variable, so we need to use the alloc size of the 1636 /// value when doing the comparison. E.g. an i1 value will be identified as 1637 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1638 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1639 const DataLayout &DL = DII->getDataLayout(); 1640 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1641 if (std::optional<uint64_t> FragmentSize = 1642 DII->getExpression()->getActiveBits(DII->getVariable())) 1643 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1644 1645 // We can't always calculate the size of the DI variable (e.g. if it is a 1646 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1647 // instead. 1648 if (DII->isAddressOfVariable()) { 1649 // DII should have exactly 1 location when it is an address. 1650 assert(DII->getNumVariableLocationOps() == 1 && 1651 "address of variable must have exactly 1 location operand."); 1652 if (auto *AI = 1653 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1654 if (std::optional<TypeSize> FragmentSize = 1655 AI->getAllocationSizeInBits(DL)) { 1656 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1657 } 1658 } 1659 } 1660 // Could not determine size of variable. Conservatively return false. 1661 return false; 1662 } 1663 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, 1664 // the replacement for dbg.values. 1665 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { 1666 const DataLayout &DL = DVR->getModule()->getDataLayout(); 1667 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1668 if (std::optional<uint64_t> FragmentSize = 1669 DVR->getExpression()->getActiveBits(DVR->getVariable())) 1670 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1671 1672 // We can't always calculate the size of the DI variable (e.g. if it is a 1673 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1674 // instead. 1675 if (DVR->isAddressOfVariable()) { 1676 // DVR should have exactly 1 location when it is an address. 1677 assert(DVR->getNumVariableLocationOps() == 1 && 1678 "address of variable must have exactly 1 location operand."); 1679 if (auto *AI = 1680 dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) { 1681 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1682 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1683 } 1684 } 1685 } 1686 // Could not determine size of variable. Conservatively return false. 1687 return false; 1688 } 1689 1690 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, 1691 DILocalVariable *DIVar, 1692 DIExpression *DIExpr, 1693 const DebugLoc &NewLoc, 1694 BasicBlock::iterator Instr) { 1695 if (!UseNewDbgInfoFormat) { 1696 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1697 (Instruction *)nullptr); 1698 cast<Instruction *>(DbgVal)->insertBefore(Instr); 1699 } else { 1700 // RemoveDIs: if we're using the new debug-info format, allocate a 1701 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1702 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1703 DbgVariableRecord *DV = 1704 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1705 Instr->getParent()->insertDbgRecordBefore(DV, Instr); 1706 } 1707 } 1708 1709 static void insertDbgValueOrDbgVariableRecordAfter( 1710 DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, 1711 const DebugLoc &NewLoc, BasicBlock::iterator Instr) { 1712 if (!UseNewDbgInfoFormat) { 1713 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1714 (Instruction *)nullptr); 1715 cast<Instruction *>(DbgVal)->insertAfter(&*Instr); 1716 } else { 1717 // RemoveDIs: if we're using the new debug-info format, allocate a 1718 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1719 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1720 DbgVariableRecord *DV = 1721 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1722 Instr->getParent()->insertDbgRecordAfter(DV, &*Instr); 1723 } 1724 } 1725 1726 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1727 /// that has an associated llvm.dbg.declare intrinsic. 1728 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1729 StoreInst *SI, DIBuilder &Builder) { 1730 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1731 auto *DIVar = DII->getVariable(); 1732 assert(DIVar && "Missing variable"); 1733 auto *DIExpr = DII->getExpression(); 1734 Value *DV = SI->getValueOperand(); 1735 1736 DebugLoc NewLoc = getDebugValueLoc(DII); 1737 1738 // If the alloca describes the variable itself, i.e. the expression in the 1739 // dbg.declare doesn't start with a dereference, we can perform the 1740 // conversion if the value covers the entire fragment of DII. 1741 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1742 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1743 // We conservatively ignore other dereferences, because the following two are 1744 // not equivalent: 1745 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1746 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1747 // The former is adding 2 to the address of the variable, whereas the latter 1748 // is adding 2 to the value of the variable. As such, we insist on just a 1749 // deref expression. 1750 bool CanConvert = 1751 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1752 valueCoversEntireFragment(DV->getType(), DII)); 1753 if (CanConvert) { 1754 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1755 SI->getIterator()); 1756 return; 1757 } 1758 1759 // FIXME: If storing to a part of the variable described by the dbg.declare, 1760 // then we want to insert a dbg.value for the corresponding fragment. 1761 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1762 << '\n'); 1763 // For now, when there is a store to parts of the variable (but we do not 1764 // know which part) we insert an dbg.value intrinsic to indicate that we 1765 // know nothing about the variable's content. 1766 DV = PoisonValue::get(DV->getType()); 1767 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1768 SI->getIterator()); 1769 } 1770 1771 static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { 1772 int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; 1773 return DIExpression::get(DIExpr->getContext(), 1774 DIExpr->getElements().drop_front(NumEltDropped)); 1775 } 1776 1777 void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, 1778 DIBuilder &Builder) { 1779 auto *DIVar = DII->getVariable(); 1780 assert(DIVar && "Missing variable"); 1781 auto *DIExpr = DII->getExpression(); 1782 DIExpr = dropInitialDeref(DIExpr); 1783 Value *DV = SI->getValueOperand(); 1784 1785 DebugLoc NewLoc = getDebugValueLoc(DII); 1786 1787 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1788 SI->getIterator()); 1789 } 1790 1791 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1792 /// that has an associated llvm.dbg.declare intrinsic. 1793 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1794 LoadInst *LI, DIBuilder &Builder) { 1795 auto *DIVar = DII->getVariable(); 1796 auto *DIExpr = DII->getExpression(); 1797 assert(DIVar && "Missing variable"); 1798 1799 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1800 // FIXME: If only referring to a part of the variable described by the 1801 // dbg.declare, then we want to insert a dbg.value for the corresponding 1802 // fragment. 1803 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1804 << *DII << '\n'); 1805 return; 1806 } 1807 1808 DebugLoc NewLoc = getDebugValueLoc(DII); 1809 1810 // We are now tracking the loaded value instead of the address. In the 1811 // future if multi-location support is added to the IR, it might be 1812 // preferable to keep tracking both the loaded value and the original 1813 // address in case the alloca can not be elided. 1814 insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1815 LI->getIterator()); 1816 } 1817 1818 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, 1819 StoreInst *SI, DIBuilder &Builder) { 1820 assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); 1821 auto *DIVar = DVR->getVariable(); 1822 assert(DIVar && "Missing variable"); 1823 auto *DIExpr = DVR->getExpression(); 1824 Value *DV = SI->getValueOperand(); 1825 1826 DebugLoc NewLoc = getDebugValueLoc(DVR); 1827 1828 // If the alloca describes the variable itself, i.e. the expression in the 1829 // dbg.declare doesn't start with a dereference, we can perform the 1830 // conversion if the value covers the entire fragment of DII. 1831 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1832 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1833 // We conservatively ignore other dereferences, because the following two are 1834 // not equivalent: 1835 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1836 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1837 // The former is adding 2 to the address of the variable, whereas the latter 1838 // is adding 2 to the value of the variable. As such, we insist on just a 1839 // deref expression. 1840 bool CanConvert = 1841 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1842 valueCoversEntireFragment(DV->getType(), DVR)); 1843 if (CanConvert) { 1844 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1845 SI->getIterator()); 1846 return; 1847 } 1848 1849 // FIXME: If storing to a part of the variable described by the dbg.declare, 1850 // then we want to insert a dbg.value for the corresponding fragment. 1851 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR 1852 << '\n'); 1853 assert(UseNewDbgInfoFormat); 1854 1855 // For now, when there is a store to parts of the variable (but we do not 1856 // know which part) we insert an dbg.value intrinsic to indicate that we 1857 // know nothing about the variable's content. 1858 DV = PoisonValue::get(DV->getType()); 1859 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1860 DbgVariableRecord *NewDVR = 1861 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1862 SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator()); 1863 } 1864 1865 void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, 1866 DIBuilder &Builder) { 1867 auto *DIVar = DVR->getVariable(); 1868 assert(DIVar && "Missing variable"); 1869 auto *DIExpr = DVR->getExpression(); 1870 DIExpr = dropInitialDeref(DIExpr); 1871 Value *DV = SI->getValueOperand(); 1872 1873 DebugLoc NewLoc = getDebugValueLoc(DVR); 1874 1875 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1876 SI->getIterator()); 1877 } 1878 1879 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1880 /// llvm.dbg.declare intrinsic. 1881 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1882 PHINode *APN, DIBuilder &Builder) { 1883 auto *DIVar = DII->getVariable(); 1884 auto *DIExpr = DII->getExpression(); 1885 assert(DIVar && "Missing variable"); 1886 1887 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1888 return; 1889 1890 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1891 // FIXME: If only referring to a part of the variable described by the 1892 // dbg.declare, then we want to insert a dbg.value for the corresponding 1893 // fragment. 1894 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1895 << *DII << '\n'); 1896 return; 1897 } 1898 1899 BasicBlock *BB = APN->getParent(); 1900 auto InsertionPt = BB->getFirstInsertionPt(); 1901 1902 DebugLoc NewLoc = getDebugValueLoc(DII); 1903 1904 // The block may be a catchswitch block, which does not have a valid 1905 // insertion point. 1906 // FIXME: Insert dbg.value markers in the successors when appropriate. 1907 if (InsertionPt != BB->end()) { 1908 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1909 InsertionPt); 1910 } 1911 } 1912 1913 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 1914 DIBuilder &Builder) { 1915 auto *DIVar = DVR->getVariable(); 1916 auto *DIExpr = DVR->getExpression(); 1917 assert(DIVar && "Missing variable"); 1918 1919 if (!valueCoversEntireFragment(LI->getType(), DVR)) { 1920 // FIXME: If only referring to a part of the variable described by the 1921 // dbg.declare, then we want to insert a DbgVariableRecord for the 1922 // corresponding fragment. 1923 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1924 << *DVR << '\n'); 1925 return; 1926 } 1927 1928 DebugLoc NewLoc = getDebugValueLoc(DVR); 1929 1930 // We are now tracking the loaded value instead of the address. In the 1931 // future if multi-location support is added to the IR, it might be 1932 // preferable to keep tracking both the loaded value and the original 1933 // address in case the alloca can not be elided. 1934 assert(UseNewDbgInfoFormat); 1935 1936 // Create a DbgVariableRecord directly and insert. 