xref: /llvm-project/llvm/lib/Transforms/Utils/Local.cpp (revision 359c704004ec0826059578c79974d9ea29a8fbff)
1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumeBundleQueries.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/BinaryFormat/Dwarf.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DIBuilder.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/EHPersonalities.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalObject.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/IntrinsicsWebAssembly.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/ProfDataUtils.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <optional>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 extern cl::opt<bool> UseNewDbgInfoFormat;
92 
93 #define DEBUG_TYPE "local"
94 
95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
97 
98 static cl::opt<bool> PHICSEDebugHash(
99     "phicse-debug-hash",
100 #ifdef EXPENSIVE_CHECKS
101     cl::init(true),
102 #else
103     cl::init(false),
104 #endif
105     cl::Hidden,
106     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
107              "function is well-behaved w.r.t. its isEqual predicate"));
108 
109 static cl::opt<unsigned> PHICSENumPHISmallSize(
110     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
111     cl::desc(
112         "When the basic block contains not more than this number of PHI nodes, "
113         "perform a (faster!) exhaustive search instead of set-driven one."));
114 
115 // Max recursion depth for collectBitParts used when detecting bswap and
116 // bitreverse idioms.
117 static const unsigned BitPartRecursionMaxDepth = 48;
118 
119 //===----------------------------------------------------------------------===//
120 //  Local constant propagation.
121 //
122 
123 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
124 /// constant value, convert it into an unconditional branch to the constant
125 /// destination.  This is a nontrivial operation because the successors of this
126 /// basic block must have their PHI nodes updated.
127 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
128 /// conditions and indirectbr addresses this might make dead if
129 /// DeleteDeadConditions is true.
130 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
131                                   const TargetLibraryInfo *TLI,
132                                   DomTreeUpdater *DTU) {
133   Instruction *T = BB->getTerminator();
134   IRBuilder<> Builder(T);
135 
136   // Branch - See if we are conditional jumping on constant
137   if (auto *BI = dyn_cast<BranchInst>(T)) {
138     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
139 
140     BasicBlock *Dest1 = BI->getSuccessor(0);
141     BasicBlock *Dest2 = BI->getSuccessor(1);
142 
143     if (Dest2 == Dest1) {       // Conditional branch to same location?
144       // This branch matches something like this:
145       //     br bool %cond, label %Dest, label %Dest
146       // and changes it into:  br label %Dest
147 
148       // Let the basic block know that we are letting go of one copy of it.
149       assert(BI->getParent() && "Terminator not inserted in block!");
150       Dest1->removePredecessor(BI->getParent());
151 
152       // Replace the conditional branch with an unconditional one.
153       BranchInst *NewBI = Builder.CreateBr(Dest1);
154 
155       // Transfer the metadata to the new branch instruction.
156       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
157                                 LLVMContext::MD_annotation});
158 
159       Value *Cond = BI->getCondition();
160       BI->eraseFromParent();
161       if (DeleteDeadConditions)
162         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
163       return true;
164     }
165 
166     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
167       // Are we branching on constant?
168       // YES.  Change to unconditional branch...
169       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
170       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
171 
172       // Let the basic block know that we are letting go of it.  Based on this,
173       // it will adjust it's PHI nodes.
174       OldDest->removePredecessor(BB);
175 
176       // Replace the conditional branch with an unconditional one.
177       BranchInst *NewBI = Builder.CreateBr(Destination);
178 
179       // Transfer the metadata to the new branch instruction.
180       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
181                                 LLVMContext::MD_annotation});
182 
183       BI->eraseFromParent();
184       if (DTU)
185         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
186       return true;
187     }
188 
189     return false;
190   }
191 
192   if (auto *SI = dyn_cast<SwitchInst>(T)) {
193     // If we are switching on a constant, we can convert the switch to an
194     // unconditional branch.
195     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
196     BasicBlock *DefaultDest = SI->getDefaultDest();
197     BasicBlock *TheOnlyDest = DefaultDest;
198 
199     // If the default is unreachable, ignore it when searching for TheOnlyDest.
200     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
201         SI->getNumCases() > 0) {
202       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
203     }
204 
205     bool Changed = false;
206 
207     // Figure out which case it goes to.
208     for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) {
209       // Found case matching a constant operand?
210       if (It->getCaseValue() == CI) {
211         TheOnlyDest = It->getCaseSuccessor();
212         break;
213       }
214 
215       // Check to see if this branch is going to the same place as the default
216       // dest.  If so, eliminate it as an explicit compare.
217       if (It->getCaseSuccessor() == DefaultDest) {
218         MDNode *MD = getValidBranchWeightMDNode(*SI);
219         unsigned NCases = SI->getNumCases();
220         // Fold the case metadata into the default if there will be any branches
221         // left, unless the metadata doesn't match the switch.
222         if (NCases > 1 && MD) {
223           // Collect branch weights into a vector.
224           SmallVector<uint32_t, 8> Weights;
225           extractBranchWeights(MD, Weights);
226 
227           // Merge weight of this case to the default weight.
228           unsigned Idx = It->getCaseIndex();
229           // TODO: Add overflow check.
230           Weights[0] += Weights[Idx + 1];
231           // Remove weight for this case.
232           std::swap(Weights[Idx + 1], Weights.back());
233           Weights.pop_back();
234           setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD));
235         }
236         // Remove this entry.
237         BasicBlock *ParentBB = SI->getParent();
238         DefaultDest->removePredecessor(ParentBB);
239         It = SI->removeCase(It);
240         End = SI->case_end();
241 
242         // Removing this case may have made the condition constant. In that
243         // case, update CI and restart iteration through the cases.
244         if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) {
245           CI = NewCI;
246           It = SI->case_begin();
247         }
248 
249         Changed = true;
250         continue;
251       }
252 
253       // Otherwise, check to see if the switch only branches to one destination.
254       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
255       // destinations.
256       if (It->getCaseSuccessor() != TheOnlyDest)
257         TheOnlyDest = nullptr;
258 
259       // Increment this iterator as we haven't removed the case.
260       ++It;
261     }
262 
263     if (CI && !TheOnlyDest) {
264       // Branching on a constant, but not any of the cases, go to the default
265       // successor.
266       TheOnlyDest = SI->getDefaultDest();
267     }
268 
269     // If we found a single destination that we can fold the switch into, do so
270     // now.
271     if (TheOnlyDest) {
272       // Insert the new branch.
273       Builder.CreateBr(TheOnlyDest);
274       BasicBlock *BB = SI->getParent();
275 
276       SmallSet<BasicBlock *, 8> RemovedSuccessors;
277 
278       // Remove entries from PHI nodes which we no longer branch to...
279       BasicBlock *SuccToKeep = TheOnlyDest;
280       for (BasicBlock *Succ : successors(SI)) {
281         if (DTU && Succ != TheOnlyDest)
282           RemovedSuccessors.insert(Succ);
283         // Found case matching a constant operand?
284         if (Succ == SuccToKeep) {
285           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
286         } else {
287           Succ->removePredecessor(BB);
288         }
289       }
290 
291       // Delete the old switch.
292       Value *Cond = SI->getCondition();
293       SI->eraseFromParent();
294       if (DeleteDeadConditions)
295         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
296       if (DTU) {
297         std::vector<DominatorTree::UpdateType> Updates;
298         Updates.reserve(RemovedSuccessors.size());
299         for (auto *RemovedSuccessor : RemovedSuccessors)
300           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
301         DTU->applyUpdates(Updates);
302       }
303       return true;
304     }
305 
306     if (SI->getNumCases() == 1) {
307       // Otherwise, we can fold this switch into a conditional branch
308       // instruction if it has only one non-default destination.
309       auto FirstCase = *SI->case_begin();
310       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
311           FirstCase.getCaseValue(), "cond");
312 
313       // Insert the new branch.
314       BranchInst *NewBr = Builder.CreateCondBr(Cond,
315                                                FirstCase.getCaseSuccessor(),
316                                                SI->getDefaultDest());
317       SmallVector<uint32_t> Weights;
318       if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) {
319         uint32_t DefWeight = Weights[0];
320         uint32_t CaseWeight = Weights[1];
321         // The TrueWeight should be the weight for the single case of SI.
322         NewBr->setMetadata(LLVMContext::MD_prof,
323                            MDBuilder(BB->getContext())
324                                .createBranchWeights(CaseWeight, DefWeight));
325       }
326 
327       // Update make.implicit metadata to the newly-created conditional branch.
328       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
329       if (MakeImplicitMD)
330         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
331 
332       // Delete the old switch.
333       SI->eraseFromParent();
334       return true;
335     }
336     return Changed;
337   }
338 
339   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
340     // indirectbr blockaddress(@F, @BB) -> br label @BB
341     if (auto *BA =
342           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
343       BasicBlock *TheOnlyDest = BA->getBasicBlock();
344       SmallSet<BasicBlock *, 8> RemovedSuccessors;
345 
346       // Insert the new branch.
347       Builder.CreateBr(TheOnlyDest);
348 
349       BasicBlock *SuccToKeep = TheOnlyDest;
350       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
351         BasicBlock *DestBB = IBI->getDestination(i);
352         if (DTU && DestBB != TheOnlyDest)
353           RemovedSuccessors.insert(DestBB);
354         if (IBI->getDestination(i) == SuccToKeep) {
355           SuccToKeep = nullptr;
356         } else {
357           DestBB->removePredecessor(BB);
358         }
359       }
360       Value *Address = IBI->getAddress();
361       IBI->eraseFromParent();
362       if (DeleteDeadConditions)
363         // Delete pointer cast instructions.
364         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
365 
366       // Also zap the blockaddress constant if there are no users remaining,
367       // otherwise the destination is still marked as having its address taken.
368       if (BA->use_empty())
369         BA->destroyConstant();
370 
371       // If we didn't find our destination in the IBI successor list, then we
372       // have undefined behavior.  Replace the unconditional branch with an
373       // 'unreachable' instruction.
374       if (SuccToKeep) {
375         BB->getTerminator()->eraseFromParent();
376         new UnreachableInst(BB->getContext(), BB);
377       }
378 
379       if (DTU) {
380         std::vector<DominatorTree::UpdateType> Updates;
381         Updates.reserve(RemovedSuccessors.size());
382         for (auto *RemovedSuccessor : RemovedSuccessors)
383           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
384         DTU->applyUpdates(Updates);
385       }
386       return true;
387     }
388   }
389 
390   return false;
391 }
392 
393 //===----------------------------------------------------------------------===//
394 //  Local dead code elimination.
395 //
396 
397 /// isInstructionTriviallyDead - Return true if the result produced by the
398 /// instruction is not used, and the instruction has no side effects.
399 ///
400 bool llvm::isInstructionTriviallyDead(Instruction *I,
401                                       const TargetLibraryInfo *TLI) {
402   if (!I->use_empty())
403     return false;
404   return wouldInstructionBeTriviallyDead(I, TLI);
405 }
406 
407 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
408     Instruction *I, const TargetLibraryInfo *TLI) {
409   // Instructions that are "markers" and have implied meaning on code around
410   // them (without explicit uses), are not dead on unused paths.
411   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
412     if (II->getIntrinsicID() == Intrinsic::stacksave ||
413         II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
414         II->isLifetimeStartOrEnd())
415       return false;
416   return wouldInstructionBeTriviallyDead(I, TLI);
417 }
418 
419 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I,
420                                            const TargetLibraryInfo *TLI) {
421   if (I->isTerminator())
422     return false;
423 
424   // We don't want the landingpad-like instructions removed by anything this
425   // general.
426   if (I->isEHPad())
427     return false;
428 
429   // We don't want debug info removed by anything this general.
430   if (isa<DbgVariableIntrinsic>(I))
431     return false;
432 
433   if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
434     if (DLI->getLabel())
435       return false;
436     return true;
437   }
438 
439   if (auto *CB = dyn_cast<CallBase>(I))
440     if (isRemovableAlloc(CB, TLI))
441       return true;
442 
443   if (!I->willReturn()) {
444     auto *II = dyn_cast<IntrinsicInst>(I);
445     if (!II)
446       return false;
447 
448     switch (II->getIntrinsicID()) {
449     case Intrinsic::experimental_guard: {
450       // Guards on true are operationally no-ops.  In the future we can
451       // consider more sophisticated tradeoffs for guards considering potential
452       // for check widening, but for now we keep things simple.
453       auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0));
454       return Cond && Cond->isOne();
455     }
456     // TODO: These intrinsics are not safe to remove, because this may remove
457     // a well-defined trap.
458     case Intrinsic::wasm_trunc_signed:
459     case Intrinsic::wasm_trunc_unsigned:
460     case Intrinsic::ptrauth_auth:
461     case Intrinsic::ptrauth_resign:
462       return true;
463     default:
464       return false;
465     }
466   }
467 
468   if (!I->mayHaveSideEffects())
469     return true;
470 
471   // Special case intrinsics that "may have side effects" but can be deleted
472   // when dead.
473   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
474     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
475     if (II->getIntrinsicID() == Intrinsic::stacksave ||
476         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
477       return true;
478 
479     // Intrinsics declare sideeffects to prevent them from moving, but they are
480     // nops without users.