1937 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1938 DbgVariableRecord *DV = 1939 new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); 1940 LI->getParent()->insertDbgRecordAfter(DV, LI); 1941 } 1942 1943 /// Determine whether this alloca is either a VLA or an array. 1944 static bool isArray(AllocaInst *AI) { 1945 return AI->isArrayAllocation() || 1946 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1947 } 1948 1949 /// Determine whether this alloca is a structure. 1950 static bool isStructure(AllocaInst *AI) { 1951 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1952 } 1953 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, 1954 DIBuilder &Builder) { 1955 auto *DIVar = DVR->getVariable(); 1956 auto *DIExpr = DVR->getExpression(); 1957 assert(DIVar && "Missing variable"); 1958 1959 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1960 return; 1961 1962 if (!valueCoversEntireFragment(APN->getType(), DVR)) { 1963 // FIXME: If only referring to a part of the variable described by the 1964 // dbg.declare, then we want to insert a DbgVariableRecord for the 1965 // corresponding fragment. 1966 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1967 << *DVR << '\n'); 1968 return; 1969 } 1970 1971 BasicBlock *BB = APN->getParent(); 1972 auto InsertionPt = BB->getFirstInsertionPt(); 1973 1974 DebugLoc NewLoc = getDebugValueLoc(DVR); 1975 1976 // The block may be a catchswitch block, which does not have a valid 1977 // insertion point. 1978 // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. 1979 if (InsertionPt != BB->end()) { 1980 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1981 InsertionPt); 1982 } 1983 } 1984 1985 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1986 /// of llvm.dbg.value intrinsics. 1987 bool llvm::LowerDbgDeclare(Function &F) { 1988 bool Changed = false; 1989 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1990 SmallVector<DbgDeclareInst *, 4> Dbgs; 1991 SmallVector<DbgVariableRecord *> DVRs; 1992 for (auto &FI : F) { 1993 for (Instruction &BI : FI) { 1994 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1995 Dbgs.push_back(DDI); 1996 for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) { 1997 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 1998 DVRs.push_back(&DVR); 1999 } 2000 } 2001 } 2002 2003 if (Dbgs.empty() && DVRs.empty()) 2004 return Changed; 2005 2006 auto LowerOne = [&](auto *DDI) { 2007 AllocaInst *AI = 2008 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 2009 // If this is an alloca for a scalar variable, insert a dbg.value 2010 // at each load and store to the alloca and erase the dbg.declare. 2011 // The dbg.values allow tracking a variable even if it is not 2012 // stored on the stack, while the dbg.declare can only describe 2013 // the stack slot (and at a lexical-scope granularity). Later 2014 // passes will attempt to elide the stack slot. 2015 if (!AI || isArray(AI) || isStructure(AI)) 2016 return; 2017 2018 // A volatile load/store means that the alloca can't be elided anyway. 2019 if (llvm::any_of(AI->users(), [](User *U) -> bool { 2020 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 2021 return LI->isVolatile(); 2022 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 2023 return SI->isVolatile(); 2024 return false; 2025 })) 2026 return; 2027 2028 SmallVector<const Value *, 8> WorkList; 2029 WorkList.push_back(AI); 2030 while (!WorkList.empty()) { 2031 const Value *V = WorkList.pop_back_val(); 2032 for (const auto &AIUse : V->uses()) { 2033 User *U = AIUse.getUser(); 2034 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2035 if (AIUse.getOperandNo() == 1) 2036 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 2037 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 2038 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 2039 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 2040 // This is a call by-value or some other instruction that takes a 2041 // pointer to the variable. Insert a *value* intrinsic that describes 2042 // the variable by dereferencing the alloca. 2043 if (!CI->isLifetimeStartOrEnd()) { 2044 DebugLoc NewLoc = getDebugValueLoc(DDI); 2045 auto *DerefExpr = 2046 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 2047 insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), 2048 DerefExpr, NewLoc, 2049 CI->getIterator()); 2050 } 2051 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 2052 if (BI->getType()->isPointerTy()) 2053 WorkList.push_back(BI); 2054 } 2055 } 2056 } 2057 DDI->eraseFromParent(); 2058 Changed = true; 2059 }; 2060 2061 for_each(Dbgs, LowerOne); 2062 for_each(DVRs, LowerOne); 2063 2064 if (Changed) 2065 for (BasicBlock &BB : F) 2066 RemoveRedundantDbgInstrs(&BB); 2067 2068 return Changed; 2069 } 2070 2071 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2072 // debug-info out of the block's DbgVariableRecords rather than dbg.value 2073 // intrinsics. 2074 static void 2075 insertDbgVariableRecordsForPHIs(BasicBlock *BB, 2076 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2077 assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from."); 2078 if (InsertedPHIs.size() == 0) 2079 return; 2080 2081 // Map existing PHI nodes to their DbgVariableRecords. 2082 DenseMap<Value *, DbgVariableRecord *> DbgValueMap; 2083 for (auto &I : *BB) { 2084 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 2085 for (Value *V : DVR.location_ops()) 2086 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2087 DbgValueMap.insert({Loc, &DVR}); 2088 } 2089 } 2090 if (DbgValueMap.size() == 0) 2091 return; 2092 2093 // Map a pair of the destination BB and old DbgVariableRecord to the new 2094 // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use 2095 // more than one of the inserted PHIs in the same destination BB, we can 2096 // update the same DbgVariableRecord with all the new PHIs instead of creating 2097 // one copy for each. 2098 MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> 2099 NewDbgValueMap; 2100 // Then iterate through the new PHIs and look to see if they use one of the 2101 // previously mapped PHIs. If so, create a new DbgVariableRecord that will 2102 // propagate the info through the new PHI. If we use more than one new PHI in 2103 // a single destination BB with the same old dbg.value, merge the updates so 2104 // that we get a single new DbgVariableRecord with all the new PHIs. 2105 for (auto PHI : InsertedPHIs) { 2106 BasicBlock *Parent = PHI->getParent(); 2107 // Avoid inserting a debug-info record into an EH block. 2108 if (Parent->getFirstNonPHI()->isEHPad()) 2109 continue; 2110 for (auto VI : PHI->operand_values()) { 2111 auto V = DbgValueMap.find(VI); 2112 if (V != DbgValueMap.end()) { 2113 DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second); 2114 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2115 if (NewDI == NewDbgValueMap.end()) { 2116 DbgVariableRecord *NewDbgII = DbgII->clone(); 2117 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2118 } 2119 DbgVariableRecord *NewDbgII = NewDI->second; 2120 // If PHI contains VI as an operand more than once, we may 2121 // replaced it in NewDbgII; confirm that it is present. 2122 if (is_contained(NewDbgII->location_ops(), VI)) 2123 NewDbgII->replaceVariableLocationOp(VI, PHI); 2124 } 2125 } 2126 } 2127 // Insert the new DbgVariableRecords into their destination blocks. 2128 for (auto DI : NewDbgValueMap) { 2129 BasicBlock *Parent = DI.first.first; 2130 DbgVariableRecord *NewDbgII = DI.second; 2131 auto InsertionPt = Parent->getFirstInsertionPt(); 2132 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2133 2134 Parent->insertDbgRecordBefore(NewDbgII, InsertionPt); 2135 } 2136 } 2137 2138 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2139 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2140 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2141 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2142 if (InsertedPHIs.size() == 0) 2143 return; 2144 2145 insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); 2146 2147 // Map existing PHI nodes to their dbg.values. 2148 ValueToValueMapTy DbgValueMap; 2149 for (auto &I : *BB) { 2150 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2151 for (Value *V : DbgII->location_ops()) 2152 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2153 DbgValueMap.insert({Loc, DbgII}); 2154 } 2155 } 2156 if (DbgValueMap.size() == 0) 2157 return; 2158 2159 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2160 // so that if a dbg.value is being rewritten to use more than one of the 2161 // inserted PHIs in the same destination BB, we can update the same dbg.value 2162 // with all the new PHIs instead of creating one copy for each. 2163 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2164 DbgVariableIntrinsic *> 2165 NewDbgValueMap; 2166 // Then iterate through the new PHIs and look to see if they use one of the 2167 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2168 // propagate the info through the new PHI. If we use more than one new PHI in 2169 // a single destination BB with the same old dbg.value, merge the updates so 2170 // that we get a single new dbg.value with all the new PHIs. 2171 for (auto *PHI : InsertedPHIs) { 2172 BasicBlock *Parent = PHI->getParent(); 2173 // Avoid inserting an intrinsic into an EH block. 2174 if (Parent->getFirstNonPHI()->isEHPad()) 2175 continue; 2176 for (auto *VI : PHI->operand_values()) { 2177 auto V = DbgValueMap.find(VI); 2178 if (V != DbgValueMap.end()) { 2179 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2180 auto [NewDI, Inserted] = NewDbgValueMap.try_emplace({Parent, DbgII}); 2181 if (Inserted) 2182 NewDI->second = cast<DbgVariableIntrinsic>(DbgII->clone()); 2183 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2184 // If PHI contains VI as an operand more than once, we may 2185 // replaced it in NewDbgII; confirm that it is present. 2186 if (is_contained(NewDbgII->location_ops(), VI)) 2187 NewDbgII->replaceVariableLocationOp(VI, PHI); 2188 } 2189 } 2190 } 2191 // Insert thew new dbg.values into their destination blocks. 2192 for (auto DI : NewDbgValueMap) { 2193 BasicBlock *Parent = DI.first.first; 2194 auto *NewDbgII = DI.second; 2195 auto InsertionPt = Parent->getFirstInsertionPt(); 2196 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2197 NewDbgII->insertBefore(&*InsertionPt); 2198 } 2199 } 2200 2201 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2202 DIBuilder &Builder, uint8_t DIExprFlags, 2203 int Offset) { 2204 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); 2205 TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address); 2206 2207 auto ReplaceOne = [&](auto *DII) { 2208 assert(DII->getVariable() && "Missing variable"); 2209 auto *DIExpr = DII->getExpression(); 2210 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2211 DII->setExpression(DIExpr); 2212 DII->replaceVariableLocationOp(Address, NewAddress); 2213 }; 2214 2215 for_each(DbgDeclares, ReplaceOne); 2216 for_each(DVRDeclares, ReplaceOne); 2217 2218 return !DbgDeclares.empty() || !DVRDeclares.empty(); 2219 } 2220 2221 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2222 DILocalVariable *DIVar, 2223 DIExpression *DIExpr, Value *NewAddress, 2224 DbgValueInst *DVI, 2225 DbgVariableRecord *DVR, 2226 DIBuilder &Builder, int Offset) { 2227 assert(DIVar && "Missing variable"); 2228 2229 // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it 2230 // should do with the alloca pointer is dereference it. Otherwise we don't 2231 // know how to handle it and give up. 2232 if (!DIExpr || DIExpr->getNumElements() < 1 || 2233 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2234 return; 2235 2236 // Insert the offset before the first deref. 2237 if (Offset) 2238 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2239 2240 if (DVI) { 2241 DVI->setExpression(DIExpr); 2242 DVI->replaceVariableLocationOp(0u, NewAddress); 2243 } else { 2244 assert(DVR); 2245 DVR->setExpression(DIExpr); 2246 DVR->replaceVariableLocationOp(0u, NewAddress); 2247 } 2248 } 2249 2250 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2251 DIBuilder &Builder, int Offset) { 2252 SmallVector<DbgValueInst *, 1> DbgUsers; 2253 SmallVector<DbgVariableRecord *, 1> DPUsers; 2254 findDbgValues(DbgUsers, AI, &DPUsers); 2255 2256 // Attempt to replace dbg.values that use this alloca. 2257 for (auto *DVI : DbgUsers) 2258 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2259 DVI->getExpression(), NewAllocaAddress, DVI, 2260 nullptr, Builder, Offset); 2261 2262 // Replace any DbgVariableRecords that use this alloca. 