481     if (II->getIntrinsicID() == Intrinsic::allow_runtime_check ||
482         II->getIntrinsicID() == Intrinsic::allow_ubsan_check)
483       return true;
484 
485     if (II->isLifetimeStartOrEnd()) {
486       auto *Arg = II->getArgOperand(1);
487       // Lifetime intrinsics are dead when their right-hand is undef.
488       if (isa<UndefValue>(Arg))
489         return true;
490       // If the right-hand is an alloc, global, or argument and the only uses
491       // are lifetime intrinsics then the intrinsics are dead.
492       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
493         return llvm::all_of(Arg->uses(), [](Use &Use) {
494           if (IntrinsicInst *IntrinsicUse =
495                   dyn_cast<IntrinsicInst>(Use.getUser()))
496             return IntrinsicUse->isLifetimeStartOrEnd();
497           return false;
498         });
499       return false;
500     }
501 
502     // Assumptions are dead if their condition is trivially true.
503     if (II->getIntrinsicID() == Intrinsic::assume &&
504         isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) {
505       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
506         return !Cond->isZero();
507 
508       return false;
509     }
510 
511     if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
512       std::optional<fp::ExceptionBehavior> ExBehavior =
513           FPI->getExceptionBehavior();
514       return *ExBehavior != fp::ebStrict;
515     }
516   }
517 
518   if (auto *Call = dyn_cast<CallBase>(I)) {
519     if (Value *FreedOp = getFreedOperand(Call, TLI))
520       if (Constant *C = dyn_cast<Constant>(FreedOp))
521         return C->isNullValue() || isa<UndefValue>(C);
522     if (isMathLibCallNoop(Call, TLI))
523       return true;
524   }
525 
526   // Non-volatile atomic loads from constants can be removed.
527   if (auto *LI = dyn_cast<LoadInst>(I))
528     if (auto *GV = dyn_cast<GlobalVariable>(
529             LI->getPointerOperand()->stripPointerCasts()))
530       if (!LI->isVolatile() && GV->isConstant())
531         return true;
532 
533   return false;
534 }
535 
536 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
537 /// trivially dead instruction, delete it.  If that makes any of its operands
538 /// trivially dead, delete them too, recursively.  Return true if any
539 /// instructions were deleted.
540 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
541     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
542     std::function<void(Value *)> AboutToDeleteCallback) {
543   Instruction *I = dyn_cast<Instruction>(V);
544   if (!I || !isInstructionTriviallyDead(I, TLI))
545     return false;
546 
547   SmallVector<WeakTrackingVH, 16> DeadInsts;
548   DeadInsts.push_back(I);
549   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
550                                              AboutToDeleteCallback);
551 
552   return true;
553 }
554 
555 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
556     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
557     MemorySSAUpdater *MSSAU,
558     std::function<void(Value *)> AboutToDeleteCallback) {
559   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
560   for (; S != E; ++S) {
561     auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]);
562     if (!I || !isInstructionTriviallyDead(I)) {
563       DeadInsts[S] = nullptr;
564       ++Alive;
565     }
566   }
567   if (Alive == E)
568     return false;
569   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
570                                              AboutToDeleteCallback);
571   return true;
572 }
573 
574 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
575     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
576     MemorySSAUpdater *MSSAU,
577     std::function<void(Value *)> AboutToDeleteCallback) {
578   // Process the dead instruction list until empty.
579   while (!DeadInsts.empty()) {
580     Value *V = DeadInsts.pop_back_val();
581     Instruction *I = cast_or_null<Instruction>(V);
582     if (!I)
583       continue;
584     assert(isInstructionTriviallyDead(I, TLI) &&
585            "Live instruction found in dead worklist!");
586     assert(I->use_empty() && "Instructions with uses are not dead.");
587 
588     // Don't lose the debug info while deleting the instructions.
589     salvageDebugInfo(*I);
590 
591     if (AboutToDeleteCallback)
592       AboutToDeleteCallback(I);
593 
594     // Null out all of the instruction's operands to see if any operand becomes
595     // dead as we go.
596     for (Use &OpU : I->operands()) {
597       Value *OpV = OpU.get();
598       OpU.set(nullptr);
599 
600       if (!OpV->use_empty())
601         continue;
602 
603       // If the operand is an instruction that became dead as we nulled out the
604       // operand, and if it is 'trivially' dead, delete it in a future loop
605       // iteration.
606       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
607         if (isInstructionTriviallyDead(OpI, TLI))
608           DeadInsts.push_back(OpI);
609     }
610     if (MSSAU)
611       MSSAU->removeMemoryAccess(I);
612 
613     I->eraseFromParent();
614   }
615 }
616 
617 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
618   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
619   SmallVector<DbgVariableRecord *, 1> DPUsers;
620   findDbgUsers(DbgUsers, I, &DPUsers);
621   for (auto *DII : DbgUsers)
622     DII->setKillLocation();
623   for (auto *DVR : DPUsers)
624     DVR->setKillLocation();
625   return !DbgUsers.empty() || !DPUsers.empty();
626 }
627 
628 /// areAllUsesEqual - Check whether the uses of a value are all the same.
629 /// This is similar to Instruction::hasOneUse() except this will also return
630 /// true when there are no uses or multiple uses that all refer to the same
631 /// value.
632 static bool areAllUsesEqual(Instruction *I) {
633   Value::user_iterator UI = I->user_begin();
634   Value::user_iterator UE = I->user_end();
635   if (UI == UE)
636     return true;
637 
638   User *TheUse = *UI;
639   for (++UI; UI != UE; ++UI) {
640     if (*UI != TheUse)
641       return false;
642   }
643   return true;
644 }
645 
646 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
647 /// dead PHI node, due to being a def-use chain of single-use nodes that
648 /// either forms a cycle or is terminated by a trivially dead instruction,
649 /// delete it.  If that makes any of its operands trivially dead, delete them
650 /// too, recursively.  Return true if a change was made.
651 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
652                                         const TargetLibraryInfo *TLI,
653                                         llvm::MemorySSAUpdater *MSSAU) {
654   SmallPtrSet<Instruction*, 4> Visited;
655   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
656        I = cast<Instruction>(*I->user_begin())) {
657     if (I->use_empty())
658       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
659 
660     // If we find an instruction more than once, we're on a cycle that
661     // won't prove fruitful.
662     if (!Visited.insert(I).second) {
663       // Break the cycle and delete the instruction and its operands.
664       I->replaceAllUsesWith(PoisonValue::get(I->getType()));
665       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
666       return true;
667     }
668   }
669   return false;
670 }
671 
672 static bool
673 simplifyAndDCEInstruction(Instruction *I,
674                           SmallSetVector<Instruction *, 16> &WorkList,
675                           const DataLayout &DL,
676                           const TargetLibraryInfo *TLI) {
677   if (isInstructionTriviallyDead(I, TLI)) {
678     salvageDebugInfo(*I);
679 
680     // Null out all of the instruction's operands to see if any operand becomes
681     // dead as we go.
682     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
683       Value *OpV = I->getOperand(i);
684       I->setOperand(i, nullptr);
685 
686       if (!OpV->use_empty() || I == OpV)
687         continue;
688 
689       // If the operand is an instruction that became dead as we nulled out the
690       // operand, and if it is 'trivially' dead, delete it in a future loop
691       // iteration.
692       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
693         if (isInstructionTriviallyDead(OpI, TLI))
694           WorkList.insert(OpI);
695     }
696 
697     I->eraseFromParent();
698 
699     return true;
700   }
701 
702   if (Value *SimpleV = simplifyInstruction(I, DL)) {
703     // Add the users to the worklist. CAREFUL: an instruction can use itself,
704     // in the case of a phi node.
705     for (User *U : I->users()) {
706       if (U != I) {
707         WorkList.insert(cast<Instruction>(U));
708       }
709     }
710 
711     // Replace the instruction with its simplified value.
712     bool Changed = false;
713     if (!I->use_empty()) {
714       I->replaceAllUsesWith(SimpleV);
715       Changed = true;
716     }
717     if (isInstructionTriviallyDead(I, TLI)) {
718       I->eraseFromParent();
719       Changed = true;
720     }
721     return Changed;
722   }
723   return false;
724 }
725 
726 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
727 /// simplify any instructions in it and recursively delete dead instructions.
728 ///
729 /// This returns true if it changed the code, note that it can delete
730 /// instructions in other blocks as well in this block.
731 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
732                                        const TargetLibraryInfo *TLI) {
733   bool MadeChange = false;
734   const DataLayout &DL = BB->getDataLayout();
735 
736 #ifndef NDEBUG
737   // In debug builds, ensure that the terminator of the block is never replaced
738   // or deleted by these simplifications. The idea of simplification is that it
739   // cannot introduce new instructions, and there is no way to replace the
740   // terminator of a block without introducing a new instruction.
741   AssertingVH<Instruction> TerminatorVH(&BB->back());
742 #endif
743 
744   SmallSetVector<Instruction *, 16> WorkList;
745   // Iterate over the original function, only adding insts to the worklist
746   // if they actually need to be revisited. This avoids having to pre-init
747   // the worklist with the entire function's worth of instructions.
748   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
749        BI != E;) {
750     assert(!BI->isTerminator());
751     Instruction *I = &*BI;
752     ++BI;
753 
754     // We're visiting this instruction now, so make sure it's not in the
755     // worklist from an earlier visit.
756     if (!WorkList.count(I))
757       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
758   }
759 
760   while (!WorkList.empty()) {
761     Instruction *I = WorkList.pop_back_val();
762     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
763   }
764   return MadeChange;
765 }
766 
767 //===----------------------------------------------------------------------===//
768 //  Control Flow Graph Restructuring.
769 //
770 
771 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
772                                        DomTreeUpdater *DTU) {
773 
774   // If BB has single-entry PHI nodes, fold them.
775   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
776     Value *NewVal = PN->getIncomingValue(0);
777     // Replace self referencing PHI with poison, it must be dead.
778     if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
779     PN->replaceAllUsesWith(NewVal);
780     PN->eraseFromParent();
781   }
782 
783   BasicBlock *PredBB = DestBB->getSinglePredecessor();
784   assert(PredBB && "Block doesn't have a single predecessor!");
785 
786   bool ReplaceEntryBB = PredBB->isEntryBlock();
787 
788   // DTU updates: Collect all the edges that enter
789   // PredBB. These dominator edges will be redirected to DestBB.
790   SmallVector<DominatorTree::UpdateType, 32> Updates;
791 
792   if (DTU) {
793     // To avoid processing the same predecessor more than once.
794     SmallPtrSet<BasicBlock *, 2> SeenPreds;
795     Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
796     for (BasicBlock *PredOfPredBB : predecessors(PredBB))
797       // This predecessor of PredBB may already have DestBB as a successor.
798       if (PredOfPredBB != PredBB)
799         if (SeenPreds.insert(PredOfPredBB).second)
800           Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
801     SeenPreds.clear();
802     for (BasicBlock *PredOfPredBB : predecessors(PredBB))
803       if (SeenPreds.insert(PredOfPredBB).second)
804         Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
805     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
806   }
807 
808   // Zap anything that took the address of DestBB.  Not doing this will give the
809   // address an invalid value.
810   if (DestBB->hasAddressTaken()) {
811     BlockAddress *BA = BlockAddress::get(DestBB);
812     Constant *Replacement =
813       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
814     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
815                                                      BA->getType()));
816     BA->destroyConstant();
817   }
818 
819   // Anything that branched to PredBB now branches to DestBB.
820   PredBB->replaceAllUsesWith(DestBB);
821 
822   // Splice all the instructions from PredBB to DestBB.
823   PredBB->getTerminator()->eraseFromParent();
824   DestBB->splice(DestBB->begin(), PredBB);
825   new UnreachableInst(PredBB->getContext(), PredBB);
826 
827   // If the PredBB is the entry block of the function, move DestBB up to
828   // become the entry block after we erase PredBB.
829   if (ReplaceEntryBB)
830     DestBB->moveAfter(PredBB);
831 
832   if (DTU) {
833     assert(PredBB->size() == 1 &&
834            isa<UnreachableInst>(PredBB->getTerminator()) &&
835            "The successor list of PredBB isn't empty before "
836            "applying corresponding DTU updates.");
837     DTU->applyUpdatesPermissive(Updates);
838     DTU->deleteBB(PredBB);
839     // Recalculation of DomTree is needed when updating a forward DomTree and
840     // the Entry BB is replaced.
841     if (ReplaceEntryBB && DTU->hasDomTree()) {
842       // The entry block was removed and there is no external interface for
843       // the dominator tree to be notified of this change. In this corner-case
844       // we recalculate the entire tree.
845       DTU->recalculate(*(DestBB->getParent()));
846     }
847   }
848 
849   else {
850     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
851   }
852 }
853 
854 /// Return true if we can choose one of these values to use in place of the
855 /// other. Note that we will always choose the non-undef value to keep.
856 static bool CanMergeValues(Value *First, Value *Second) {
857   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
858 }
859 
860 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
861 /// branch to Succ, into Succ.
862 ///
863 /// Assumption: Succ is the single successor for BB.