2263 for (DbgVariableRecord *DVR : DPUsers) 2264 updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(), 2265 DVR->getExpression(), NewAllocaAddress, nullptr, 2266 DVR, Builder, Offset); 2267 } 2268 2269 /// Where possible to salvage debug information for \p I do so. 2270 /// If not possible mark undef. 2271 void llvm::salvageDebugInfo(Instruction &I) { 2272 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2273 SmallVector<DbgVariableRecord *, 1> DPUsers; 2274 findDbgUsers(DbgUsers, &I, &DPUsers); 2275 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2276 } 2277 2278 template <typename T> static void salvageDbgAssignAddress(T *Assign) { 2279 Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); 2280 // Only instructions can be salvaged at the moment. 2281 if (!I) 2282 return; 2283 2284 assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && 2285 "address-expression shouldn't have fragment info"); 2286 2287 // The address component of a dbg.assign cannot be variadic. 2288 uint64_t CurrentLocOps = 0; 2289 SmallVector<Value *, 4> AdditionalValues; 2290 SmallVector<uint64_t, 16> Ops; 2291 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2292 2293 // Check if the salvage failed. 2294 if (!NewV) 2295 return; 2296 2297 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2298 Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2299 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2300 "address-expression shouldn't have fragment info"); 2301 2302 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2303 2304 // Salvage succeeds if no additional values are required. 2305 if (AdditionalValues.empty()) { 2306 Assign->setAddress(NewV); 2307 Assign->setAddressExpression(SalvagedExpr); 2308 } else { 2309 Assign->setKillAddress(); 2310 } 2311 } 2312 2313 void llvm::salvageDebugInfoForDbgValues( 2314 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2315 ArrayRef<DbgVariableRecord *> DPUsers) { 2316 // These are arbitrary chosen limits on the maximum number of values and the 2317 // maximum size of a debug expression we can salvage up to, used for 2318 // performance reasons. 2319 const unsigned MaxDebugArgs = 16; 2320 const unsigned MaxExpressionSize = 128; 2321 bool Salvaged = false; 2322 2323 for (auto *DII : DbgUsers) { 2324 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2325 if (DAI->getAddress() == &I) { 2326 salvageDbgAssignAddress(DAI); 2327 Salvaged = true; 2328 } 2329 if (DAI->getValue() != &I) 2330 continue; 2331 } 2332 2333 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2334 // pointing out the value as a DWARF memory location description. 2335 bool StackValue = isa<DbgValueInst>(DII); 2336 auto DIILocation = DII->location_ops(); 2337 assert( 2338 is_contained(DIILocation, &I) && 2339 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2340 SmallVector<Value *, 4> AdditionalValues; 2341 // `I` may appear more than once in DII's location ops, and each use of `I` 2342 // must be updated in the DIExpression and potentially have additional 2343 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2344 // DIILocation. 2345 Value *Op0 = nullptr; 2346 DIExpression *SalvagedExpr = DII->getExpression(); 2347 auto LocItr = find(DIILocation, &I); 2348 while (SalvagedExpr && LocItr != DIILocation.end()) { 2349 SmallVector<uint64_t, 16> Ops; 2350 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2351 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2352 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2353 if (!Op0) 2354 break; 2355 SalvagedExpr = 2356 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2357 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2358 } 2359 // salvageDebugInfoImpl should fail on examining the first element of 2360 // DbgUsers, or none of them. 2361 if (!Op0) 2362 break; 2363 2364 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2365 DII->replaceVariableLocationOp(&I, Op0); 2366 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2367 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2368 DII->setExpression(SalvagedExpr); 2369 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2370 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2371 MaxDebugArgs) { 2372 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2373 } else { 2374 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2375 // supported in those instructions. Also do not salvage if the resulting 2376 // DIArgList would contain an unreasonably large number of values. 2377 DII->setKillLocation(); 2378 } 2379 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2380 Salvaged = true; 2381 } 2382 // Duplicate of above block for DbgVariableRecords. 2383 for (auto *DVR : DPUsers) { 2384 if (DVR->isDbgAssign()) { 2385 if (DVR->getAddress() == &I) { 2386 salvageDbgAssignAddress(DVR); 2387 Salvaged = true; 2388 } 2389 if (DVR->getValue() != &I) 2390 continue; 2391 } 2392 2393 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2394 // are implicitly pointing out the value as a DWARF memory location 2395 // description. 2396 bool StackValue = 2397 DVR->getType() != DbgVariableRecord::LocationType::Declare; 2398 auto DVRLocation = DVR->location_ops(); 2399 assert( 2400 is_contained(DVRLocation, &I) && 2401 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2402 SmallVector<Value *, 4> AdditionalValues; 2403 // 'I' may appear more than once in DVR's location ops, and each use of 'I' 2404 // must be updated in the DIExpression and potentially have additional 2405 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2406 // DVRLocation. 2407 Value *Op0 = nullptr; 2408 DIExpression *SalvagedExpr = DVR->getExpression(); 2409 auto LocItr = find(DVRLocation, &I); 2410 while (SalvagedExpr && LocItr != DVRLocation.end()) { 2411 SmallVector<uint64_t, 16> Ops; 2412 unsigned LocNo = std::distance(DVRLocation.begin(), LocItr); 2413 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2414 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2415 if (!Op0) 2416 break; 2417 SalvagedExpr = 2418 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2419 LocItr = std::find(++LocItr, DVRLocation.end(), &I); 2420 } 2421 // salvageDebugInfoImpl should fail on examining the first element of 2422 // DbgUsers, or none of them. 2423 if (!Op0) 2424 break; 2425 2426 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2427 DVR->replaceVariableLocationOp(&I, Op0); 2428 bool IsValidSalvageExpr = 2429 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2430 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2431 DVR->setExpression(SalvagedExpr); 2432 } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && 2433 IsValidSalvageExpr && 2434 DVR->getNumVariableLocationOps() + AdditionalValues.size() <= 2435 MaxDebugArgs) { 2436 DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2437 } else { 2438 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2439 // currently only valid for stack value expressions. 2440 // Also do not salvage if the resulting DIArgList would contain an 2441 // unreasonably large number of values. 2442 DVR->setKillLocation(); 2443 } 2444 LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); 2445 Salvaged = true; 2446 } 2447 2448 if (Salvaged) 2449 return; 2450 2451 for (auto *DII : DbgUsers) 2452 DII->setKillLocation(); 2453 2454 for (auto *DVR : DPUsers) 2455 DVR->setKillLocation(); 2456 } 2457 2458 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2459 uint64_t CurrentLocOps, 2460 SmallVectorImpl<uint64_t> &Opcodes, 2461 SmallVectorImpl<Value *> &AdditionalValues) { 2462 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2463 // Rewrite a GEP into a DIExpression. 2464 SmallMapVector<Value *, APInt, 4> VariableOffsets; 2465 APInt ConstantOffset(BitWidth, 0); 2466 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2467 return nullptr; 2468 if (!VariableOffsets.empty() && !CurrentLocOps) { 2469 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2470 CurrentLocOps = 1; 2471 } 2472 for (const auto &Offset : VariableOffsets) { 2473 AdditionalValues.push_back(Offset.first); 2474 assert(Offset.second.isStrictlyPositive() && 2475 "Expected strictly positive multiplier for offset."); 2476 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2477 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2478 dwarf::DW_OP_plus}); 2479 } 2480 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2481 return GEP->getOperand(0); 2482 } 2483 2484 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2485 switch (Opcode) { 2486 case Instruction::Add: 2487 return dwarf::DW_OP_plus; 2488 case Instruction::Sub: 2489 return dwarf::DW_OP_minus; 2490 case Instruction::Mul: 2491 return dwarf::DW_OP_mul; 2492 case Instruction::SDiv: 2493 return dwarf::DW_OP_div; 2494 case Instruction::SRem: 2495 return dwarf::DW_OP_mod; 2496 case Instruction::Or: 2497 return dwarf::DW_OP_or; 2498 case Instruction::And: 2499 return dwarf::DW_OP_and; 2500 case Instruction::Xor: 2501 return dwarf::DW_OP_xor; 2502 case Instruction::Shl: 2503 return dwarf::DW_OP_shl; 2504 case Instruction::LShr: 2505 return dwarf::DW_OP_shr; 2506 case Instruction::AShr: 2507 return dwarf::DW_OP_shra; 2508 default: 2509 // TODO: Salvage from each kind of binop we know about. 2510 return 0; 2511 } 2512 } 2513 2514 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2515 SmallVectorImpl<uint64_t> &Opcodes, 2516 SmallVectorImpl<Value *> &AdditionalValues, 2517 Instruction *I) { 2518 if (!CurrentLocOps) { 2519 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2520 CurrentLocOps = 1; 2521 } 2522 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2523 AdditionalValues.push_back(I->getOperand(1)); 2524 } 2525 2526 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2527 SmallVectorImpl<uint64_t> &Opcodes, 2528 SmallVectorImpl<Value *> &AdditionalValues) { 2529 // Handle binary operations with constant integer operands as a special case. 2530 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2531 // Values wider than 64 bits cannot be represented within a DIExpression. 2532 if (ConstInt && ConstInt->getBitWidth() > 64) 2533 return nullptr; 2534 2535 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2536 // Push any Constant Int operand onto the expression stack. 2537 if (ConstInt) { 2538 uint64_t Val = ConstInt->getSExtValue(); 2539 // Add or Sub Instructions with a constant operand can potentially be 2540 // simplified. 2541 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2542 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2543 DIExpression::appendOffset(Opcodes, Offset); 2544 return BI->getOperand(0); 2545 } 2546 Opcodes.append({dwarf::DW_OP_constu, Val}); 2547 } else { 2548 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2549 } 2550 2551 // Add salvaged binary operator to expression stack, if it has a valid 2552 // representation in a DIExpression. 2553 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2554 if (!DwarfBinOp) 2555 return nullptr; 2556 Opcodes.push_back(DwarfBinOp); 2557 return BI->getOperand(0); 2558 } 2559 2560 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2561 // The signedness of the operation is implicit in the typed stack, signed and 2562 // unsigned instructions map to the same DWARF opcode. 2563 switch (Pred) { 2564 case CmpInst::ICMP_EQ: 2565 return dwarf::DW_OP_eq; 2566 case CmpInst::ICMP_NE: 2567 return dwarf::DW_OP_ne; 2568 case CmpInst::ICMP_UGT: 2569 case CmpInst::ICMP_SGT: 2570 return dwarf::DW_OP_gt; 2571 case CmpInst::ICMP_UGE: 2572 case CmpInst::ICMP_SGE: 2573 return dwarf::DW_OP_ge; 2574 case CmpInst::ICMP_ULT: 2575 case CmpInst::ICMP_SLT: 2576 return dwarf::DW_OP_lt; 2577 case CmpInst::ICMP_ULE: 2578 case CmpInst::ICMP_SLE: 2579 return dwarf::DW_OP_le; 2580 default: 2581 return 0; 2582 } 2583 } 2584 2585 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2586 SmallVectorImpl<uint64_t> &Opcodes, 2587 SmallVectorImpl<Value *> &AdditionalValues) { 2588 // Handle icmp operations with constant integer operands as a special case. 2589 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2590 // Values wider than 64 bits cannot be represented within a DIExpression. 2591 if (ConstInt && ConstInt->getBitWidth() > 64) 2592 return nullptr; 2593 // Push any Constant Int operand onto the expression stack. 2594 if (ConstInt) { 2595 if (Icmp->isSigned()) 2596 Opcodes.push_back(dwarf::DW_OP_consts); 2597 else 2598 Opcodes.push_back(dwarf::DW_OP_constu); 2599 uint64_t Val = ConstInt->getSExtValue(); 2600 Opcodes.push_back(Val); 2601 } else { 2602 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2603 } 2604 2605 // Add salvaged binary operator to expression stack, if it has a valid 2606 // representation in a DIExpression. 