864 static bool
865 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ,
866                                 const SmallPtrSetImpl<BasicBlock *> &BBPreds) {
867   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
868 
869   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
870                     << Succ->getName() << "\n");
871   // Shortcut, if there is only a single predecessor it must be BB and merging
872   // is always safe
873   if (Succ->getSinglePredecessor())
874     return true;
875 
876   // Look at all the phi nodes in Succ, to see if they present a conflict when
877   // merging these blocks
878   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
879     PHINode *PN = cast<PHINode>(I);
880 
881     // If the incoming value from BB is again a PHINode in
882     // BB which has the same incoming value for *PI as PN does, we can
883     // merge the phi nodes and then the blocks can still be merged
884     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
885     if (BBPN && BBPN->getParent() == BB) {
886       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
887         BasicBlock *IBB = PN->getIncomingBlock(PI);
888         if (BBPreds.count(IBB) &&
889             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
890                             PN->getIncomingValue(PI))) {
891           LLVM_DEBUG(dbgs()
892                      << "Can't fold, phi node " << PN->getName() << " in "
893                      << Succ->getName() << " is conflicting with "
894                      << BBPN->getName() << " with regard to common predecessor "
895                      << IBB->getName() << "\n");
896           return false;
897         }
898       }
899     } else {
900       Value* Val = PN->getIncomingValueForBlock(BB);
901       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
902         // See if the incoming value for the common predecessor is equal to the
903         // one for BB, in which case this phi node will not prevent the merging
904         // of the block.
905         BasicBlock *IBB = PN->getIncomingBlock(PI);
906         if (BBPreds.count(IBB) &&
907             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
908           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
909                             << " in " << Succ->getName()
910                             << " is conflicting with regard to common "
911                             << "predecessor " << IBB->getName() << "\n");
912           return false;
913         }
914       }
915     }
916   }
917 
918   return true;
919 }
920 
921 using PredBlockVector = SmallVector<BasicBlock *, 16>;
922 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
923 
924 /// Determines the value to use as the phi node input for a block.
925 ///
926 /// Select between \p OldVal any value that we know flows from \p BB
927 /// to a particular phi on the basis of which one (if either) is not
928 /// undef. Update IncomingValues based on the selected value.
929 ///
930 /// \param OldVal The value we are considering selecting.
931 /// \param BB The block that the value flows in from.
932 /// \param IncomingValues A map from block-to-value for other phi inputs
933 /// that we have examined.
934 ///
935 /// \returns the selected value.
936 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
937                                           IncomingValueMap &IncomingValues) {
938   if (!isa<UndefValue>(OldVal)) {
939     assert((!IncomingValues.count(BB) ||
940             IncomingValues.find(BB)->second == OldVal) &&
941            "Expected OldVal to match incoming value from BB!");
942 
943     IncomingValues.insert(std::make_pair(BB, OldVal));
944     return OldVal;
945   }
946 
947   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
948   if (It != IncomingValues.end()) return It->second;
949 
950   return OldVal;
951 }
952 
953 /// Create a map from block to value for the operands of a
954 /// given phi.
955 ///
956 /// Create a map from block to value for each non-undef value flowing
957 /// into \p PN.
958 ///
959 /// \param PN The phi we are collecting the map for.
960 /// \param IncomingValues [out] The map from block to value for this phi.
961 static void gatherIncomingValuesToPhi(PHINode *PN,
962                                       IncomingValueMap &IncomingValues) {
963   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
964     BasicBlock *BB = PN->getIncomingBlock(i);
965     Value *V = PN->getIncomingValue(i);
966 
967     if (!isa<UndefValue>(V))
968       IncomingValues.insert(std::make_pair(BB, V));
969   }
970 }
971 
972 /// Replace the incoming undef values to a phi with the values
973 /// from a block-to-value map.
974 ///
975 /// \param PN The phi we are replacing the undefs in.
976 /// \param IncomingValues A map from block to value.
977 static void replaceUndefValuesInPhi(PHINode *PN,
978                                     const IncomingValueMap &IncomingValues) {
979   SmallVector<unsigned> TrueUndefOps;
980   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
981     Value *V = PN->getIncomingValue(i);
982 
983     if (!isa<UndefValue>(V)) continue;
984 
985     BasicBlock *BB = PN->getIncomingBlock(i);
986     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
987 
988     // Keep track of undef/poison incoming values. Those must match, so we fix
989     // them up below if needed.
990     // Note: this is conservatively correct, but we could try harder and group
991     // the undef values per incoming basic block.
992     if (It == IncomingValues.end()) {
993       TrueUndefOps.push_back(i);
994       continue;
995     }
996 
997     // There is a defined value for this incoming block, so map this undef
998     // incoming value to the defined value.
999     PN->setIncomingValue(i, It->second);
1000   }
1001 
1002   // If there are both undef and poison values incoming, then convert those
1003   // values to undef. It is invalid to have different values for the same
1004   // incoming block.
1005   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
1006     return isa<PoisonValue>(PN->getIncomingValue(i));
1007   });
1008   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
1009     for (unsigned i : TrueUndefOps)
1010       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
1011   }
1012 }
1013 
1014 // Only when they shares a single common predecessor, return true.
1015 // Only handles cases when BB can't be merged while its predecessors can be
1016 // redirected.
1017 static bool
1018 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ,
1019                                 const SmallPtrSetImpl<BasicBlock *> &BBPreds,
1020                                 const SmallPtrSetImpl<BasicBlock *> &SuccPreds,
1021                                 BasicBlock *&CommonPred) {
1022 
1023   // There must be phis in BB, otherwise BB will be merged into Succ directly
1024   if (BB->phis().empty() || Succ->phis().empty())
1025     return false;
1026 
1027   // BB must have predecessors not shared that can be redirected to Succ
1028   if (!BB->hasNPredecessorsOrMore(2))
1029     return false;
1030 
1031   // Get single common predecessors of both BB and Succ
1032   for (BasicBlock *SuccPred : SuccPreds) {
1033     if (BBPreds.count(SuccPred)) {
1034       if (CommonPred)
1035         return false;
1036       CommonPred = SuccPred;
1037     }
1038   }
1039 
1040   return true;
1041 }
1042 
1043 /// Replace a value flowing from a block to a phi with
1044 /// potentially multiple instances of that value flowing from the
1045 /// block's predecessors to the phi.
1046 ///
1047 /// \param BB The block with the value flowing into the phi.
1048 /// \param BBPreds The predecessors of BB.
1049 /// \param PN The phi that we are updating.
1050 /// \param CommonPred The common predecessor of BB and PN's BasicBlock
1051 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
1052                                                 const PredBlockVector &BBPreds,
1053                                                 PHINode *PN,
1054                                                 BasicBlock *CommonPred) {
1055   Value *OldVal = PN->removeIncomingValue(BB, false);
1056   assert(OldVal && "No entry in PHI for Pred BB!");
1057 
1058   IncomingValueMap IncomingValues;
1059 
1060   // We are merging two blocks - BB, and the block containing PN - and
1061   // as a result we need to redirect edges from the predecessors of BB
1062   // to go to the block containing PN, and update PN
1063   // accordingly. Since we allow merging blocks in the case where the
1064   // predecessor and successor blocks both share some predecessors,
1065   // and where some of those common predecessors might have undef
1066   // values flowing into PN, we want to rewrite those values to be
1067   // consistent with the non-undef values.
1068 
1069   gatherIncomingValuesToPhi(PN, IncomingValues);
1070 
1071   // If this incoming value is one of the PHI nodes in BB, the new entries
1072   // in the PHI node are the entries from the old PHI.
1073   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1074     PHINode *OldValPN = cast<PHINode>(OldVal);
1075     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1076       // Note that, since we are merging phi nodes and BB and Succ might
1077       // have common predecessors, we could end up with a phi node with
1078       // identical incoming branches. This will be cleaned up later (and
1079       // will trigger asserts if we try to clean it up now, without also
1080       // simplifying the corresponding conditional branch).
1081       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1082 
1083       if (PredBB == CommonPred)
1084         continue;
1085 
1086       Value *PredVal = OldValPN->getIncomingValue(i);
1087       Value *Selected =
1088           selectIncomingValueForBlock(PredVal, PredBB, IncomingValues);
1089 
1090       // And add a new incoming value for this predecessor for the
1091       // newly retargeted branch.
1092       PN->addIncoming(Selected, PredBB);
1093     }
1094     if (CommonPred)
1095       PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB);
1096 
1097   } else {
1098     for (BasicBlock *PredBB : BBPreds) {
1099       // Update existing incoming values in PN for this
1100       // predecessor of BB.
1101       if (PredBB == CommonPred)
1102         continue;
1103 
1104       Value *Selected =
1105           selectIncomingValueForBlock(OldVal, PredBB, IncomingValues);
1106 
1107       // And add a new incoming value for this predecessor for the
1108       // newly retargeted branch.
1109       PN->addIncoming(Selected, PredBB);
1110     }
1111     if (CommonPred)
1112       PN->addIncoming(OldVal, BB);
1113   }
1114 
1115   replaceUndefValuesInPhi(PN, IncomingValues);
1116 }
1117 
1118 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1119                                                    DomTreeUpdater *DTU) {
1120   assert(BB != &BB->getParent()->getEntryBlock() &&
1121          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1122 
1123   // We can't simplify infinite loops.
1124   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1125   if (BB == Succ)
1126     return false;
1127 
1128   SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB));
1129   SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ));
1130 
1131   // The single common predecessor of BB and Succ when BB cannot be killed
1132   BasicBlock *CommonPred = nullptr;
1133 
1134   bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds);
1135 
1136   // Even if we can not fold bB into Succ, we may be able to redirect the
1137   // predecessors of BB to Succ.
1138   bool BBPhisMergeable =
1139       BBKillable ||
1140       CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred);
1141 
1142   if (!BBKillable && !BBPhisMergeable)
1143     return false;
1144 
1145   // Check to see if merging these blocks/phis would cause conflicts for any of
1146   // the phi nodes in BB or Succ. If not, we can safely merge.
1147 
1148   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1149   // has uses which will not disappear when the PHI nodes are merged.  It is
1150   // possible to handle such cases, but difficult: it requires checking whether
1151   // BB dominates Succ, which is non-trivial to calculate in the case where
1152   // Succ has multiple predecessors.  Also, it requires checking whether
1153   // constructing the necessary self-referential PHI node doesn't introduce any
1154   // conflicts; this isn't too difficult, but the previous code for doing this
1155   // was incorrect.
1156   //
1157   // Note that if this check finds a live use, BB dominates Succ, so BB is
1158   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1159   // folding the branch isn't profitable in that case anyway.
1160   if (!Succ->getSinglePredecessor()) {
1161     BasicBlock::iterator BBI = BB->begin();
1162     while (isa<PHINode>(*BBI)) {
1163       for (Use &U : BBI->uses()) {
1164         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1165           if (PN->getIncomingBlock(U) != BB)
1166             return false;
1167         } else {
1168           return false;
1169         }
1170       }
1171       ++BBI;
1172     }
1173   }
1174 
1175   if (BBPhisMergeable && CommonPred)
1176     LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName()
1177                       << " and " << Succ->getName() << " : "
1178                       << CommonPred->getName() << "\n");
1179 
1180   // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop
1181   // metadata.
1182   //
1183   // FIXME: This is a stop-gap solution to preserve inner-loop metadata given
1184   // current status (that loop metadata is implemented as metadata attached to
1185   // the branch instruction in the loop latch block). To quote from review
1186   // comments, "the current representation of loop metadata (using a loop latch
1187   // terminator attachment) is known to be fundamentally broken. Loop latches
1188   // are not uniquely associated with loops (both in that a latch can be part of
1189   // multiple loops and a loop may have multiple latches). Loop headers are. The
1190   // solution to this problem is also known: Add support for basic block
1191   // metadata, and attach loop metadata to the loop header."
1192   //
1193   // Why bail out:
1194   // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is
1195   // the latch for inner-loop (see reason below), so bail out to prerserve
1196   // inner-loop metadata rather than eliminating 'BB' and attaching its metadata
1197   // to this inner-loop.
1198   // - The reason we believe 'BB' and 'BB->Pred' have different inner-most
1199   // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L,
1200   // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of
1201   // one self-looping basic block, which is contradictory with the assumption.
1202   //
1203   // To illustrate how inner-loop metadata is dropped:
1204   //
1205   // CFG Before
1206   //
1207   // BB is while.cond.exit, attached with loop metdata md2.
1208   // BB->Pred is for.body, attached with loop metadata md1.
1209   //
1210   //      entry
1211   //        |
1212   //        v
1213   // ---> while.cond   ------------->  while.end
1214   // |       |
1215   // |       v
1216   // |   while.body
1217   // |       |
1218   // |       v
1219   // |    for.body <---- (md1)
1220   // |       |  |______|
1221   // |       v
1222   // |    while.cond.exit (md2)
1223   // |       |
1224   // |_______|
1225   //
1226   // CFG After
1227   //
1228   // while.cond1 is the merge of while.cond.exit and while.cond above.
1229   // for.body is attached with md2, and md1 is dropped.
1230   // If LoopSimplify runs later (as a part of loop pass), it could create
1231   // dedicated exits for inner-loop (essentially adding `while.cond.exit`
1232   // back), but won't it won't see 'md1' nor restore it for the inner-loop.