2607 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2608 if (!DwarfIcmpOp) 2609 return nullptr; 2610 Opcodes.push_back(DwarfIcmpOp); 2611 return Icmp->getOperand(0); 2612 } 2613 2614 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2615 SmallVectorImpl<uint64_t> &Ops, 2616 SmallVectorImpl<Value *> &AdditionalValues) { 2617 auto &M = *I.getModule(); 2618 auto &DL = M.getDataLayout(); 2619 2620 if (auto *CI = dyn_cast<CastInst>(&I)) { 2621 Value *FromValue = CI->getOperand(0); 2622 // No-op casts are irrelevant for debug info. 2623 if (CI->isNoopCast(DL)) { 2624 return FromValue; 2625 } 2626 2627 Type *Type = CI->getType(); 2628 if (Type->isPointerTy()) 2629 Type = DL.getIntPtrType(Type); 2630 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2631 if (Type->isVectorTy() || 2632 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2633 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2634 return nullptr; 2635 2636 llvm::Type *FromType = FromValue->getType(); 2637 if (FromType->isPointerTy()) 2638 FromType = DL.getIntPtrType(FromType); 2639 2640 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2641 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2642 2643 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2644 isa<SExtInst>(&I)); 2645 Ops.append(ExtOps.begin(), ExtOps.end()); 2646 return FromValue; 2647 } 2648 2649 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2650 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2651 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2652 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2653 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2654 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2655 2656 // *Not* to do: we should not attempt to salvage load instructions, 2657 // because the validity and lifetime of a dbg.value containing 2658 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2659 return nullptr; 2660 } 2661 2662 /// A replacement for a dbg.value expression. 2663 using DbgValReplacement = std::optional<DIExpression *>; 2664 2665 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2666 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2667 /// changes are made. 2668 static bool rewriteDebugUsers( 2669 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2670 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2671 function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { 2672 // Find debug users of From. 2673 SmallVector<DbgVariableIntrinsic *, 1> Users; 2674 SmallVector<DbgVariableRecord *, 1> DPUsers; 2675 findDbgUsers(Users, &From, &DPUsers); 2676 if (Users.empty() && DPUsers.empty()) 2677 return false; 2678 2679 // Prevent use-before-def of To. 2680 bool Changed = false; 2681 2682 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2683 SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; 2684 if (isa<Instruction>(&To)) { 2685 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2686 2687 for (auto *DII : Users) { 2688 // It's common to see a debug user between From and DomPoint. Move it 2689 // after DomPoint to preserve the variable update without any reordering. 2690 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2691 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2692 DII->moveAfter(&DomPoint); 2693 Changed = true; 2694 2695 // Users which otherwise aren't dominated by the replacement value must 2696 // be salvaged or deleted. 2697 } else if (!DT.dominates(&DomPoint, DII)) { 2698 UndefOrSalvage.insert(DII); 2699 } 2700 } 2701 2702 // DbgVariableRecord implementation of the above. 2703 for (auto *DVR : DPUsers) { 2704 Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; 2705 Instruction *NextNonDebug = MarkedInstr; 2706 // The next instruction might still be a dbg.declare, skip over it. 2707 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2708 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2709 2710 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2711 LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); 2712 DVR->removeFromParent(); 2713 // Ensure there's a marker. 2714 DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint); 2715 Changed = true; 2716 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2717 UndefOrSalvageDVR.insert(DVR); 2718 } 2719 } 2720 } 2721 2722 // Update debug users without use-before-def risk. 2723 for (auto *DII : Users) { 2724 if (UndefOrSalvage.count(DII)) 2725 continue; 2726 2727 DbgValReplacement DVRepl = RewriteExpr(*DII); 2728 if (!DVRepl) 2729 continue; 2730 2731 DII->replaceVariableLocationOp(&From, &To); 2732 DII->setExpression(*DVRepl); 2733 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2734 Changed = true; 2735 } 2736 for (auto *DVR : DPUsers) { 2737 if (UndefOrSalvageDVR.count(DVR)) 2738 continue; 2739 2740 DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); 2741 if (!DVRepl) 2742 continue; 2743 2744 DVR->replaceVariableLocationOp(&From, &To); 2745 DVR->setExpression(*DVRepl); 2746 LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); 2747 Changed = true; 2748 } 2749 2750 if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { 2751 // Try to salvage the remaining debug users. 2752 salvageDebugInfo(From); 2753 Changed = true; 2754 } 2755 2756 return Changed; 2757 } 2758 2759 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2760 /// losslessly preserve the bits and semantics of the value. This predicate is 2761 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2762 /// 2763 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2764 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2765 /// and also does not allow lossless pointer <-> integer conversions. 2766 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2767 Type *ToTy) { 2768 // Trivially compatible types. 2769 if (FromTy == ToTy) 2770 return true; 2771 2772 // Handle compatible pointer <-> integer conversions. 2773 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2774 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2775 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2776 !DL.isNonIntegralPointerType(ToTy); 2777 return SameSize && LosslessConversion; 2778 } 2779 2780 // TODO: This is not exhaustive. 2781 return false; 2782 } 2783 2784 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2785 Instruction &DomPoint, DominatorTree &DT) { 2786 // Exit early if From has no debug users. 2787 if (!From.isUsedByMetadata()) 2788 return false; 2789 2790 assert(&From != &To && "Can't replace something with itself"); 2791 2792 Type *FromTy = From.getType(); 2793 Type *ToTy = To.getType(); 2794 2795 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2796 return DII.getExpression(); 2797 }; 2798 auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2799 return DVR.getExpression(); 2800 }; 2801 2802 // Handle no-op conversions. 2803 Module &M = *From.getModule(); 2804 const DataLayout &DL = M.getDataLayout(); 2805 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2806 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2807 2808 // Handle integer-to-integer widening and narrowing. 2809 // FIXME: Use DW_OP_convert when it's available everywhere. 2810 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2811 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2812 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2813 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2814 2815 // When the width of the result grows, assume that a debugger will only 2816 // access the low `FromBits` bits when inspecting the source variable. 2817 if (FromBits < ToBits) 2818 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2819 2820 // The width of the result has shrunk. Use sign/zero extension to describe 2821 // the source variable's high bits. 2822 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2823 DILocalVariable *Var = DII.getVariable(); 2824 2825 // Without knowing signedness, sign/zero extension isn't possible. 2826 auto Signedness = Var->getSignedness(); 2827 if (!Signedness) 2828 return std::nullopt; 2829 2830 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2831 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2832 Signed); 2833 }; 2834 // RemoveDIs: duplicate implementation working on DbgVariableRecords rather 2835 // than on dbg.value intrinsics. 2836 auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2837 DILocalVariable *Var = DVR.getVariable(); 2838 2839 // Without knowing signedness, sign/zero extension isn't possible. 2840 auto Signedness = Var->getSignedness(); 2841 if (!Signedness) 2842 return std::nullopt; 2843 2844 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2845 return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits, 2846 Signed); 2847 }; 2848 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2849 SignOrZeroExtDVR); 2850 } 2851 2852 // TODO: Floating-point conversions, vectors. 2853 return false; 2854 } 2855 2856 bool llvm::handleUnreachableTerminator( 2857 Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { 2858 bool Changed = false; 2859 // RemoveDIs: erase debug-info on this instruction manually. 2860 I->dropDbgRecords(); 2861 for (Use &U : I->operands()) { 2862 Value *Op = U.get(); 2863 if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) { 2864 U.set(PoisonValue::get(Op->getType())); 2865 PoisonedValues.push_back(Op); 2866 Changed = true; 2867 } 2868 } 2869 2870 return Changed; 2871 } 2872 2873 std::pair<unsigned, unsigned> 2874 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2875 unsigned NumDeadInst = 0; 2876 unsigned NumDeadDbgInst = 0; 2877 // Delete the instructions backwards, as it has a reduced likelihood of 2878 // having to update as many def-use and use-def chains. 2879 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2880 SmallVector<Value *> Uses; 2881 handleUnreachableTerminator(EndInst, Uses); 2882 2883 while (EndInst != &BB->front()) { 2884 // Delete the next to last instruction. 2885 Instruction *Inst = &*--EndInst->getIterator(); 2886 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2887 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2888 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2889 // EHPads can't have DbgVariableRecords attached to them, but it might be 2890 // possible for things with token type. 2891 Inst->dropDbgRecords(); 2892 EndInst = Inst; 2893 continue; 2894 } 2895 if (isa<DbgInfoIntrinsic>(Inst)) 2896 ++NumDeadDbgInst; 2897 else 2898 ++NumDeadInst; 2899 // RemoveDIs: erasing debug-info must be done manually. 2900 Inst->dropDbgRecords(); 2901 Inst->eraseFromParent(); 2902 } 2903 return {NumDeadInst, NumDeadDbgInst}; 2904 } 2905 2906 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2907 DomTreeUpdater *DTU, 2908 MemorySSAUpdater *MSSAU) { 2909 BasicBlock *BB = I->getParent(); 2910 2911 if (MSSAU) 2912 MSSAU->changeToUnreachable(I); 2913 2914 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2915 2916 // Loop over all of the successors, removing BB's entry from any PHI 2917 // nodes. 2918 for (BasicBlock *Successor : successors(BB)) { 2919 Successor->removePredecessor(BB, PreserveLCSSA); 2920 if (DTU) 2921 UniqueSuccessors.insert(Successor); 2922 } 2923 auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); 2924 UI->setDebugLoc(I->getDebugLoc()); 2925 2926 // All instructions after this are dead. 2927 unsigned NumInstrsRemoved = 0; 2928 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2929 while (BBI != BBE) { 2930 if (!BBI->use_empty()) 2931 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2932 BBI++->eraseFromParent(); 2933 ++NumInstrsRemoved; 2934 } 2935 if (DTU) { 2936 SmallVector<DominatorTree::UpdateType, 8> Updates; 2937 Updates.reserve(UniqueSuccessors.size()); 2938 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2939 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2940 DTU->applyUpdates(Updates); 2941 } 2942 BB->flushTerminatorDbgRecords(); 2943 return NumInstrsRemoved; 2944 } 2945 2946 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2947 SmallVector<Value *, 8> Args(II->args()); 2948 SmallVector<OperandBundleDef, 1> OpBundles; 2949 II->getOperandBundlesAsDefs(OpBundles); 2950 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2951 II->getCalledOperand(), Args, OpBundles); 2952 NewCall->setCallingConv(II->getCallingConv()); 2953 NewCall->setAttributes(II->getAttributes()); 2954 NewCall->setDebugLoc(II->getDebugLoc()); 2955 NewCall->copyMetadata(*II); 2956 2957 // If the invoke had profile metadata, try converting them for CallInst. 