1233   //
1234   //       entry
1235   //         |
1236   //         v
1237   // ---> while.cond1  ------------->  while.end
1238   // |       |
1239   // |       v
1240   // |   while.body
1241   // |       |
1242   // |       v
1243   // |    for.body <---- (md2)
1244   // |_______|  |______|
1245   if (Instruction *TI = BB->getTerminator())
1246     if (TI->hasMetadata(LLVMContext::MD_loop))
1247       for (BasicBlock *Pred : predecessors(BB))
1248         if (Instruction *PredTI = Pred->getTerminator())
1249           if (PredTI->hasMetadata(LLVMContext::MD_loop))
1250             return false;
1251 
1252   if (BBKillable)
1253     LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1254   else if (BBPhisMergeable)
1255     LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB);
1256 
1257   SmallVector<DominatorTree::UpdateType, 32> Updates;
1258 
1259   if (DTU) {
1260     // To avoid processing the same predecessor more than once.
1261     SmallPtrSet<BasicBlock *, 8> SeenPreds;
1262     // All predecessors of BB (except the common predecessor) will be moved to
1263     // Succ.
1264     Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
1265 
1266     for (auto *PredOfBB : predecessors(BB)) {
1267       // Do not modify those common predecessors of BB and Succ
1268       if (!SuccPreds.contains(PredOfBB))
1269         if (SeenPreds.insert(PredOfBB).second)
1270           Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1271     }
1272 
1273     SeenPreds.clear();
1274 
1275     for (auto *PredOfBB : predecessors(BB))
1276       // When BB cannot be killed, do not remove the edge between BB and
1277       // CommonPred.
1278       if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred)
1279         Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1280 
1281     if (BBKillable)
1282       Updates.push_back({DominatorTree::Delete, BB, Succ});
1283   }
1284 
1285   if (isa<PHINode>(Succ->begin())) {
1286     // If there is more than one pred of succ, and there are PHI nodes in
1287     // the successor, then we need to add incoming edges for the PHI nodes
1288     //
1289     const PredBlockVector BBPreds(predecessors(BB));
1290 
1291     // Loop over all of the PHI nodes in the successor of BB.
1292     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1293       PHINode *PN = cast<PHINode>(I);
1294       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred);
1295     }
1296   }
1297 
1298   if (Succ->getSinglePredecessor()) {
1299     // BB is the only predecessor of Succ, so Succ will end up with exactly
1300     // the same predecessors BB had.
1301     // Copy over any phi, debug or lifetime instruction.
1302     BB->getTerminator()->eraseFromParent();
1303     Succ->splice(Succ->getFirstNonPHIIt(), BB);
1304   } else {
1305     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1306       // We explicitly check for such uses for merging phis.
1307       assert(PN->use_empty() && "There shouldn't be any uses here!");
1308       PN->eraseFromParent();
1309     }
1310   }
1311 
1312   // If the unconditional branch we replaced contains llvm.loop metadata, we
1313   // add the metadata to the branch instructions in the predecessors.
1314   if (Instruction *TI = BB->getTerminator())
1315     if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop))
1316       for (BasicBlock *Pred : predecessors(BB))
1317         Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD);
1318 
1319   if (BBKillable) {
1320     // Everything that jumped to BB now goes to Succ.
1321     BB->replaceAllUsesWith(Succ);
1322 
1323     if (!Succ->hasName())
1324       Succ->takeName(BB);
1325 
1326     // Clear the successor list of BB to match updates applying to DTU later.
1327     if (BB->getTerminator())
1328       BB->back().eraseFromParent();
1329 
1330     new UnreachableInst(BB->getContext(), BB);
1331     assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1332                              "applying corresponding DTU updates.");
1333   } else if (BBPhisMergeable) {
1334     //  Everything except CommonPred that jumped to BB now goes to Succ.
1335     BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool {
1336       if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser()))
1337         return UseInst->getParent() != CommonPred &&
1338                BBPreds.contains(UseInst->getParent());
1339       return false;
1340     });
1341   }
1342 
1343   if (DTU)
1344     DTU->applyUpdates(Updates);
1345 
1346   if (BBKillable)
1347     DeleteDeadBlock(BB, DTU);
1348 
1349   return true;
1350 }
1351 
1352 static bool
1353 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB,
1354                                     SmallPtrSetImpl<PHINode *> &ToRemove) {
1355   // This implementation doesn't currently consider undef operands
1356   // specially. Theoretically, two phis which are identical except for
1357   // one having an undef where the other doesn't could be collapsed.
1358 
1359   bool Changed = false;
1360 
1361   // Examine each PHI.
1362   // Note that increment of I must *NOT* be in the iteration_expression, since
1363   // we don't want to immediately advance when we restart from the beginning.
1364   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1365     ++I;
1366     // Is there an identical PHI node in this basic block?
1367     // Note that we only look in the upper square's triangle,
1368     // we already checked that the lower triangle PHI's aren't identical.
1369     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1370       if (ToRemove.contains(DuplicatePN))
1371         continue;
1372       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1373         continue;
1374       // A duplicate. Replace this PHI with the base PHI.
1375       ++NumPHICSEs;
1376       DuplicatePN->replaceAllUsesWith(PN);
1377       ToRemove.insert(DuplicatePN);
1378       Changed = true;
1379 
1380       // The RAUW can change PHIs that we already visited.
1381       I = BB->begin();
1382       break; // Start over from the beginning.
1383     }
1384   }
1385   return Changed;
1386 }
1387 
1388 static bool
1389 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB,
1390                                        SmallPtrSetImpl<PHINode *> &ToRemove) {
1391   // This implementation doesn't currently consider undef operands
1392   // specially. Theoretically, two phis which are identical except for
1393   // one having an undef where the other doesn't could be collapsed.
1394 
1395   struct PHIDenseMapInfo {
1396     static PHINode *getEmptyKey() {
1397       return DenseMapInfo<PHINode *>::getEmptyKey();
1398     }
1399 
1400     static PHINode *getTombstoneKey() {
1401       return DenseMapInfo<PHINode *>::getTombstoneKey();
1402     }
1403 
1404     static bool isSentinel(PHINode *PN) {
1405       return PN == getEmptyKey() || PN == getTombstoneKey();
1406     }
1407 
1408     // WARNING: this logic must be kept in sync with
1409     //          Instruction::isIdenticalToWhenDefined()!
1410     static unsigned getHashValueImpl(PHINode *PN) {
1411       // Compute a hash value on the operands. Instcombine will likely have
1412       // sorted them, which helps expose duplicates, but we have to check all
1413       // the operands to be safe in case instcombine hasn't run.
1414       return static_cast<unsigned>(hash_combine(
1415           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1416           hash_combine_range(PN->block_begin(), PN->block_end())));
1417     }
1418 
1419     static unsigned getHashValue(PHINode *PN) {
1420 #ifndef NDEBUG
1421       // If -phicse-debug-hash was specified, return a constant -- this
1422       // will force all hashing to collide, so we'll exhaustively search
1423       // the table for a match, and the assertion in isEqual will fire if
1424       // there's a bug causing equal keys to hash differently.
1425       if (PHICSEDebugHash)
1426         return 0;
1427 #endif
1428       return getHashValueImpl(PN);
1429     }
1430 
1431     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1432       if (isSentinel(LHS) || isSentinel(RHS))
1433         return LHS == RHS;
1434       return LHS->isIdenticalTo(RHS);
1435     }
1436 
1437     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1438       // These comparisons are nontrivial, so assert that equality implies
1439       // hash equality (DenseMap demands this as an invariant).
1440       bool Result = isEqualImpl(LHS, RHS);
1441       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1442              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1443       return Result;
1444     }
1445   };
1446 
1447   // Set of unique PHINodes.
1448   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1449   PHISet.reserve(4 * PHICSENumPHISmallSize);
1450 
1451   // Examine each PHI.
1452   bool Changed = false;
1453   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1454     if (ToRemove.contains(PN))
1455       continue;
1456     auto Inserted = PHISet.insert(PN);
1457     if (!Inserted.second) {
1458       // A duplicate. Replace this PHI with its duplicate.
1459       ++NumPHICSEs;
1460       PN->replaceAllUsesWith(*Inserted.first);
1461       ToRemove.insert(PN);
1462       Changed = true;
1463 
1464       // The RAUW can change PHIs that we already visited. Start over from the
1465       // beginning.
1466       PHISet.clear();
1467       I = BB->begin();
1468     }
1469   }
1470 
1471   return Changed;
1472 }
1473 
1474 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB,
1475                                       SmallPtrSetImpl<PHINode *> &ToRemove) {
1476   if (
1477 #ifndef NDEBUG
1478       !PHICSEDebugHash &&
1479 #endif
1480       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1481     return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove);
1482   return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove);
1483 }
1484 
1485 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1486   SmallPtrSet<PHINode *, 8> ToRemove;
1487   bool Changed = EliminateDuplicatePHINodes(BB, ToRemove);
1488   for (PHINode *PN : ToRemove)
1489     PN->eraseFromParent();
1490   return Changed;
1491 }
1492 
1493 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign,
1494                                 const DataLayout &DL) {
1495   V = V->stripPointerCasts();
1496 
1497   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1498     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1499     // than the current alignment, as the known bits calculation should have
1500     // already taken it into account. However, this is not always the case,
1501     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1502     // doesn't.
1503     Align CurrentAlign = AI->getAlign();
1504     if (PrefAlign <= CurrentAlign)
1505       return CurrentAlign;
1506 
1507     // If the preferred alignment is greater than the natural stack alignment
1508     // then don't round up. This avoids dynamic stack realignment.
1509     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1510       return CurrentAlign;
1511     AI->setAlignment(PrefAlign);
1512     return PrefAlign;
1513   }
1514 
1515   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1516     // TODO: as above, this shouldn't be necessary.
1517     Align CurrentAlign = GO->getPointerAlignment(DL);
1518     if (PrefAlign <= CurrentAlign)
1519       return CurrentAlign;
1520 
1521     // If there is a large requested alignment and we can, bump up the alignment
1522     // of the global.  If the memory we set aside for the global may not be the
1523     // memory used by the final program then it is impossible for us to reliably
1524     // enforce the preferred alignment.
1525     if (!GO->canIncreaseAlignment())
1526       return CurrentAlign;
1527 
1528     if (GO->isThreadLocal()) {
1529       unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT;
1530       if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign))
1531         PrefAlign = Align(MaxTLSAlign);
1532     }
1533 
1534     GO->setAlignment(PrefAlign);
1535     return PrefAlign;
1536   }
1537 
1538   return Align(1);
1539 }
1540 
1541 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1542                                        const DataLayout &DL,
1543                                        const Instruction *CxtI,
1544                                        AssumptionCache *AC,
1545                                        const DominatorTree *DT) {
1546   assert(V->getType()->isPointerTy() &&
1547          "getOrEnforceKnownAlignment expects a pointer!");
1548 
1549   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1550   unsigned TrailZ = Known.countMinTrailingZeros();
1551 
1552   // Avoid trouble with ridiculously large TrailZ values, such as
1553   // those computed from a null pointer.
1554   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1555   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1556 
1557   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1558 
1559   if (PrefAlign && *PrefAlign > Alignment)
1560     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1561 
1562   // We don't need to make any adjustment.
1563   return Alignment;
1564 }
1565 
1566 ///===---------------------------------------------------------------------===//
1567 ///  Dbg Intrinsic utilities
1568 ///
1569 
1570 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1571 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1572                              DIExpression *DIExpr,
1573                              PHINode *APN) {
1574   // Since we can't guarantee that the original dbg.declare intrinsic
1575   // is removed by LowerDbgDeclare(), we need to make sure that we are
1576   // not inserting the same dbg.value intrinsic over and over.
1577   SmallVector<DbgValueInst *, 1> DbgValues;
1578   SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
1579   findDbgValues(DbgValues, APN, &DbgVariableRecords);
1580   for (auto *DVI : DbgValues) {
1581     assert(is_contained(DVI->getValues(), APN));
1582     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1583       return true;
1584   }
1585   for (auto *DVR : DbgVariableRecords) {
1586     assert(is_contained(DVR->location_ops(), APN));
1587     if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr))
1588       return true;
1589   }
1590   return false;
1591 }
1592 
1593 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1594 /// (or fragment of the variable) described by \p DII.
1595 ///
1596 /// This is primarily intended as a helper for the different
1597 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted
1598 /// describes an alloca'd variable, so we need to use the alloc size of the
1599 /// value when doing the comparison. E.g. an i1 value will be identified as
1600 /// covering an n-bit fragment, if the store size of i1 is at least n bits.
1601 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1602   const DataLayout &DL = DII->getDataLayout();
1603   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1604   if (std::optional<uint64_t> FragmentSize =
1605           DII->getExpression()->getActiveBits(DII->getVariable()))
1606     return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1607 
1608   // We can't always calculate the size of the DI variable (e.g. if it is a
1609   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1610   // intead.
1611   if (DII->isAddressOfVariable()) {
1612     // DII should have exactly 1 location when it is an address.
1613     assert(DII->getNumVariableLocationOps() == 1 &&
1614            "address of variable must have exactly 1 location operand.");
1615     if (auto *AI =
1616             dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1617       if (std::optional<TypeSize> FragmentSize =
1618               AI->getAllocationSizeInBits(DL)) {
1619         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1620       }
1621     }
1622   }
1623   // Could not determine size of variable. Conservatively return false.
1624   return false;
1625 }
1626 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords,
1627 // the replacement for dbg.values.
1628 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) {
1629   const DataLayout &DL = DVR->getModule()->getDataLayout();
1630   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1631   if (std::optional<uint64_t> FragmentSize =
1632           DVR->getExpression()->getActiveBits(DVR->getVariable()))
1633     return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
1634 
1635   // We can't always calculate the size of the DI variable (e.g. if it is a
1636   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1637   // intead.