2958 uint64_t TotalWeight; 2959 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2960 // Set the total weight if it fits into i32, otherwise reset. 2961 MDBuilder MDB(NewCall->getContext()); 2962 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2963 ? nullptr 2964 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2965 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2966 } 2967 2968 return NewCall; 2969 } 2970 2971 // changeToCall - Convert the specified invoke into a normal call. 2972 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2973 CallInst *NewCall = createCallMatchingInvoke(II); 2974 NewCall->takeName(II); 2975 NewCall->insertBefore(II); 2976 II->replaceAllUsesWith(NewCall); 2977 2978 // Follow the call by a branch to the normal destination. 2979 BasicBlock *NormalDestBB = II->getNormalDest(); 2980 BranchInst::Create(NormalDestBB, II->getIterator()); 2981 2982 // Update PHI nodes in the unwind destination 2983 BasicBlock *BB = II->getParent(); 2984 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2985 UnwindDestBB->removePredecessor(BB); 2986 II->eraseFromParent(); 2987 if (DTU) 2988 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2989 return NewCall; 2990 } 2991 2992 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2993 BasicBlock *UnwindEdge, 2994 DomTreeUpdater *DTU) { 2995 BasicBlock *BB = CI->getParent(); 2996 2997 // Convert this function call into an invoke instruction. First, split the 2998 // basic block. 2999 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 3000 CI->getName() + ".noexc"); 3001 3002 // Delete the unconditional branch inserted by SplitBlock 3003 BB->back().eraseFromParent(); 3004 3005 // Create the new invoke instruction. 3006 SmallVector<Value *, 8> InvokeArgs(CI->args()); 3007 SmallVector<OperandBundleDef, 1> OpBundles; 3008 3009 CI->getOperandBundlesAsDefs(OpBundles); 3010 3011 // Note: we're round tripping operand bundles through memory here, and that 3012 // can potentially be avoided with a cleverer API design that we do not have 3013 // as of this time. 3014 3015 InvokeInst *II = 3016 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 3017 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 3018 II->setDebugLoc(CI->getDebugLoc()); 3019 II->setCallingConv(CI->getCallingConv()); 3020 II->setAttributes(CI->getAttributes()); 3021 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 3022 3023 if (DTU) 3024 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 3025 3026 // Make sure that anything using the call now uses the invoke! This also 3027 // updates the CallGraph if present, because it uses a WeakTrackingVH. 3028 CI->replaceAllUsesWith(II); 3029 3030 // Delete the original call 3031 Split->front().eraseFromParent(); 3032 return Split; 3033 } 3034 3035 static bool markAliveBlocks(Function &F, 3036 SmallPtrSetImpl<BasicBlock *> &Reachable, 3037 DomTreeUpdater *DTU = nullptr) { 3038 SmallVector<BasicBlock*, 128> Worklist; 3039 BasicBlock *BB = &F.front(); 3040 Worklist.push_back(BB); 3041 Reachable.insert(BB); 3042 bool Changed = false; 3043 do { 3044 BB = Worklist.pop_back_val(); 3045 3046 // Do a quick scan of the basic block, turning any obviously unreachable 3047 // instructions into LLVM unreachable insts. The instruction combining pass 3048 // canonicalizes unreachable insts into stores to null or undef. 3049 for (Instruction &I : *BB) { 3050 if (auto *CI = dyn_cast<CallInst>(&I)) { 3051 Value *Callee = CI->getCalledOperand(); 3052 // Handle intrinsic calls. 3053 if (Function *F = dyn_cast<Function>(Callee)) { 3054 auto IntrinsicID = F->getIntrinsicID(); 3055 // Assumptions that are known to be false are equivalent to 3056 // unreachable. Also, if the condition is undefined, then we make the 3057 // choice most beneficial to the optimizer, and choose that to also be 3058 // unreachable. 3059 if (IntrinsicID == Intrinsic::assume) { 3060 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 3061 // Don't insert a call to llvm.trap right before the unreachable. 3062 changeToUnreachable(CI, false, DTU); 3063 Changed = true; 3064 break; 3065 } 3066 } else if (IntrinsicID == Intrinsic::experimental_guard) { 3067 // A call to the guard intrinsic bails out of the current 3068 // compilation unit if the predicate passed to it is false. If the 3069 // predicate is a constant false, then we know the guard will bail 3070 // out of the current compile unconditionally, so all code following 3071 // it is dead. 3072 // 3073 // Note: unlike in llvm.assume, it is not "obviously profitable" for 3074 // guards to treat `undef` as `false` since a guard on `undef` can 3075 // still be useful for widening. 3076 if (match(CI->getArgOperand(0), m_Zero())) 3077 if (!isa<UnreachableInst>(CI->getNextNode())) { 3078 changeToUnreachable(CI->getNextNode(), false, DTU); 3079 Changed = true; 3080 break; 3081 } 3082 } 3083 } else if ((isa<ConstantPointerNull>(Callee) && 3084 !NullPointerIsDefined(CI->getFunction(), 3085 cast<PointerType>(Callee->getType()) 3086 ->getAddressSpace())) || 3087 isa<UndefValue>(Callee)) { 3088 changeToUnreachable(CI, false, DTU); 3089 Changed = true; 3090 break; 3091 } 3092 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 3093 // If we found a call to a no-return function, insert an unreachable 3094 // instruction after it. Make sure there isn't *already* one there 3095 // though. 3096 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 3097 // Don't insert a call to llvm.trap right before the unreachable. 3098 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 3099 Changed = true; 3100 } 3101 break; 3102 } 3103 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3104 // Store to undef and store to null are undefined and used to signal 3105 // that they should be changed to unreachable by passes that can't 3106 // modify the CFG. 3107 3108 // Don't touch volatile stores. 3109 if (SI->isVolatile()) continue; 3110 3111 Value *Ptr = SI->getOperand(1); 3112 3113 if (isa<UndefValue>(Ptr) || 3114 (isa<ConstantPointerNull>(Ptr) && 3115 !NullPointerIsDefined(SI->getFunction(), 3116 SI->getPointerAddressSpace()))) { 3117 changeToUnreachable(SI, false, DTU); 3118 Changed = true; 3119 break; 3120 } 3121 } 3122 } 3123 3124 Instruction *Terminator = BB->getTerminator(); 3125 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3126 // Turn invokes that call 'nounwind' functions into ordinary calls. 3127 Value *Callee = II->getCalledOperand(); 3128 if ((isa<ConstantPointerNull>(Callee) && 3129 !NullPointerIsDefined(BB->getParent())) || 3130 isa<UndefValue>(Callee)) { 3131 changeToUnreachable(II, false, DTU); 3132 Changed = true; 3133 } else { 3134 if (II->doesNotReturn() && 3135 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3136 // If we found an invoke of a no-return function, 3137 // create a new empty basic block with an `unreachable` terminator, 3138 // and set it as the normal destination for the invoke, 3139 // unless that is already the case. 3140 // Note that the original normal destination could have other uses. 3141 BasicBlock *OrigNormalDest = II->getNormalDest(); 3142 OrigNormalDest->removePredecessor(II->getParent()); 3143 LLVMContext &Ctx = II->getContext(); 3144 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3145 Ctx, OrigNormalDest->getName() + ".unreachable", 3146 II->getFunction(), OrigNormalDest); 3147 new UnreachableInst(Ctx, UnreachableNormalDest); 3148 II->setNormalDest(UnreachableNormalDest); 3149 if (DTU) 3150 DTU->applyUpdates( 3151 {{DominatorTree::Delete, BB, OrigNormalDest}, 3152 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3153 Changed = true; 3154 } 3155 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3156 if (II->use_empty() && !II->mayHaveSideEffects()) { 3157 // jump to the normal destination branch. 3158 BasicBlock *NormalDestBB = II->getNormalDest(); 3159 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3160 BranchInst::Create(NormalDestBB, II->getIterator()); 3161 UnwindDestBB->removePredecessor(II->getParent()); 3162 II->eraseFromParent(); 3163 if (DTU) 3164 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3165 } else 3166 changeToCall(II, DTU); 3167 Changed = true; 3168 } 3169 } 3170 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3171 // Remove catchpads which cannot be reached. 3172 struct CatchPadDenseMapInfo { 3173 static CatchPadInst *getEmptyKey() { 3174 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3175 } 3176 3177 static CatchPadInst *getTombstoneKey() { 3178 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3179 } 3180 3181 static unsigned getHashValue(CatchPadInst *CatchPad) { 3182 return static_cast<unsigned>(hash_combine_range( 3183 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3184 } 3185 3186 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3187 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3188 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3189 return LHS == RHS; 3190 return LHS->isIdenticalTo(RHS); 3191 } 3192 }; 3193 3194 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3195 // Set of unique CatchPads. 3196 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3197 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3198 HandlerSet; 3199 detail::DenseSetEmpty Empty; 3200 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3201 E = CatchSwitch->handler_end(); 3202 I != E; ++I) { 3203 BasicBlock *HandlerBB = *I; 3204 if (DTU) 3205 ++NumPerSuccessorCases[HandlerBB]; 3206 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 3207 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3208 if (DTU) 3209 --NumPerSuccessorCases[HandlerBB]; 3210 CatchSwitch->removeHandler(I); 3211 --I; 3212 --E; 3213 Changed = true; 3214 } 3215 } 3216 if (DTU) { 3217 std::vector<DominatorTree::UpdateType> Updates; 3218 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3219 if (I.second == 0) 3220 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3221 DTU->applyUpdates(Updates); 3222 } 3223 } 3224 3225 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3226 for (BasicBlock *Successor : successors(BB)) 3227 if (Reachable.insert(Successor).second) 3228 Worklist.push_back(Successor); 3229 } while (!Worklist.empty()); 3230 return Changed; 3231 } 3232 3233 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3234 Instruction *TI = BB->getTerminator(); 3235 3236 if (auto *II = dyn_cast<InvokeInst>(TI)) 3237 return changeToCall(II, DTU); 3238 3239 Instruction *NewTI; 3240 BasicBlock *UnwindDest; 3241 3242 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3243 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator()); 3244 UnwindDest = CRI->getUnwindDest(); 3245 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3246 auto *NewCatchSwitch = CatchSwitchInst::Create( 3247 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3248 CatchSwitch->getName(), CatchSwitch->getIterator()); 3249 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3250 NewCatchSwitch->addHandler(PadBB); 3251 3252 NewTI = NewCatchSwitch; 3253 UnwindDest = CatchSwitch->getUnwindDest(); 3254 } else { 3255 llvm_unreachable("Could not find unwind successor"); 3256 } 3257 3258 NewTI->takeName(TI); 3259 NewTI->setDebugLoc(TI->getDebugLoc()); 3260 UnwindDest->removePredecessor(BB); 3261 TI->replaceAllUsesWith(NewTI); 3262 TI->eraseFromParent(); 3263 if (DTU) 3264 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3265 return NewTI; 3266 } 3267 3268 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3269 /// if they are in a dead cycle. Return true if a change was made, false 3270 /// otherwise. 3271 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3272 MemorySSAUpdater *MSSAU) { 3273 SmallPtrSet<BasicBlock *, 16> Reachable; 3274 bool Changed = markAliveBlocks(F, Reachable, DTU); 3275 3276 // If there are unreachable blocks in the CFG... 3277 if (Reachable.size() == F.size()) 3278 return Changed; 3279 3280 assert(Reachable.size() < F.size()); 3281 3282 // Are there any blocks left to actually delete? 