1638   if (DVR->isAddressOfVariable()) {
1639     // DVR should have exactly 1 location when it is an address.
1640     assert(DVR->getNumVariableLocationOps() == 1 &&
1641            "address of variable must have exactly 1 location operand.");
1642     if (auto *AI =
1643             dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) {
1644       if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1645         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1646       }
1647     }
1648   }
1649   // Could not determine size of variable. Conservatively return false.
1650   return false;
1651 }
1652 
1653 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV,
1654                                               DILocalVariable *DIVar,
1655                                               DIExpression *DIExpr,
1656                                               const DebugLoc &NewLoc,
1657                                               BasicBlock::iterator Instr) {
1658   if (!UseNewDbgInfoFormat) {
1659     auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1660                                                   (Instruction *)nullptr);
1661     DbgVal.get<Instruction *>()->insertBefore(Instr);
1662   } else {
1663     // RemoveDIs: if we're using the new debug-info format, allocate a
1664     // DbgVariableRecord directly instead of a dbg.value intrinsic.
1665     ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1666     DbgVariableRecord *DV =
1667         new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1668     Instr->getParent()->insertDbgRecordBefore(DV, Instr);
1669   }
1670 }
1671 
1672 static void insertDbgValueOrDbgVariableRecordAfter(
1673     DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr,
1674     const DebugLoc &NewLoc, BasicBlock::iterator Instr) {
1675   if (!UseNewDbgInfoFormat) {
1676     auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
1677                                                   (Instruction *)nullptr);
1678     DbgVal.get<Instruction *>()->insertAfter(&*Instr);
1679   } else {
1680     // RemoveDIs: if we're using the new debug-info format, allocate a
1681     // DbgVariableRecord directly instead of a dbg.value intrinsic.
1682     ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1683     DbgVariableRecord *DV =
1684         new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1685     Instr->getParent()->insertDbgRecordAfter(DV, &*Instr);
1686   }
1687 }
1688 
1689 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1690 /// that has an associated llvm.dbg.declare intrinsic.
1691 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1692                                            StoreInst *SI, DIBuilder &Builder) {
1693   assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII));
1694   auto *DIVar = DII->getVariable();
1695   assert(DIVar && "Missing variable");
1696   auto *DIExpr = DII->getExpression();
1697   Value *DV = SI->getValueOperand();
1698 
1699   DebugLoc NewLoc = getDebugValueLoc(DII);
1700 
1701   // If the alloca describes the variable itself, i.e. the expression in the
1702   // dbg.declare doesn't start with a dereference, we can perform the
1703   // conversion if the value covers the entire fragment of DII.
1704   // If the alloca describes the *address* of DIVar, i.e. DIExpr is
1705   // *just* a DW_OP_deref, we use DV as is for the dbg.value.
1706   // We conservatively ignore other dereferences, because the following two are
1707   // not equivalent:
1708   //     dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1709   //     dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1710   // The former is adding 2 to the address of the variable, whereas the latter
1711   // is adding 2 to the value of the variable. As such, we insist on just a
1712   // deref expression.
1713   bool CanConvert =
1714       DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1715                             valueCoversEntireFragment(DV->getType(), DII));
1716   if (CanConvert) {
1717     insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1718                                       SI->getIterator());
1719     return;
1720   }
1721 
1722   // FIXME: If storing to a part of the variable described by the dbg.declare,
1723   // then we want to insert a dbg.value for the corresponding fragment.
1724   LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII
1725                     << '\n');
1726   // For now, when there is a store to parts of the variable (but we do not
1727   // know which part) we insert an dbg.value intrinsic to indicate that we
1728   // know nothing about the variable's content.
1729   DV = PoisonValue::get(DV->getType());
1730   insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1731                                     SI->getIterator());
1732 }
1733 
1734 static DIExpression *dropInitialDeref(const DIExpression *DIExpr) {
1735   int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1;
1736   return DIExpression::get(DIExpr->getContext(),
1737                            DIExpr->getElements().drop_front(NumEltDropped));
1738 }
1739 
1740 void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI,
1741                                       DIBuilder &Builder) {
1742   auto *DIVar = DII->getVariable();
1743   assert(DIVar && "Missing variable");
1744   auto *DIExpr = DII->getExpression();
1745   DIExpr = dropInitialDeref(DIExpr);
1746   Value *DV = SI->getValueOperand();
1747 
1748   DebugLoc NewLoc = getDebugValueLoc(DII);
1749 
1750   insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1751                                     SI->getIterator());
1752 }
1753 
1754 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1755 /// that has an associated llvm.dbg.declare intrinsic.
1756 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1757                                            LoadInst *LI, DIBuilder &Builder) {
1758   auto *DIVar = DII->getVariable();
1759   auto *DIExpr = DII->getExpression();
1760   assert(DIVar && "Missing variable");
1761 
1762   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1763     // FIXME: If only referring to a part of the variable described by the
1764     // dbg.declare, then we want to insert a dbg.value for the corresponding
1765     // fragment.
1766     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1767                       << *DII << '\n');
1768     return;
1769   }
1770 
1771   DebugLoc NewLoc = getDebugValueLoc(DII);
1772 
1773   // We are now tracking the loaded value instead of the address. In the
1774   // future if multi-location support is added to the IR, it might be
1775   // preferable to keep tracking both the loaded value and the original
1776   // address in case the alloca can not be elided.
1777   insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc,
1778                                          LI->getIterator());
1779 }
1780 
1781 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR,
1782                                            StoreInst *SI, DIBuilder &Builder) {
1783   assert(DVR->isAddressOfVariable() || DVR->isDbgAssign());
1784   auto *DIVar = DVR->getVariable();
1785   assert(DIVar && "Missing variable");
1786   auto *DIExpr = DVR->getExpression();
1787   Value *DV = SI->getValueOperand();
1788 
1789   DebugLoc NewLoc = getDebugValueLoc(DVR);
1790 
1791   // If the alloca describes the variable itself, i.e. the expression in the
1792   // dbg.declare doesn't start with a dereference, we can perform the
1793   // conversion if the value covers the entire fragment of DII.
1794   // If the alloca describes the *address* of DIVar, i.e. DIExpr is
1795   // *just* a DW_OP_deref, we use DV as is for the dbg.value.
1796   // We conservatively ignore other dereferences, because the following two are
1797   // not equivalent:
1798   //     dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
1799   //     dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
1800   // The former is adding 2 to the address of the variable, whereas the latter
1801   // is adding 2 to the value of the variable. As such, we insist on just a
1802   // deref expression.
1803   bool CanConvert =
1804       DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
1805                             valueCoversEntireFragment(DV->getType(), DVR));
1806   if (CanConvert) {
1807     insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1808                                       SI->getIterator());
1809     return;
1810   }
1811 
1812   // FIXME: If storing to a part of the variable described by the dbg.declare,
1813   // then we want to insert a dbg.value for the corresponding fragment.
1814   LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR
1815                     << '\n');
1816   assert(UseNewDbgInfoFormat);
1817 
1818   // For now, when there is a store to parts of the variable (but we do not
1819   // know which part) we insert an dbg.value intrinsic to indicate that we
1820   // know nothing about the variable's content.
1821   DV = PoisonValue::get(DV->getType());
1822   ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
1823   DbgVariableRecord *NewDVR =
1824       new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get());
1825   SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator());
1826 }
1827 
1828 void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI,
1829                                       DIBuilder &Builder) {
1830   auto *DIVar = DVR->getVariable();
1831   assert(DIVar && "Missing variable");
1832   auto *DIExpr = DVR->getExpression();
1833   DIExpr = dropInitialDeref(DIExpr);
1834   Value *DV = SI->getValueOperand();
1835 
1836   DebugLoc NewLoc = getDebugValueLoc(DVR);
1837 
1838   insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc,
1839                                     SI->getIterator());
1840 }
1841 
1842 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1843 /// llvm.dbg.declare intrinsic.
1844 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1845                                            PHINode *APN, DIBuilder &Builder) {
1846   auto *DIVar = DII->getVariable();
1847   auto *DIExpr = DII->getExpression();
1848   assert(DIVar && "Missing variable");
1849 
1850   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1851     return;
1852 
1853   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1854     // FIXME: If only referring to a part of the variable described by the
1855     // dbg.declare, then we want to insert a dbg.value for the corresponding
1856     // fragment.
1857     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1858                       << *DII << '\n');
1859     return;
1860   }
1861 
1862   BasicBlock *BB = APN->getParent();
1863   auto InsertionPt = BB->getFirstInsertionPt();
1864 
1865   DebugLoc NewLoc = getDebugValueLoc(DII);
1866 
1867   // The block may be a catchswitch block, which does not have a valid
1868   // insertion point.
1869   // FIXME: Insert dbg.value markers in the successors when appropriate.
1870   if (InsertionPt != BB->end()) {
1871     insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc,
1872                                       InsertionPt);
1873   }
1874 }
1875 
1876 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI,
1877                                            DIBuilder &Builder) {
1878   auto *DIVar = DVR->getVariable();
1879   auto *DIExpr = DVR->getExpression();
1880   assert(DIVar && "Missing variable");
1881 
1882   if (!valueCoversEntireFragment(LI->getType(), DVR)) {
1883     // FIXME: If only referring to a part of the variable described by the
1884     // dbg.declare, then we want to insert a DbgVariableRecord for the
1885     // corresponding fragment.
1886     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: "
1887                       << *DVR << '\n');
1888     return;
1889   }
1890 
1891   DebugLoc NewLoc = getDebugValueLoc(DVR);
1892 
1893   // We are now tracking the loaded value instead of the address. In the
1894   // future if multi-location support is added to the IR, it might be
1895   // preferable to keep tracking both the loaded value and the original
1896   // address in case the alloca can not be elided.
1897   assert(UseNewDbgInfoFormat);
1898 
1899   // Create a DbgVariableRecord directly and insert.
1900   ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI);
1901   DbgVariableRecord *DV =
1902       new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get());
1903   LI->getParent()->insertDbgRecordAfter(DV, LI);
1904 }
1905 
1906 /// Determine whether this alloca is either a VLA or an array.
1907 static bool isArray(AllocaInst *AI) {
1908   return AI->isArrayAllocation() ||
1909          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1910 }
1911 
1912 /// Determine whether this alloca is a structure.
1913 static bool isStructure(AllocaInst *AI) {
1914   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1915 }
1916 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN,
1917                                            DIBuilder &Builder) {
1918   auto *DIVar = DVR->getVariable();
1919   auto *DIExpr = DVR->getExpression();
1920   assert(DIVar && "Missing variable");
1921 
1922   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1923     return;
1924 
1925   if (!valueCoversEntireFragment(APN->getType(), DVR)) {
1926     // FIXME: If only referring to a part of the variable described by the
1927     // dbg.declare, then we want to insert a DbgVariableRecord for the
1928     // corresponding fragment.
1929     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: "
1930                       << *DVR << '\n');
1931     return;
1932   }
1933 
1934   BasicBlock *BB = APN->getParent();
1935   auto InsertionPt = BB->getFirstInsertionPt();
1936 
1937   DebugLoc NewLoc = getDebugValueLoc(DVR);
1938 
1939   // The block may be a catchswitch block, which does not have a valid
1940   // insertion point.
1941   // FIXME: Insert DbgVariableRecord markers in the successors when appropriate.
1942   if (InsertionPt != BB->end()) {
1943     insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc,
1944                                       InsertionPt);
1945   }
1946 }
1947 
1948 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1949 /// of llvm.dbg.value intrinsics.
1950 bool llvm::LowerDbgDeclare(Function &F) {
1951   bool Changed = false;
1952   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1953   SmallVector<DbgDeclareInst *, 4> Dbgs;
1954   SmallVector<DbgVariableRecord *> DVRs;
1955   for (auto &FI : F) {
1956     for (Instruction &BI : FI) {
1957       if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI))
1958         Dbgs.push_back(DDI);
1959       for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) {
1960         if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
1961           DVRs.push_back(&DVR);
1962       }
1963     }
1964   }
1965 
1966   if (Dbgs.empty() && DVRs.empty())
1967     return Changed;
1968 
1969   auto LowerOne = [&](auto *DDI) {
1970     AllocaInst *AI =
1971         dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0));
1972     // If this is an alloca for a scalar variable, insert a dbg.value
1973     // at each load and store to the alloca and erase the dbg.declare.
1974     // The dbg.values allow tracking a variable even if it is not
1975     // stored on the stack, while the dbg.declare can only describe
1976     // the stack slot (and at a lexical-scope granularity). Later
1977     // passes will attempt to elide the stack slot.
1978     if (!AI || isArray(AI) || isStructure(AI))
1979       return;
1980 
1981     // A volatile load/store means that the alloca can't be elided anyway.
1982     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1983           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1984             return LI->isVolatile();
1985           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1986             return SI->isVolatile();
1987           return false;
1988         }))
1989       return;
1990 
1991     SmallVector<const Value *, 8> WorkList;
1992     WorkList.push_back(AI);
1993     while (!WorkList.empty()) {
1994       const Value *V = WorkList.pop_back_val();
1995       for (const auto &AIUse : V->uses()) {
1996         User *U = AIUse.getUser();
1997         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1998           if (AIUse.getOperandNo() == 1)
1999             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
2000         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2001           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
2002         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
2003           // This is a call by-value or some other instruction that takes a
2004           // pointer to the variable. Insert a *value* intrinsic that describes
2005           // the variable by dereferencing the alloca.
2006           if (!CI->isLifetimeStartOrEnd()) {
2007             DebugLoc NewLoc = getDebugValueLoc(DDI);
2008             auto *DerefExpr =
2009                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
2010             insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(),
2011                                               DerefExpr, NewLoc,
2012                                               CI->getIterator());
2013           }
2014         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
2015           if (BI->getType()->isPointerTy())
2016             WorkList.push_back(BI);
2017         }
2018       }
2019     }
2020     DDI->eraseFromParent();
2021     Changed = true;
2022   };
2023 
2024   for_each(Dbgs, LowerOne);
2025   for_each(DVRs, LowerOne);
2026 
2027   if (Changed)
2028     for (BasicBlock &BB : F)
2029       RemoveRedundantDbgInstrs(&BB);
2030 
2031   return Changed;
2032 }
2033 
2034 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the
2035 // debug-info out of the block's DbgVariableRecords rather than dbg.value
2036 // intrinsics.
2037 static void
2038 insertDbgVariableRecordsForPHIs(BasicBlock *BB,
2039                                 SmallVectorImpl<PHINode *> &InsertedPHIs) {
2040   assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from.");
2041   if (InsertedPHIs.size() == 0)
2042     return;
2043 
2044   // Map existing PHI nodes to their DbgVariableRecords.
2045   DenseMap<Value *, DbgVariableRecord *> DbgValueMap;
2046   for (auto &I : *BB) {
2047     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
2048       for (Value *V : DVR.location_ops())
2049         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2050           DbgValueMap.insert({Loc, &DVR});
2051     }
2052   }
2053   if (DbgValueMap.size() == 0)
2054     return;
2055 
2056   // Map a pair of the destination BB and old DbgVariableRecord to the new
2057   // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use
2058   // more than one of the inserted PHIs in the same destination BB, we can
2059   // update the same DbgVariableRecord with all the new PHIs instead of creating
2060   // one copy for each.
2061   MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *>
2062       NewDbgValueMap;
2063   // Then iterate through the new PHIs and look to see if they use one of the
2064   // previously mapped PHIs. If so, create a new DbgVariableRecord that will
2065   // propagate the info through the new PHI. If we use more than one new PHI in
2066   // a single destination BB with the same old dbg.value, merge the updates so
2067   // that we get a single new DbgVariableRecord with all the new PHIs.
2068   for (auto PHI : InsertedPHIs) {
2069     BasicBlock *Parent = PHI->getParent();
2070     // Avoid inserting a debug-info record into an EH block.
2071     if (Parent->getFirstNonPHI()->isEHPad())
2072       continue;
2073     for (auto VI : PHI->operand_values()) {
2074       auto V = DbgValueMap.find(VI);
2075       if (V != DbgValueMap.end()) {
2076         DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second);
2077         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2078         if (NewDI == NewDbgValueMap.end()) {
2079           DbgVariableRecord *NewDbgII = DbgII->clone();
2080           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2081         }
2082         DbgVariableRecord *NewDbgII = NewDI->second;
2083         // If PHI contains VI as an operand more than once, we may
2084         // replaced it in NewDbgII; confirm that it is present.
2085         if (is_contained(NewDbgII->location_ops(), VI))
2086           NewDbgII->replaceVariableLocationOp(VI, PHI);
2087       }
2088     }
2089   }
2090   // Insert the new DbgVariableRecords into their destination blocks.
2091   for (auto DI : NewDbgValueMap) {
2092     BasicBlock *Parent = DI.first.first;
2093     DbgVariableRecord *NewDbgII = DI.second;
2094     auto InsertionPt = Parent->getFirstInsertionPt();
2095     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2096 
2097     Parent->insertDbgRecordBefore(NewDbgII, InsertionPt);
2098   }
2099 }
2100 
2101 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
2102 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
2103                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
2104   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
2105   if (InsertedPHIs.size() == 0)
2106     return;
2107 
2108   insertDbgVariableRecordsForPHIs(BB, InsertedPHIs);
2109 
2110   // Map existing PHI nodes to their dbg.values.
2111   ValueToValueMapTy DbgValueMap;
2112   for (auto &I : *BB) {
2113     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2114       for (Value *V : DbgII->location_ops())
2115         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
2116           DbgValueMap.insert({Loc, DbgII});
2117     }
2118   }
2119   if (DbgValueMap.size() == 0)
2120     return;
2121 
2122   // Map a pair of the destination BB and old dbg.value to the new dbg.value,
2123   // so that if a dbg.value is being rewritten to use more than one of the
2124   // inserted PHIs in the same destination BB, we can update the same dbg.value
2125   // with all the new PHIs instead of creating one copy for each.
2126   MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
2127             DbgVariableIntrinsic *>
2128       NewDbgValueMap;
2129   // Then iterate through the new PHIs and look to see if they use one of the
2130   // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
2131   // propagate the info through the new PHI. If we use more than one new PHI in
2132   // a single destination BB with the same old dbg.value, merge the updates so
2133   // that we get a single new dbg.value with all the new PHIs.
2134   for (auto *PHI : InsertedPHIs) {
2135     BasicBlock *Parent = PHI->getParent();
2136     // Avoid inserting an intrinsic into an EH block.
2137     if (Parent->getFirstNonPHI()->isEHPad())
2138       continue;
2139     for (auto *VI : PHI->operand_values()) {
2140       auto V = DbgValueMap.find(VI);
2141       if (V != DbgValueMap.end()) {
2142         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
2143         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
2144         if (NewDI == NewDbgValueMap.end()) {
2145           auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
2146           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
2147         }
2148         DbgVariableIntrinsic *NewDbgII = NewDI->second;
2149         // If PHI contains VI as an operand more than once, we may
2150         // replaced it in NewDbgII; confirm that it is present.
2151         if (is_contained(NewDbgII->location_ops(), VI))
2152           NewDbgII->replaceVariableLocationOp(VI, PHI);
2153       }
2154     }
2155   }
2156   // Insert thew new dbg.values into their destination blocks.
2157   for (auto DI : NewDbgValueMap) {
2158     BasicBlock *Parent = DI.first.first;
2159     auto *NewDbgII = DI.second;
2160     auto InsertionPt = Parent->getFirstInsertionPt();
2161     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
2162     NewDbgII->insertBefore(&*InsertionPt);
2163   }
2164 }
2165 
2166 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
2167                              DIBuilder &Builder, uint8_t DIExprFlags,
2168                              int Offset) {
2169   TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address);
2170   TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address);
2171 
2172   auto ReplaceOne = [&](auto *DII) {
2173     assert(DII->getVariable() && "Missing variable");
2174     auto *DIExpr = DII->getExpression();
2175     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
2176     DII->setExpression(DIExpr);
2177     DII->replaceVariableLocationOp(Address, NewAddress);
2178   };
2179 
2180   for_each(DbgDeclares, ReplaceOne);
2181   for_each(DVRDeclares, ReplaceOne);
2182 
2183   return !DbgDeclares.empty() || !DVRDeclares.empty();
2184 }
2185 
2186 static void updateOneDbgValueForAlloca(const DebugLoc &Loc,
2187                                        DILocalVariable *DIVar,
2188                                        DIExpression *DIExpr, Value *NewAddress,
2189                                        DbgValueInst *DVI,
2190                                        DbgVariableRecord *DVR,
2191                                        DIBuilder &Builder, int Offset) {
2192   assert(DIVar && "Missing variable");
2193 
2194   // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it
2195   // should do with the alloca pointer is dereference it. Otherwise we don't
2196   // know how to handle it and give up.
2197   if (!DIExpr || DIExpr->getNumElements() < 1 ||
2198       DIExpr->getElement(0) != dwarf::DW_OP_deref)
2199     return;
2200 
2201   // Insert the offset before the first deref.
2202   if (Offset)
2203     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
2204 
2205   if (DVI) {
2206     DVI->setExpression(DIExpr);
2207     DVI->replaceVariableLocationOp(0u, NewAddress);
2208   } else {
2209     assert(DVR);
2210     DVR->setExpression(DIExpr);
2211     DVR->replaceVariableLocationOp(0u, NewAddress);
2212   }
2213 }
2214 
2215 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
2216                                     DIBuilder &Builder, int Offset) {
2217   SmallVector<DbgValueInst *, 1> DbgUsers;
2218   SmallVector<DbgVariableRecord *, 1> DPUsers;
2219   findDbgValues(DbgUsers, AI, &DPUsers);
2220 
2221   // Attempt to replace dbg.values that use this alloca.
2222   for (auto *DVI : DbgUsers)
2223     updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(),
2224                                DVI->getExpression(), NewAllocaAddress, DVI,
2225                                nullptr, Builder, Offset);
2226 
2227   // Replace any DbgVariableRecords that use this alloca.
2228   for (DbgVariableRecord *DVR : DPUsers)
2229     updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(),
2230                                DVR->getExpression(), NewAllocaAddress, nullptr,
2231                                DVR, Builder, Offset);
2232 }
2233 
2234 /// Where possible to salvage debug information for \p I do so.
2235 /// If not possible mark undef.
2236 void llvm::salvageDebugInfo(Instruction &I) {
2237   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2238   SmallVector<DbgVariableRecord *, 1> DPUsers;
2239   findDbgUsers(DbgUsers, &I, &DPUsers);
2240   salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers);
2241 }
2242 
2243 template <typename T> static void salvageDbgAssignAddress(T *Assign) {
2244   Instruction *I = dyn_cast<Instruction>(Assign->getAddress());
2245   // Only instructions can be salvaged at the moment.
2246   if (!I)
2247     return;
2248 
2249   assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() &&
2250          "address-expression shouldn't have fragment info");
2251 
2252   // The address component of a dbg.assign cannot be variadic.
2253   uint64_t CurrentLocOps = 0;
2254   SmallVector<Value *, 4> AdditionalValues;
2255   SmallVector<uint64_t, 16> Ops;
2256   Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues);
2257 
2258   // Check if the salvage failed.
2259   if (!NewV)
2260     return;
2261 
2262   DIExpression *SalvagedExpr = DIExpression::appendOpsToArg(
2263       Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false);
2264   assert(!SalvagedExpr->getFragmentInfo().has_value() &&
2265          "address-expression shouldn't have fragment info");
2266 
2267   SalvagedExpr = SalvagedExpr->foldConstantMath();
2268 
2269   // Salvage succeeds if no additional values are required.
2270   if (AdditionalValues.empty()) {
2271     Assign->setAddress(NewV);
2272     Assign->setAddressExpression(SalvagedExpr);
2273   } else {
2274     Assign->setKillAddress();
2275   }
2276 }
2277 
2278 void llvm::salvageDebugInfoForDbgValues(
2279     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers,
2280     ArrayRef<DbgVariableRecord *> DPUsers) {
2281   // These are arbitrary chosen limits on the maximum number of values and the
2282   // maximum size of a debug expression we can salvage up to, used for
2283   // performance reasons.
2284   const unsigned MaxDebugArgs = 16;
2285   const unsigned MaxExpressionSize = 128;
2286   bool Salvaged = false;
2287 
2288   for (auto *DII : DbgUsers) {
2289     if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) {
2290       if (DAI->getAddress() == &I) {
2291         salvageDbgAssignAddress(DAI);
2292         Salvaged = true;
2293       }
2294       if (DAI->getValue() != &I)
2295         continue;
2296     }
2297 
2298     // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly
2299     // pointing out the value as a DWARF memory location description.
2300     bool StackValue = isa<DbgValueInst>(DII);
2301     auto DIILocation = DII->location_ops();
2302     assert(
2303         is_contained(DIILocation, &I) &&
2304         "DbgVariableIntrinsic must use salvaged instruction as its location");
2305     SmallVector<Value *, 4> AdditionalValues;
2306     // `I` may appear more than once in DII's location ops, and each use of `I`
2307     // must be updated in the DIExpression and potentially have additional
2308     // values added; thus we call salvageDebugInfoImpl for each `I` instance in
2309     // DIILocation.
2310     Value *Op0 = nullptr;
2311     DIExpression *SalvagedExpr = DII->getExpression();
2312     auto LocItr = find(DIILocation, &I);
2313     while (SalvagedExpr && LocItr != DIILocation.end()) {
2314       SmallVector<uint64_t, 16> Ops;
2315       unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
2316       uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2317       Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2318       if (!Op0)
2319         break;
2320       SalvagedExpr =
2321           DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2322       LocItr = std::find(++LocItr, DIILocation.end(), &I);
2323     }
2324     // salvageDebugInfoImpl should fail on examining the first element of
2325     // DbgUsers, or none of them.
2326     if (!Op0)
2327       break;
2328 
2329     SalvagedExpr = SalvagedExpr->foldConstantMath();
2330     DII->replaceVariableLocationOp(&I, Op0);
2331     bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
2332     if (AdditionalValues.empty() && IsValidSalvageExpr) {
2333       DII->setExpression(SalvagedExpr);
2334     } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
2335                DII->getNumVariableLocationOps() + AdditionalValues.size() <=
2336                    MaxDebugArgs) {
2337       DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2338     } else {
2339       // Do not salvage using DIArgList for dbg.declare, as it is not currently
2340       // supported in those instructions. Also do not salvage if the resulting
2341       // DIArgList would contain an unreasonably large number of values.