3283 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3284 for (BasicBlock &BB : F) { 3285 // Skip reachable basic blocks 3286 if (Reachable.count(&BB)) 3287 continue; 3288 // Skip already-deleted blocks 3289 if (DTU && DTU->isBBPendingDeletion(&BB)) 3290 continue; 3291 BlocksToRemove.insert(&BB); 3292 } 3293 3294 if (BlocksToRemove.empty()) 3295 return Changed; 3296 3297 Changed = true; 3298 NumRemoved += BlocksToRemove.size(); 3299 3300 if (MSSAU) 3301 MSSAU->removeBlocks(BlocksToRemove); 3302 3303 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3304 3305 return Changed; 3306 } 3307 3308 void llvm::combineMetadata(Instruction *K, const Instruction *J, 3309 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 3310 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3311 K->dropUnknownNonDebugMetadata(KnownIDs); 3312 K->getAllMetadataOtherThanDebugLoc(Metadata); 3313 for (const auto &MD : Metadata) { 3314 unsigned Kind = MD.first; 3315 MDNode *JMD = J->getMetadata(Kind); 3316 MDNode *KMD = MD.second; 3317 3318 switch (Kind) { 3319 default: 3320 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3321 break; 3322 case LLVMContext::MD_dbg: 3323 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3324 case LLVMContext::MD_DIAssignID: 3325 K->mergeDIAssignID(J); 3326 break; 3327 case LLVMContext::MD_tbaa: 3328 if (DoesKMove) 3329 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3330 break; 3331 case LLVMContext::MD_alias_scope: 3332 if (DoesKMove) 3333 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3334 break; 3335 case LLVMContext::MD_noalias: 3336 case LLVMContext::MD_mem_parallel_loop_access: 3337 if (DoesKMove) 3338 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3339 break; 3340 case LLVMContext::MD_access_group: 3341 if (DoesKMove) 3342 K->setMetadata(LLVMContext::MD_access_group, 3343 intersectAccessGroups(K, J)); 3344 break; 3345 case LLVMContext::MD_range: 3346 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3347 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3348 break; 3349 case LLVMContext::MD_fpmath: 3350 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3351 break; 3352 case LLVMContext::MD_invariant_load: 3353 // If K moves, only set the !invariant.load if it is present in both 3354 // instructions. 3355 if (DoesKMove) 3356 K->setMetadata(Kind, JMD); 3357 break; 3358 case LLVMContext::MD_nonnull: 3359 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3360 K->setMetadata(Kind, JMD); 3361 break; 3362 case LLVMContext::MD_invariant_group: 3363 // Preserve !invariant.group in K. 3364 break; 3365 case LLVMContext::MD_mmra: 3366 // Combine MMRAs 3367 break; 3368 case LLVMContext::MD_align: 3369 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3370 K->setMetadata( 3371 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3372 break; 3373 case LLVMContext::MD_dereferenceable: 3374 case LLVMContext::MD_dereferenceable_or_null: 3375 if (DoesKMove) 3376 K->setMetadata(Kind, 3377 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3378 break; 3379 case LLVMContext::MD_preserve_access_index: 3380 // Preserve !preserve.access.index in K. 3381 break; 3382 case LLVMContext::MD_noundef: 3383 // If K does move, keep noundef if it is present in both instructions. 3384 if (DoesKMove) 3385 K->setMetadata(Kind, JMD); 3386 break; 3387 case LLVMContext::MD_nontemporal: 3388 // Preserve !nontemporal if it is present on both instructions. 3389 K->setMetadata(Kind, JMD); 3390 break; 3391 case LLVMContext::MD_prof: 3392 if (DoesKMove) 3393 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3394 break; 3395 case LLVMContext::MD_noalias_addrspace: 3396 if (DoesKMove) 3397 K->setMetadata(Kind, 3398 MDNode::getMostGenericNoaliasAddrspace(JMD, KMD)); 3399 break; 3400 } 3401 } 3402 // Set !invariant.group from J if J has it. If both instructions have it 3403 // then we will just pick it from J - even when they are different. 3404 // Also make sure that K is load or store - f.e. combining bitcast with load 3405 // could produce bitcast with invariant.group metadata, which is invalid. 3406 // FIXME: we should try to preserve both invariant.group md if they are 3407 // different, but right now instruction can only have one invariant.group. 3408 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3409 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3410 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3411 3412 // Merge MMRAs. 3413 // This is handled separately because we also want to handle cases where K 3414 // doesn't have tags but J does. 3415 auto JMMRA = J->getMetadata(LLVMContext::MD_mmra); 3416 auto KMMRA = K->getMetadata(LLVMContext::MD_mmra); 3417 if (JMMRA || KMMRA) { 3418 K->setMetadata(LLVMContext::MD_mmra, 3419 MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA)); 3420 } 3421 } 3422 3423 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3424 bool KDominatesJ) { 3425 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 3426 LLVMContext::MD_alias_scope, 3427 LLVMContext::MD_noalias, 3428 LLVMContext::MD_range, 3429 LLVMContext::MD_fpmath, 3430 LLVMContext::MD_invariant_load, 3431 LLVMContext::MD_nonnull, 3432 LLVMContext::MD_invariant_group, 3433 LLVMContext::MD_align, 3434 LLVMContext::MD_dereferenceable, 3435 LLVMContext::MD_dereferenceable_or_null, 3436 LLVMContext::MD_access_group, 3437 LLVMContext::MD_preserve_access_index, 3438 LLVMContext::MD_prof, 3439 LLVMContext::MD_nontemporal, 3440 LLVMContext::MD_noundef, 3441 LLVMContext::MD_mmra, 3442 LLVMContext::MD_noalias_addrspace}; 3443 combineMetadata(K, J, KnownIDs, KDominatesJ); 3444 } 3445 3446 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3447 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3448 Source.getAllMetadata(MD); 3449 MDBuilder MDB(Dest.getContext()); 3450 Type *NewType = Dest.getType(); 3451 const DataLayout &DL = Source.getDataLayout(); 3452 for (const auto &MDPair : MD) { 3453 unsigned ID = MDPair.first; 3454 MDNode *N = MDPair.second; 3455 // Note, essentially every kind of metadata should be preserved here! This 3456 // routine is supposed to clone a load instruction changing *only its type*. 3457 // The only metadata it makes sense to drop is metadata which is invalidated 3458 // when the pointer type changes. This should essentially never be the case 3459 // in LLVM, but we explicitly switch over only known metadata to be 3460 // conservatively correct. If you are adding metadata to LLVM which pertains 3461 // to loads, you almost certainly want to add it here. 3462 switch (ID) { 3463 case LLVMContext::MD_dbg: 3464 case LLVMContext::MD_tbaa: 3465 case LLVMContext::MD_prof: 3466 case LLVMContext::MD_fpmath: 3467 case LLVMContext::MD_tbaa_struct: 3468 case LLVMContext::MD_invariant_load: 3469 case LLVMContext::MD_alias_scope: 3470 case LLVMContext::MD_noalias: 3471 case LLVMContext::MD_nontemporal: 3472 case LLVMContext::MD_mem_parallel_loop_access: 3473 case LLVMContext::MD_access_group: 3474 case LLVMContext::MD_noundef: 3475 // All of these directly apply. 3476 Dest.setMetadata(ID, N); 3477 break; 3478 3479 case LLVMContext::MD_nonnull: 3480 copyNonnullMetadata(Source, N, Dest); 3481 break; 3482 3483 case LLVMContext::MD_align: 3484 case LLVMContext::MD_dereferenceable: 3485 case LLVMContext::MD_dereferenceable_or_null: 3486 // These only directly apply if the new type is also a pointer. 3487 if (NewType->isPointerTy()) 3488 Dest.setMetadata(ID, N); 3489 break; 3490 3491 case LLVMContext::MD_range: 3492 copyRangeMetadata(DL, Source, N, Dest); 3493 break; 3494 } 3495 } 3496 } 3497 3498 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3499 auto *ReplInst = dyn_cast<Instruction>(Repl); 3500 if (!ReplInst) 3501 return; 3502 3503 // Patch the replacement so that it is not more restrictive than the value 3504 // being replaced. 3505 WithOverflowInst *UnusedWO; 3506 // When replacing the result of a llvm.*.with.overflow intrinsic with a 3507 // overflowing binary operator, nuw/nsw flags may no longer hold. 3508 if (isa<OverflowingBinaryOperator>(ReplInst) && 3509 match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO)))) 3510 ReplInst->dropPoisonGeneratingFlags(); 3511 // Note that if 'I' is a load being replaced by some operation, 3512 // for example, by an arithmetic operation, then andIRFlags() 3513 // would just erase all math flags from the original arithmetic 3514 // operation, which is clearly not wanted and not needed. 3515 else if (!isa<LoadInst>(I)) 3516 ReplInst->andIRFlags(I); 3517 3518 // Handle attributes. 3519 if (auto *CB1 = dyn_cast<CallBase>(ReplInst)) { 3520 if (auto *CB2 = dyn_cast<CallBase>(I)) { 3521 bool Success = CB1->tryIntersectAttributes(CB2); 3522 assert(Success && "We should not be trying to sink callbases " 3523 "with non-intersectable attributes"); 3524 // For NDEBUG Compile. 3525 (void)Success; 3526 } 3527 } 3528 3529 // FIXME: If both the original and replacement value are part of the 3530 // same control-flow region (meaning that the execution of one 3531 // guarantees the execution of the other), then we can combine the 3532 // noalias scopes here and do better than the general conservative 3533 // answer used in combineMetadata(). 3534 3535 // In general, GVN unifies expressions over different control-flow 3536 // regions, and so we need a conservative combination of the noalias 3537 // scopes. 3538 combineMetadataForCSE(ReplInst, I, false); 3539 } 3540 3541 template <typename RootType, typename ShouldReplaceFn> 3542 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3543 const RootType &Root, 3544 const ShouldReplaceFn &ShouldReplace) { 3545 assert(From->getType() == To->getType()); 3546 3547 unsigned Count = 0; 3548 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3549 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 3550 if (II && II->getIntrinsicID() == Intrinsic::fake_use) 3551 continue; 3552 if (!ShouldReplace(Root, U)) 3553 continue; 3554 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3555 From->printAsOperand(dbgs()); 3556 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3557 U.set(To); 3558 ++Count; 3559 } 3560 return Count; 3561 } 3562 3563 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3564 assert(From->getType() == To->getType()); 3565 auto *BB = From->getParent(); 3566 unsigned Count = 0; 3567 3568 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3569 auto *I = cast<Instruction>(U.getUser()); 3570 if (I->getParent() == BB) 3571 continue; 3572 U.set(To); 3573 ++Count; 3574 } 3575 return Count; 3576 } 3577 3578 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3579 DominatorTree &DT, 3580 const BasicBlockEdge &Root) { 3581 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3582 return DT.dominates(Root, U); 3583 }; 3584 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3585 } 3586 3587 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3588 DominatorTree &DT, 3589 const BasicBlock *BB) { 3590 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3591 return DT.dominates(BB, U); 3592 }; 3593 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3594 } 3595 3596 unsigned llvm::replaceDominatedUsesWithIf( 3597 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, 3598 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3599 auto DominatesAndShouldReplace = 3600 [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { 3601 return DT.dominates(Root, U) && ShouldReplace(U, To); 3602 }; 3603 return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace); 3604 } 3605 3606 unsigned llvm::replaceDominatedUsesWithIf( 3607 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 3608 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3609 auto DominatesAndShouldReplace = [&DT, &ShouldReplace, 3610 To](const BasicBlock *BB, const Use &U) { 3611 return DT.dominates(BB, U) && ShouldReplace(U, To); 3612 }; 3613 return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace); 3614 } 3615 3616 bool llvm::callsGCLeafFunction(const CallBase *Call, 3617 const TargetLibraryInfo &TLI) { 3618 // Check if the function is specifically marked as a gc leaf function. 3619 if (Call->hasFnAttr("gc-leaf-function")) 3620 return true; 3621 if (const Function *F = Call->getCalledFunction()) { 3622 if (F->hasFnAttribute("gc-leaf-function")) 3623 return true; 3624 3625 if (auto IID = F->getIntrinsicID()) { 3626 // Most LLVM intrinsics do not take safepoints. 3627 return IID != Intrinsic::experimental_gc_statepoint && 3628 IID != Intrinsic::experimental_deoptimize && 3629 IID != Intrinsic::memcpy_element_unordered_atomic && 3630 IID != Intrinsic::memmove_element_unordered_atomic; 3631 } 3632 } 3633 3634 // Lib calls can be materialized by some passes, and won't be 3635 // marked as 'gc-leaf-function.' All available Libcalls are 3636 // GC-leaf. 3637 LibFunc LF; 3638 if (TLI.getLibFunc(*Call, LF)) { 3639 return TLI.has(LF); 3640 } 3641 3642 return false; 3643 } 3644 3645 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3646 LoadInst &NewLI) { 3647 auto *NewTy = NewLI.getType(); 3648 3649 // This only directly applies if the new type is also a pointer. 