2342       DII->setKillLocation();
2343     }
2344     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
2345     Salvaged = true;
2346   }
2347   // Duplicate of above block for DbgVariableRecords.
2348   for (auto *DVR : DPUsers) {
2349     if (DVR->isDbgAssign()) {
2350       if (DVR->getAddress() == &I) {
2351         salvageDbgAssignAddress(DVR);
2352         Salvaged = true;
2353       }
2354       if (DVR->getValue() != &I)
2355         continue;
2356     }
2357 
2358     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
2359     // are implicitly pointing out the value as a DWARF memory location
2360     // description.
2361     bool StackValue =
2362         DVR->getType() != DbgVariableRecord::LocationType::Declare;
2363     auto DVRLocation = DVR->location_ops();
2364     assert(
2365         is_contained(DVRLocation, &I) &&
2366         "DbgVariableIntrinsic must use salvaged instruction as its location");
2367     SmallVector<Value *, 4> AdditionalValues;
2368     // 'I' may appear more than once in DVR's location ops, and each use of 'I'
2369     // must be updated in the DIExpression and potentially have additional
2370     // values added; thus we call salvageDebugInfoImpl for each 'I' instance in
2371     // DVRLocation.
2372     Value *Op0 = nullptr;
2373     DIExpression *SalvagedExpr = DVR->getExpression();
2374     auto LocItr = find(DVRLocation, &I);
2375     while (SalvagedExpr && LocItr != DVRLocation.end()) {
2376       SmallVector<uint64_t, 16> Ops;
2377       unsigned LocNo = std::distance(DVRLocation.begin(), LocItr);
2378       uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
2379       Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
2380       if (!Op0)
2381         break;
2382       SalvagedExpr =
2383           DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
2384       LocItr = std::find(++LocItr, DVRLocation.end(), &I);
2385     }
2386     // salvageDebugInfoImpl should fail on examining the first element of
2387     // DbgUsers, or none of them.
2388     if (!Op0)
2389       break;
2390 
2391     SalvagedExpr = SalvagedExpr->foldConstantMath();
2392     DVR->replaceVariableLocationOp(&I, Op0);
2393     bool IsValidSalvageExpr =
2394         SalvagedExpr->getNumElements() <= MaxExpressionSize;
2395     if (AdditionalValues.empty() && IsValidSalvageExpr) {
2396       DVR->setExpression(SalvagedExpr);
2397     } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare &&
2398                IsValidSalvageExpr &&
2399                DVR->getNumVariableLocationOps() + AdditionalValues.size() <=
2400                    MaxDebugArgs) {
2401       DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr);
2402     } else {
2403       // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
2404       // currently only valid for stack value expressions.
2405       // Also do not salvage if the resulting DIArgList would contain an
2406       // unreasonably large number of values.
2407       DVR->setKillLocation();
2408     }
2409     LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n');
2410     Salvaged = true;
2411   }
2412 
2413   if (Salvaged)
2414     return;
2415 
2416   for (auto *DII : DbgUsers)
2417     DII->setKillLocation();
2418 
2419   for (auto *DVR : DPUsers)
2420     DVR->setKillLocation();
2421 }
2422 
2423 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
2424                            uint64_t CurrentLocOps,
2425                            SmallVectorImpl<uint64_t> &Opcodes,
2426                            SmallVectorImpl<Value *> &AdditionalValues) {
2427   unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
2428   // Rewrite a GEP into a DIExpression.
2429   MapVector<Value *, APInt> VariableOffsets;
2430   APInt ConstantOffset(BitWidth, 0);
2431   if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
2432     return nullptr;
2433   if (!VariableOffsets.empty() && !CurrentLocOps) {
2434     Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
2435     CurrentLocOps = 1;
2436   }
2437   for (const auto &Offset : VariableOffsets) {
2438     AdditionalValues.push_back(Offset.first);
2439     assert(Offset.second.isStrictlyPositive() &&
2440            "Expected strictly positive multiplier for offset.");
2441     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
2442                     Offset.second.getZExtValue(), dwarf::DW_OP_mul,
2443                     dwarf::DW_OP_plus});
2444   }
2445   DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
2446   return GEP->getOperand(0);
2447 }
2448 
2449 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
2450   switch (Opcode) {
2451   case Instruction::Add:
2452     return dwarf::DW_OP_plus;
2453   case Instruction::Sub:
2454     return dwarf::DW_OP_minus;
2455   case Instruction::Mul:
2456     return dwarf::DW_OP_mul;
2457   case Instruction::SDiv:
2458     return dwarf::DW_OP_div;
2459   case Instruction::SRem:
2460     return dwarf::DW_OP_mod;
2461   case Instruction::Or:
2462     return dwarf::DW_OP_or;
2463   case Instruction::And:
2464     return dwarf::DW_OP_and;
2465   case Instruction::Xor:
2466     return dwarf::DW_OP_xor;
2467   case Instruction::Shl:
2468     return dwarf::DW_OP_shl;
2469   case Instruction::LShr:
2470     return dwarf::DW_OP_shr;
2471   case Instruction::AShr:
2472     return dwarf::DW_OP_shra;
2473   default:
2474     // TODO: Salvage from each kind of binop we know about.
2475     return 0;
2476   }
2477 }
2478 
2479 static void handleSSAValueOperands(uint64_t CurrentLocOps,
2480                                    SmallVectorImpl<uint64_t> &Opcodes,
2481                                    SmallVectorImpl<Value *> &AdditionalValues,
2482                                    Instruction *I) {
2483   if (!CurrentLocOps) {
2484     Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
2485     CurrentLocOps = 1;
2486   }
2487   Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
2488   AdditionalValues.push_back(I->getOperand(1));
2489 }
2490 
2491 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
2492                              SmallVectorImpl<uint64_t> &Opcodes,
2493                              SmallVectorImpl<Value *> &AdditionalValues) {
2494   // Handle binary operations with constant integer operands as a special case.
2495   auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
2496   // Values wider than 64 bits cannot be represented within a DIExpression.
2497   if (ConstInt && ConstInt->getBitWidth() > 64)
2498     return nullptr;
2499 
2500   Instruction::BinaryOps BinOpcode = BI->getOpcode();
2501   // Push any Constant Int operand onto the expression stack.
2502   if (ConstInt) {
2503     uint64_t Val = ConstInt->getSExtValue();
2504     // Add or Sub Instructions with a constant operand can potentially be
2505     // simplified.
2506     if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
2507       uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
2508       DIExpression::appendOffset(Opcodes, Offset);
2509       return BI->getOperand(0);
2510     }
2511     Opcodes.append({dwarf::DW_OP_constu, Val});
2512   } else {
2513     handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI);
2514   }
2515 
2516   // Add salvaged binary operator to expression stack, if it has a valid
2517   // representation in a DIExpression.
2518   uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
2519   if (!DwarfBinOp)
2520     return nullptr;
2521   Opcodes.push_back(DwarfBinOp);
2522   return BI->getOperand(0);
2523 }
2524 
2525 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) {
2526   // The signedness of the operation is implicit in the typed stack, signed and
2527   // unsigned instructions map to the same DWARF opcode.
2528   switch (Pred) {
2529   case CmpInst::ICMP_EQ:
2530     return dwarf::DW_OP_eq;
2531   case CmpInst::ICMP_NE:
2532     return dwarf::DW_OP_ne;
2533   case CmpInst::ICMP_UGT:
2534   case CmpInst::ICMP_SGT:
2535     return dwarf::DW_OP_gt;
2536   case CmpInst::ICMP_UGE:
2537   case CmpInst::ICMP_SGE:
2538     return dwarf::DW_OP_ge;
2539   case CmpInst::ICMP_ULT:
2540   case CmpInst::ICMP_SLT:
2541     return dwarf::DW_OP_lt;
2542   case CmpInst::ICMP_ULE:
2543   case CmpInst::ICMP_SLE:
2544     return dwarf::DW_OP_le;
2545   default:
2546     return 0;
2547   }
2548 }
2549 
2550 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps,
2551                               SmallVectorImpl<uint64_t> &Opcodes,
2552                               SmallVectorImpl<Value *> &AdditionalValues) {
2553   // Handle icmp operations with constant integer operands as a special case.
2554   auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1));
2555   // Values wider than 64 bits cannot be represented within a DIExpression.
2556   if (ConstInt && ConstInt->getBitWidth() > 64)
2557     return nullptr;
2558   // Push any Constant Int operand onto the expression stack.
2559   if (ConstInt) {
2560     if (Icmp->isSigned())
2561       Opcodes.push_back(dwarf::DW_OP_consts);
2562     else
2563       Opcodes.push_back(dwarf::DW_OP_constu);
2564     uint64_t Val = ConstInt->getSExtValue();
2565     Opcodes.push_back(Val);
2566   } else {
2567     handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp);
2568   }
2569 
2570   // Add salvaged binary operator to expression stack, if it has a valid
2571   // representation in a DIExpression.
2572   uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate());
2573   if (!DwarfIcmpOp)
2574     return nullptr;
2575   Opcodes.push_back(DwarfIcmpOp);
2576   return Icmp->getOperand(0);
2577 }
2578 
2579 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
2580                                   SmallVectorImpl<uint64_t> &Ops,
2581                                   SmallVectorImpl<Value *> &AdditionalValues) {
2582   auto &M = *I.getModule();
2583   auto &DL = M.getDataLayout();
2584 
2585   if (auto *CI = dyn_cast<CastInst>(&I)) {
2586     Value *FromValue = CI->getOperand(0);
2587     // No-op casts are irrelevant for debug info.
2588     if (CI->isNoopCast(DL)) {
2589       return FromValue;
2590     }
2591 
2592     Type *Type = CI->getType();
2593     if (Type->isPointerTy())
2594       Type = DL.getIntPtrType(Type);
2595     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
2596     if (Type->isVectorTy() ||
2597         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
2598           isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
2599       return nullptr;
2600 
2601     llvm::Type *FromType = FromValue->getType();
2602     if (FromType->isPointerTy())
2603       FromType = DL.getIntPtrType(FromType);
2604 
2605     unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
2606     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
2607 
2608     auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
2609                                           isa<SExtInst>(&I));
2610     Ops.append(ExtOps.begin(), ExtOps.end());
2611     return FromValue;
2612   }
2613 
2614   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
2615     return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
2616   if (auto *BI = dyn_cast<BinaryOperator>(&I))
2617     return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
2618   if (auto *IC = dyn_cast<ICmpInst>(&I))
2619     return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues);
2620 
2621   // *Not* to do: we should not attempt to salvage load instructions,
2622   // because the validity and lifetime of a dbg.value containing
2623   // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
2624   return nullptr;
2625 }
2626 
2627 /// A replacement for a dbg.value expression.
2628 using DbgValReplacement = std::optional<DIExpression *>;
2629 
2630 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
2631 /// possibly moving/undefing users to prevent use-before-def. Returns true if
2632 /// changes are made.
2633 static bool rewriteDebugUsers(
2634     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
2635     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr,
2636     function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) {
2637   // Find debug users of From.
2638   SmallVector<DbgVariableIntrinsic *, 1> Users;
2639   SmallVector<DbgVariableRecord *, 1> DPUsers;
2640   findDbgUsers(Users, &From, &DPUsers);
2641   if (Users.empty() && DPUsers.empty())
2642     return false;
2643 
2644   // Prevent use-before-def of To.
2645   bool Changed = false;
2646 
2647   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
2648   SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR;
2649   if (isa<Instruction>(&To)) {
2650     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
2651 
2652     for (auto *DII : Users) {
2653       // It's common to see a debug user between From and DomPoint. Move it
2654       // after DomPoint to preserve the variable update without any reordering.
2655       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
2656         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
2657         DII->moveAfter(&DomPoint);
2658         Changed = true;
2659 
2660       // Users which otherwise aren't dominated by the replacement value must
2661       // be salvaged or deleted.
2662       } else if (!DT.dominates(&DomPoint, DII)) {
2663         UndefOrSalvage.insert(DII);
2664       }
2665     }
2666 
2667     // DbgVariableRecord implementation of the above.
2668     for (auto *DVR : DPUsers) {
2669       Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr;
2670       Instruction *NextNonDebug = MarkedInstr;
2671       // The next instruction might still be a dbg.declare, skip over it.
2672       if (isa<DbgVariableIntrinsic>(NextNonDebug))
2673         NextNonDebug = NextNonDebug->getNextNonDebugInstruction();
2674 
2675       if (DomPointAfterFrom && NextNonDebug == &DomPoint) {
2676         LLVM_DEBUG(dbgs() << "MOVE:  " << *DVR << '\n');
2677         DVR->removeFromParent();
2678         // Ensure there's a marker.
2679         DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint);
2680         Changed = true;
2681       } else if (!DT.dominates(&DomPoint, MarkedInstr)) {
2682         UndefOrSalvageDVR.insert(DVR);
2683       }
2684     }
2685   }
2686 
2687   // Update debug users without use-before-def risk.