3650 if (NewTy->isPointerTy()) { 3651 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3652 return; 3653 } 3654 3655 // The only other translation we can do is to integral loads with !range 3656 // metadata. 3657 if (!NewTy->isIntegerTy()) 3658 return; 3659 3660 MDBuilder MDB(NewLI.getContext()); 3661 const Value *Ptr = OldLI.getPointerOperand(); 3662 auto *ITy = cast<IntegerType>(NewTy); 3663 auto *NullInt = ConstantExpr::getPtrToInt( 3664 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3665 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3666 NewLI.setMetadata(LLVMContext::MD_range, 3667 MDB.createRange(NonNullInt, NullInt)); 3668 } 3669 3670 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3671 MDNode *N, LoadInst &NewLI) { 3672 auto *NewTy = NewLI.getType(); 3673 // Simply copy the metadata if the type did not change. 3674 if (NewTy == OldLI.getType()) { 3675 NewLI.setMetadata(LLVMContext::MD_range, N); 3676 return; 3677 } 3678 3679 // Give up unless it is converted to a pointer where there is a single very 3680 // valuable mapping we can do reliably. 3681 // FIXME: It would be nice to propagate this in more ways, but the type 3682 // conversions make it hard. 3683 if (!NewTy->isPointerTy()) 3684 return; 3685 3686 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3687 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3688 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3689 MDNode *NN = MDNode::get(OldLI.getContext(), {}); 3690 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3691 } 3692 } 3693 3694 void llvm::dropDebugUsers(Instruction &I) { 3695 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3696 SmallVector<DbgVariableRecord *, 1> DPUsers; 3697 findDbgUsers(DbgUsers, &I, &DPUsers); 3698 for (auto *DII : DbgUsers) 3699 DII->eraseFromParent(); 3700 for (auto *DVR : DPUsers) 3701 DVR->eraseFromParent(); 3702 } 3703 3704 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3705 BasicBlock *BB) { 3706 // Since we are moving the instructions out of its basic block, we do not 3707 // retain their original debug locations (DILocations) and debug intrinsic 3708 // instructions. 3709 // 3710 // Doing so would degrade the debugging experience and adversely affect the 3711 // accuracy of profiling information. 3712 // 3713 // Currently, when hoisting the instructions, we take the following actions: 3714 // - Remove their debug intrinsic instructions. 3715 // - Set their debug locations to the values from the insertion point. 3716 // 3717 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3718 // need to be deleted, is because there will not be any instructions with a 3719 // DILocation in either branch left after performing the transformation. We 3720 // can only insert a dbg.value after the two branches are joined again. 3721 // 3722 // See PR38762, PR39243 for more details. 3723 // 3724 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3725 // encode predicated DIExpressions that yield different results on different 3726 // code paths. 3727 3728 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3729 Instruction *I = &*II; 3730 I->dropUBImplyingAttrsAndMetadata(); 3731 if (I->isUsedByMetadata()) 3732 dropDebugUsers(*I); 3733 // RemoveDIs: drop debug-info too as the following code does. 3734 I->dropDbgRecords(); 3735 if (I->isDebugOrPseudoInst()) { 3736 // Remove DbgInfo and pseudo probe Intrinsics. 3737 II = I->eraseFromParent(); 3738 continue; 3739 } 3740 I->setDebugLoc(InsertPt->getDebugLoc()); 3741 ++II; 3742 } 3743 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3744 BB->getTerminator()->getIterator()); 3745 } 3746 3747 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3748 Type &Ty) { 3749 // Create integer constant expression. 3750 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3751 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3752 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3753 return InitIntOpt ? DIB.createConstantValueExpression( 3754 static_cast<uint64_t>(*InitIntOpt)) 3755 : nullptr; 3756 }; 3757 3758 if (isa<ConstantInt>(C)) 3759 return createIntegerExpression(C); 3760 3761 auto *FP = dyn_cast<ConstantFP>(&C); 3762 if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { 3763 const APFloat &APF = FP->getValueAPF(); 3764 APInt const &API = APF.bitcastToAPInt(); 3765 if (auto Temp = API.getZExtValue()) 3766 return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp)); 3767 return DIB.createConstantValueExpression(*API.getRawData()); 3768 } 3769 3770 if (!Ty.isPointerTy()) 3771 return nullptr; 3772 3773 if (isa<ConstantPointerNull>(C)) 3774 return DIB.createConstantValueExpression(0); 3775 3776 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3777 if (CE->getOpcode() == Instruction::IntToPtr) { 3778 const Value *V = CE->getOperand(0); 3779 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3780 return createIntegerExpression(*CI); 3781 } 3782 return nullptr; 3783 } 3784 3785 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { 3786 auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { 3787 for (auto *Op : Set) { 3788 auto I = Mapping.find(Op); 3789 if (I != Mapping.end()) 3790 DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); 3791 } 3792 }; 3793 auto RemapAssignAddress = [&Mapping](auto *DA) { 3794 auto I = Mapping.find(DA->getAddress()); 3795 if (I != Mapping.end()) 3796 DA->setAddress(I->second); 3797 }; 3798 if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst)) 3799 RemapDebugOperands(DVI, DVI->location_ops()); 3800 if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst)) 3801 RemapAssignAddress(DAI); 3802 for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) { 3803 RemapDebugOperands(&DVR, DVR.location_ops()); 3804 if (DVR.isDbgAssign()) 3805 RemapAssignAddress(&DVR); 3806 } 3807 } 3808 3809 namespace { 3810 3811 /// A potential constituent of a bitreverse or bswap expression. See 3812 /// collectBitParts for a fuller explanation. 3813 struct BitPart { 3814 BitPart(Value *P, unsigned BW) : Provider(P) { 3815 Provenance.resize(BW); 3816 } 3817 3818 /// The Value that this is a bitreverse/bswap of. 3819 Value *Provider; 3820 3821 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3822 /// in Provider becomes bit B in the result of this expression. 3823 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3824 3825 enum { Unset = -1 }; 3826 }; 3827 3828 } // end anonymous namespace 3829 3830 /// Analyze the specified subexpression and see if it is capable of providing 3831 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3832 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3833 /// the output of the expression came from a corresponding bit in some other 3834 /// value. This function is recursive, and the end result is a mapping of 3835 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3836 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3837 /// 3838 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3839 /// that the expression deposits the low byte of %X into the high byte of the 3840 /// result and that all other bits are zero. This expression is accepted and a 3841 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3842 /// [0-7]. 3843 /// 3844 /// For vector types, all analysis is performed at the per-element level. No 3845 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3846 /// constant masks must be splatted across all elements. 3847 /// 3848 /// To avoid revisiting values, the BitPart results are memoized into the 3849 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3850 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3851 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3852 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3853 /// type instead to provide the same functionality. 3854 /// 3855 /// Because we pass around references into \c BPS, we must use a container that 3856 /// does not invalidate internal references (std::map instead of DenseMap). 3857 static const std::optional<BitPart> & 3858 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3859 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3860 bool &FoundRoot) { 3861 auto [I, Inserted] = BPS.try_emplace(V); 3862 if (!Inserted) 3863 return I->second; 3864 3865 auto &Result = I->second; 3866 auto BitWidth = V->getType()->getScalarSizeInBits(); 3867 3868 // Can't do integer/elements > 128 bits. 3869 if (BitWidth > 128) 3870 return Result; 3871 3872 // Prevent stack overflow by limiting the recursion depth 3873 if (Depth == BitPartRecursionMaxDepth) { 3874 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3875 return Result; 3876 } 3877 3878 if (auto *I = dyn_cast<Instruction>(V)) { 3879 Value *X, *Y; 3880 const APInt *C; 3881 3882 // If this is an or instruction, it may be an inner node of the bswap. 3883 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3884 // Check we have both sources and they are from the same provider. 3885 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3886 Depth + 1, FoundRoot); 3887 if (!A || !A->Provider) 3888 return Result; 3889 3890 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3891 Depth + 1, FoundRoot); 3892 if (!B || A->Provider != B->Provider) 3893 return Result; 3894 3895 // Try and merge the two together. 3896 Result = BitPart(A->Provider, BitWidth); 3897 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3898 if (A->Provenance[BitIdx] != BitPart::Unset && 3899 B->Provenance[BitIdx] != BitPart::Unset && 3900 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3901 return Result = std::nullopt; 3902 3903 if (A->Provenance[BitIdx] == BitPart::Unset) 3904 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3905 else 3906 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3907 } 3908 3909 return Result; 3910 } 3911 3912 // If this is a logical shift by a constant, recurse then shift the result. 3913 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3914 const APInt &BitShift = *C; 3915 3916 // Ensure the shift amount is defined. 3917 if (BitShift.uge(BitWidth)) 3918 return Result; 3919 3920 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3921 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3922 return Result; 3923 3924 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3925 Depth + 1, FoundRoot); 3926 if (!Res) 3927 return Result; 3928 Result = Res; 3929 3930 // Perform the "shift" on BitProvenance. 3931 auto &P = Result->Provenance; 3932 if (I->getOpcode() == Instruction::Shl) { 3933 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3934 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3935 } else { 3936 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3937 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3938 } 3939 3940 return Result; 3941 } 3942 3943 // If this is a logical 'and' with a mask that clears bits, recurse then 3944 // unset the appropriate bits. 3945 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3946 const APInt &AndMask = *C; 3947 3948 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3949 // early exit. 3950 unsigned NumMaskedBits = AndMask.popcount(); 3951 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3952 return Result; 3953 3954 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3955 Depth + 1, FoundRoot); 3956 if (!Res) 3957 return Result; 3958 Result = Res; 3959 3960 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3961 // If the AndMask is zero for this bit, clear the bit. 3962 if (AndMask[BitIdx] == 0) 3963 Result->Provenance[BitIdx] = BitPart::Unset; 3964 return Result; 3965 } 3966 3967 // If this is a zext instruction zero extend the result. 3968 if (match(V, m_ZExt(m_Value(X)))) { 3969 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3970 Depth + 1, FoundRoot); 3971 if (!Res) 3972 return Result; 3973 3974 Result = BitPart(Res->Provider, BitWidth); 3975 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3976 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3977 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3978 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3979 Result->Provenance[BitIdx] = BitPart::Unset; 3980 return Result; 3981 } 3982 3983 // If this is a truncate instruction, extract the lower bits. 3984 if (match(V, m_Trunc(m_Value(X)))) { 3985 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3986 Depth + 1, FoundRoot); 3987 if (!Res) 3988 return Result; 3989 3990 Result = BitPart(Res->Provider, BitWidth); 3991 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3992 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3993 return Result; 3994 } 3995 3996 // BITREVERSE - most likely due to us previous matching a partial 3997 // bitreverse. 3998 if (match(V, m_BitReverse(m_Value(X)))) { 3999 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4000 Depth + 1, FoundRoot); 4001 if (!Res) 4002 return Result; 4003 4004 Result = BitPart(Res->Provider, BitWidth); 4005 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4006 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 4007 return Result; 4008 } 4009 4010 // BSWAP - most likely due to us previous matching a partial bswap. 4011 if (match(V, m_BSwap(m_Value(X)))) { 4012 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4013 Depth + 1, FoundRoot); 4014 if (!Res) 4015 return Result; 4016 4017 unsigned ByteWidth = BitWidth / 8; 4018 Result = BitPart(Res->Provider, BitWidth); 4019 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 4020 unsigned ByteBitOfs = ByteIdx * 8; 4021 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 4022 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 4023 Res->Provenance[ByteBitOfs + BitIdx]; 4024 } 4025 return Result; 4026 } 4027 4028 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 4029 // amount (modulo). 4030 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4031 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4032 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 4033 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 4034 // We can treat fshr as a fshl by flipping the modulo amount. 4035 unsigned ModAmt = C->urem(BitWidth); 4036 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 4037 ModAmt = BitWidth - ModAmt; 4038 4039 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 4040 if (!MatchBitReversals && (ModAmt % 8) != 0) 4041 return Result; 4042 4043 // Check we have both sources and they are from the same provider. 4044 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4045 Depth + 1, FoundRoot); 4046 if (!LHS || !LHS->Provider) 4047 return Result; 4048 4049 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 4050 Depth + 1, FoundRoot); 4051 if (!RHS || LHS->Provider != RHS->Provider) 4052 return Result; 4053 4054 unsigned StartBitRHS = BitWidth - ModAmt; 4055 Result = BitPart(LHS->Provider, BitWidth); 4056 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 4057 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 4058 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 4059 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 4060 return Result; 4061 } 4062 } 4063 4064 // If we've already found a root input value then we're never going to merge 4065 // these back together. 4066 if (FoundRoot) 4067 return Result; 4068 4069 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 4070 // be the root input value to the bswap/bitreverse. 4071 FoundRoot = true; 4072 Result = BitPart(V, BitWidth); 4073 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4074 Result->Provenance[BitIdx] = BitIdx; 4075 return Result; 4076 } 4077 4078 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 4079 unsigned BitWidth) { 4080 if (From % 8 != To % 8) 4081 return false; 4082 // Convert from bit indices to byte indices and check for a byte reversal. 4083 From >>= 3; 4084 To >>= 3; 4085 BitWidth >>= 3; 4086 return From == BitWidth - To - 1; 4087 } 4088 4089 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 4090 unsigned BitWidth) { 4091 return From == BitWidth - To - 1; 4092 } 4093 4094 bool llvm::recognizeBSwapOrBitReverseIdiom( 4095 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 4096 SmallVectorImpl<Instruction *> &InsertedInsts) { 4097 if (!match(I, m_Or(m_Value(), m_Value())) && 4098 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 4099 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && 4100 !match(I, m_BSwap(m_Value()))) 4101 return false; 4102 if (!MatchBSwaps && !MatchBitReversals) 4103 return false; 4104 Type *ITy = I->getType(); 4105 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 4106 return false; // Can't do integer/elements > 128 bits. 4107 4108 // Try to find all the pieces corresponding to the bswap. 4109 bool FoundRoot = false; 4110 std::map<Value *, std::optional<BitPart>> BPS; 4111 const auto &Res = 4112 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 4113 if (!Res) 4114 return false; 4115 ArrayRef<int8_t> BitProvenance = Res->Provenance; 4116 assert(all_of(BitProvenance, 4117 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 4118 "Illegal bit provenance index"); 4119 4120 // If the upper bits are zero, then attempt to perform as a truncated op. 4121 Type *DemandedTy = ITy; 4122 if (BitProvenance.back() == BitPart::Unset) { 4123 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 4124 BitProvenance = BitProvenance.drop_back(); 4125 if (BitProvenance.empty()) 4126 return false; // TODO - handle null value? 4127 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 4128 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 4129 DemandedTy = VectorType::get(DemandedTy, IVecTy); 4130 } 4131 4132 // Check BitProvenance hasn't found a source larger than the result type. 4133 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 4134 if (DemandedBW > ITy->getScalarSizeInBits()) 4135 return false; 4136 4137 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 4138 // only byteswap values with an even number of bytes. 4139 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 4140 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 4141 bool OKForBitReverse = MatchBitReversals; 4142 for (unsigned BitIdx = 0; 4143 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 4144 if (BitProvenance[BitIdx] == BitPart::Unset) { 4145 DemandedMask.clearBit(BitIdx); 4146 continue; 4147 } 4148 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 4149 DemandedBW); 4150 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 4151 BitIdx, DemandedBW); 4152 } 4153 4154 Intrinsic::ID Intrin; 4155 if (OKForBSwap) 4156 Intrin = Intrinsic::bswap; 4157 else if (OKForBitReverse) 4158 Intrin = Intrinsic::bitreverse; 4159 else 4160 return false; 4161 4162 Function *F = 4163 Intrinsic::getOrInsertDeclaration(I->getModule(), Intrin, DemandedTy); 4164 Value *Provider = Res->Provider; 4165 4166 // We may need to truncate the provider. 4167 if (DemandedTy != Provider->getType()) { 4168 auto *Trunc = 4169 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator()); 4170 InsertedInsts.push_back(Trunc); 4171 Provider = Trunc; 4172 } 4173 4174 Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator()); 4175 InsertedInsts.push_back(Result); 4176 4177 if (!DemandedMask.isAllOnes()) { 4178 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 4179 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator()); 4180 InsertedInsts.push_back(Result); 4181 } 4182 4183 // We may need to zeroextend back to the result type. 4184 if (ITy != Result->getType()) { 4185 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator()); 4186 InsertedInsts.push_back(ExtInst); 4187 } 4188 4189 return true; 4190 } 4191 4192 // CodeGen has special handling for some string functions that may replace 4193 // them with target-specific intrinsics. Since that'd skip our interceptors 4194 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4195 // we mark affected calls as NoBuiltin, which will disable optimization 4196 // in CodeGen. 4197 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4198 CallInst *CI, const TargetLibraryInfo *TLI) { 4199 Function *F = CI->getCalledFunction(); 4200 LibFunc Func; 4201 if (F && !F->hasLocalLinkage() && F->hasName() && 4202 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4203 !F->doesNotAccessMemory()) 4204 CI->addFnAttr(Attribute::NoBuiltin); 4205 } 4206 4207 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4208 // We can't have a PHI with a metadata type. 4209 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4210 return false; 4211 4212 // Early exit. 4213 if (!isa<Constant>(I->getOperand(OpIdx))) 4214 return true; 4215 4216 switch (I->getOpcode()) { 4217 default: 4218 return true; 4219 case Instruction::Call: 4220 case Instruction::Invoke: { 4221 const auto &CB = cast<CallBase>(*I); 4222 4223 // Can't handle inline asm. Skip it. 4224 if (CB.isInlineAsm()) 4225 return false; 4226 4227 // Constant bundle operands may need to retain their constant-ness for 4228 // correctness. 4229 if (CB.isBundleOperand(OpIdx)) 4230 return false; 4231 4232 if (OpIdx < CB.arg_size()) { 4233 // Some variadic intrinsics require constants in the variadic arguments, 4234 // which currently aren't markable as immarg. 4235 if (isa<IntrinsicInst>(CB) && 4236 OpIdx >= CB.getFunctionType()->getNumParams()) { 4237 // This is known to be OK for stackmap. 4238 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4239 } 4240 4241 // gcroot is a special case, since it requires a constant argument which 4242 // isn't also required to be a simple ConstantInt. 4243 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4244 return false; 4245 4246 // Some intrinsic operands are required to be immediates. 4247 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4248 } 4249 4250 // It is never allowed to replace the call argument to an intrinsic, but it 4251 // may be possible for a call. 4252 return !isa<IntrinsicInst>(CB); 4253 } 4254 case Instruction::ShuffleVector: 4255 // Shufflevector masks are constant. 4256 return OpIdx != 2; 4257 case Instruction::Switch: 4258 case Instruction::ExtractValue: 4259 // All operands apart from the first are constant. 4260 return OpIdx == 0; 4261 case Instruction::InsertValue: 4262 // All operands apart from the first and the second are constant. 4263 return OpIdx < 2; 4264 case Instruction::Alloca: 4265 // Static allocas (constant size in the entry block) are handled by 4266 // prologue/epilogue insertion so they're free anyway. We definitely don't 4267 // want to make them non-constant. 4268 return !cast<AllocaInst>(I)->isStaticAlloca(); 4269 case Instruction::GetElementPtr: 4270 if (OpIdx == 0) 4271 return true; 4272 gep_type_iterator It = gep_type_begin(I); 4273 for (auto E = std::next(It, OpIdx); It != E; ++It) 4274 if (It.isStruct()) 4275 return false; 4276 return true; 4277 } 4278 } 4279 4280 Value *llvm::invertCondition(Value *Condition) { 4281 // First: Check if it's a constant 4282 if (Constant *C = dyn_cast<Constant>(Condition)) 4283 return ConstantExpr::getNot(C); 4284 4285 // Second: If the condition is already inverted, return the original value 4286 Value *NotCondition; 4287 if (match(Condition, m_Not(m_Value(NotCondition)))) 4288 return NotCondition; 4289 4290 BasicBlock *Parent = nullptr; 4291 Instruction *Inst = dyn_cast<Instruction>(Condition); 4292 if (Inst) 4293 Parent = Inst->getParent(); 4294 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4295 Parent = &Arg->getParent()->getEntryBlock(); 4296 assert(Parent && "Unsupported condition to invert"); 4297 4298 // Third: Check all the users for an invert 4299 for (User *U : Condition->users()) 4300 if (Instruction *I = dyn_cast<Instruction>(U)) 4301 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4302 return I; 4303 4304 // Last option: Create a new instruction 4305 auto *Inverted = 4306 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4307 if (Inst && !isa<PHINode>(Inst)) 4308 Inverted->insertAfter(Inst); 4309 else 4310 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 4311 return Inverted; 4312 } 4313 4314 bool llvm::inferAttributesFromOthers(Function &F) { 4315 // Note: We explicitly check for attributes rather than using cover functions 4316 // because some of the cover functions include the logic being implemented. 4317 4318 bool Changed = false; 4319 // readnone + not convergent implies nosync 4320 if (!F.hasFnAttribute(Attribute::NoSync) && 4321 F.doesNotAccessMemory() && !F.isConvergent()) { 4322 F.setNoSync(); 4323 Changed = true; 4324 } 4325 4326 // readonly implies nofree 4327 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4328 F.setDoesNotFreeMemory(); 4329 Changed = true; 4330 } 4331 4332 // willreturn implies mustprogress 4333 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4334 F.setMustProgress(); 4335 Changed = true; 4336 } 4337 4338 // TODO: There are a bunch of cases of restrictive memory effects we 4339 // can infer by inspecting arguments of argmemonly-ish functions. 4340 4341 return Changed; 4342 } 4343