2688   for (auto *DII : Users) {
2689     if (UndefOrSalvage.count(DII))
2690       continue;
2691 
2692     DbgValReplacement DVRepl = RewriteExpr(*DII);
2693     if (!DVRepl)
2694       continue;
2695 
2696     DII->replaceVariableLocationOp(&From, &To);
2697     DII->setExpression(*DVRepl);
2698     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
2699     Changed = true;
2700   }
2701   for (auto *DVR : DPUsers) {
2702     if (UndefOrSalvageDVR.count(DVR))
2703       continue;
2704 
2705     DbgValReplacement DVRepl = RewriteDVRExpr(*DVR);
2706     if (!DVRepl)
2707       continue;
2708 
2709     DVR->replaceVariableLocationOp(&From, &To);
2710     DVR->setExpression(*DVRepl);
2711     LLVM_DEBUG(dbgs() << "REWRITE:  " << DVR << '\n');
2712     Changed = true;
2713   }
2714 
2715   if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) {
2716     // Try to salvage the remaining debug users.
2717     salvageDebugInfo(From);
2718     Changed = true;
2719   }
2720 
2721   return Changed;
2722 }
2723 
2724 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2725 /// losslessly preserve the bits and semantics of the value. This predicate is
2726 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2727 ///
2728 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2729 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2730 /// and also does not allow lossless pointer <-> integer conversions.
2731 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2732                                          Type *ToTy) {
2733   // Trivially compatible types.
2734   if (FromTy == ToTy)
2735     return true;
2736 
2737   // Handle compatible pointer <-> integer conversions.
2738   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2739     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2740     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2741                               !DL.isNonIntegralPointerType(ToTy);
2742     return SameSize && LosslessConversion;
2743   }
2744 
2745   // TODO: This is not exhaustive.
2746   return false;
2747 }
2748 
2749 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2750                                  Instruction &DomPoint, DominatorTree &DT) {
2751   // Exit early if From has no debug users.
2752   if (!From.isUsedByMetadata())
2753     return false;
2754 
2755   assert(&From != &To && "Can't replace something with itself");
2756 
2757   Type *FromTy = From.getType();
2758   Type *ToTy = To.getType();
2759 
2760   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2761     return DII.getExpression();
2762   };
2763   auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement {
2764     return DVR.getExpression();
2765   };
2766 
2767   // Handle no-op conversions.
2768   Module &M = *From.getModule();
2769   const DataLayout &DL = M.getDataLayout();
2770   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2771     return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR);
2772 
2773   // Handle integer-to-integer widening and narrowing.
2774   // FIXME: Use DW_OP_convert when it's available everywhere.
2775   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2776     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2777     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2778     assert(FromBits != ToBits && "Unexpected no-op conversion");
2779 
2780     // When the width of the result grows, assume that a debugger will only
2781     // access the low `FromBits` bits when inspecting the source variable.
2782     if (FromBits < ToBits)
2783       return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR);
2784 
2785     // The width of the result has shrunk. Use sign/zero extension to describe
2786     // the source variable's high bits.
2787     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2788       DILocalVariable *Var = DII.getVariable();
2789 
2790       // Without knowing signedness, sign/zero extension isn't possible.
2791       auto Signedness = Var->getSignedness();
2792       if (!Signedness)
2793         return std::nullopt;
2794 
2795       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2796       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2797                                      Signed);
2798     };
2799     // RemoveDIs: duplicate implementation working on DbgVariableRecords rather
2800     // than on dbg.value intrinsics.
2801     auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement {
2802       DILocalVariable *Var = DVR.getVariable();
2803 
2804       // Without knowing signedness, sign/zero extension isn't possible.
2805       auto Signedness = Var->getSignedness();
2806       if (!Signedness)
2807         return std::nullopt;
2808 
2809       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2810       return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits,
2811                                      Signed);
2812     };
2813     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt,
2814                              SignOrZeroExtDVR);
2815   }
2816 
2817   // TODO: Floating-point conversions, vectors.
2818   return false;
2819 }
2820 
2821 bool llvm::handleUnreachableTerminator(
2822     Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) {
2823   bool Changed = false;
2824   // RemoveDIs: erase debug-info on this instruction manually.
2825   I->dropDbgRecords();
2826   for (Use &U : I->operands()) {
2827     Value *Op = U.get();
2828     if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) {
2829       U.set(PoisonValue::get(Op->getType()));
2830       PoisonedValues.push_back(Op);
2831       Changed = true;
2832     }
2833   }
2834 
2835   return Changed;
2836 }
2837 
2838 std::pair<unsigned, unsigned>
2839 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2840   unsigned NumDeadInst = 0;
2841   unsigned NumDeadDbgInst = 0;
2842   // Delete the instructions backwards, as it has a reduced likelihood of
2843   // having to update as many def-use and use-def chains.
2844   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2845   SmallVector<Value *> Uses;
2846   handleUnreachableTerminator(EndInst, Uses);
2847 
2848   while (EndInst != &BB->front()) {
2849     // Delete the next to last instruction.
2850     Instruction *Inst = &*--EndInst->getIterator();
2851     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2852       Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
2853     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2854       // EHPads can't have DbgVariableRecords attached to them, but it might be
2855       // possible for things with token type.
2856       Inst->dropDbgRecords();
2857       EndInst = Inst;
2858       continue;
2859     }
2860     if (isa<DbgInfoIntrinsic>(Inst))
2861       ++NumDeadDbgInst;
2862     else
2863       ++NumDeadInst;
2864     // RemoveDIs: erasing debug-info must be done manually.
2865     Inst->dropDbgRecords();
2866     Inst->eraseFromParent();
2867   }
2868   return {NumDeadInst, NumDeadDbgInst};
2869 }
2870 
2871 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
2872                                    DomTreeUpdater *DTU,
2873                                    MemorySSAUpdater *MSSAU) {
2874   BasicBlock *BB = I->getParent();
2875 
2876   if (MSSAU)
2877     MSSAU->changeToUnreachable(I);
2878 
2879   SmallSet<BasicBlock *, 8> UniqueSuccessors;
2880 
2881   // Loop over all of the successors, removing BB's entry from any PHI
2882   // nodes.
2883   for (BasicBlock *Successor : successors(BB)) {
2884     Successor->removePredecessor(BB, PreserveLCSSA);
2885     if (DTU)
2886       UniqueSuccessors.insert(Successor);
2887   }
2888   auto *UI = new UnreachableInst(I->getContext(), I->getIterator());
2889   UI->setDebugLoc(I->getDebugLoc());
2890 
2891   // All instructions after this are dead.
2892   unsigned NumInstrsRemoved = 0;
2893   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2894   while (BBI != BBE) {
2895     if (!BBI->use_empty())
2896       BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
2897     BBI++->eraseFromParent();
2898     ++NumInstrsRemoved;
2899   }
2900   if (DTU) {
2901     SmallVector<DominatorTree::UpdateType, 8> Updates;
2902     Updates.reserve(UniqueSuccessors.size());
2903     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2904       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2905     DTU->applyUpdates(Updates);
2906   }
2907   BB->flushTerminatorDbgRecords();
2908   return NumInstrsRemoved;
2909 }
2910 
2911 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2912   SmallVector<Value *, 8> Args(II->args());
2913   SmallVector<OperandBundleDef, 1> OpBundles;
2914   II->getOperandBundlesAsDefs(OpBundles);
2915   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2916                                        II->getCalledOperand(), Args, OpBundles);
2917   NewCall->setCallingConv(II->getCallingConv());
2918   NewCall->setAttributes(II->getAttributes());
2919   NewCall->setDebugLoc(II->getDebugLoc());
2920   NewCall->copyMetadata(*II);
2921 
2922   // If the invoke had profile metadata, try converting them for CallInst.
2923   uint64_t TotalWeight;
2924   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2925     // Set the total weight if it fits into i32, otherwise reset.
2926     MDBuilder MDB(NewCall->getContext());
2927     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2928                           ? nullptr
2929                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2930     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2931   }
2932 
2933   return NewCall;
2934 }
2935 
2936 // changeToCall - Convert the specified invoke into a normal call.
2937 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2938   CallInst *NewCall = createCallMatchingInvoke(II);
2939   NewCall->takeName(II);
2940   NewCall->insertBefore(II);
2941   II->replaceAllUsesWith(NewCall);
2942 
2943   // Follow the call by a branch to the normal destination.
2944   BasicBlock *NormalDestBB = II->getNormalDest();
2945   BranchInst::Create(NormalDestBB, II->getIterator());
2946 
2947   // Update PHI nodes in the unwind destination
2948   BasicBlock *BB = II->getParent();
2949   BasicBlock *UnwindDestBB = II->getUnwindDest();
2950   UnwindDestBB->removePredecessor(BB);
2951   II->eraseFromParent();
2952   if (DTU)
2953     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2954   return NewCall;
2955 }
2956 
2957 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2958                                                    BasicBlock *UnwindEdge,
2959                                                    DomTreeUpdater *DTU) {
2960   BasicBlock *BB = CI->getParent();
2961 
2962   // Convert this function call into an invoke instruction.  First, split the
2963   // basic block.
2964   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2965                                  CI->getName() + ".noexc");
2966 
2967   // Delete the unconditional branch inserted by SplitBlock
2968   BB->back().eraseFromParent();
2969 
2970   // Create the new invoke instruction.
2971   SmallVector<Value *, 8> InvokeArgs(CI->args());
2972   SmallVector<OperandBundleDef, 1> OpBundles;
2973 
2974   CI->getOperandBundlesAsDefs(OpBundles);
2975 
2976   // Note: we're round tripping operand bundles through memory here, and that
2977   // can potentially be avoided with a cleverer API design that we do not have
2978   // as of this time.
2979 
2980   InvokeInst *II =
2981       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2982                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2983   II->setDebugLoc(CI->getDebugLoc());
2984   II->setCallingConv(CI->getCallingConv());
2985   II->setAttributes(CI->getAttributes());
2986   II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
2987 
2988   if (DTU)
2989     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2990 
2991   // Make sure that anything using the call now uses the invoke!  This also
2992   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2993   CI->replaceAllUsesWith(II);
2994 
2995   // Delete the original call
2996   Split->front().eraseFromParent();
2997   return Split;
2998 }
2999 
3000 static bool markAliveBlocks(Function &F,
3001                             SmallPtrSetImpl<BasicBlock *> &Reachable,
3002                             DomTreeUpdater *DTU = nullptr) {
3003   SmallVector<BasicBlock*, 128> Worklist;
3004   BasicBlock *BB = &F.front();
3005   Worklist.push_back(BB);
3006   Reachable.insert(BB);
3007   bool Changed = false;
3008   do {
3009     BB = Worklist.pop_back_val();
3010 
3011     // Do a quick scan of the basic block, turning any obviously unreachable
3012     // instructions into LLVM unreachable insts.  The instruction combining pass
3013     // canonicalizes unreachable insts into stores to null or undef.
3014     for (Instruction &I : *BB) {
3015       if (auto *CI = dyn_cast<CallInst>(&I)) {
3016         Value *Callee = CI->getCalledOperand();
3017         // Handle intrinsic calls.
3018         if (Function *F = dyn_cast<Function>(Callee)) {
3019           auto IntrinsicID = F->getIntrinsicID();
3020           // Assumptions that are known to be false are equivalent to
3021           // unreachable. Also, if the condition is undefined, then we make the
3022           // choice most beneficial to the optimizer, and choose that to also be
3023           // unreachable.
3024           if (IntrinsicID == Intrinsic::assume) {
3025             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
3026               // Don't insert a call to llvm.trap right before the unreachable.
3027               changeToUnreachable(CI, false, DTU);
3028               Changed = true;
3029               break;
3030             }
3031           } else if (IntrinsicID == Intrinsic::experimental_guard) {
3032             // A call to the guard intrinsic bails out of the current
3033             // compilation unit if the predicate passed to it is false. If the
3034             // predicate is a constant false, then we know the guard will bail
3035             // out of the current compile unconditionally, so all code following
3036             // it is dead.
3037             //
3038             // Note: unlike in llvm.assume, it is not "obviously profitable" for
3039             // guards to treat `undef` as `false` since a guard on `undef` can
3040             // still be useful for widening.
3041             if (match(CI->getArgOperand(0), m_Zero()))
3042               if (!isa<UnreachableInst>(CI->getNextNode())) {
3043                 changeToUnreachable(CI->getNextNode(), false, DTU);
3044                 Changed = true;
3045                 break;
3046               }
3047           }
3048         } else if ((isa<ConstantPointerNull>(Callee) &&
3049                     !NullPointerIsDefined(CI->getFunction(),
3050                                           cast<PointerType>(Callee->getType())
3051                                               ->getAddressSpace())) ||
3052                    isa<UndefValue>(Callee)) {
3053           changeToUnreachable(CI, false, DTU);
3054           Changed = true;
3055           break;
3056         }
3057         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
3058           // If we found a call to a no-return function, insert an unreachable
3059           // instruction after it.  Make sure there isn't *already* one there
3060           // though.
3061           if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) {
3062             // Don't insert a call to llvm.trap right before the unreachable.
3063             changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU);
3064             Changed = true;
3065           }
3066           break;
3067         }
3068       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
3069         // Store to undef and store to null are undefined and used to signal
3070         // that they should be changed to unreachable by passes that can't
3071         // modify the CFG.
3072 
3073         // Don't touch volatile stores.
3074         if (SI->isVolatile()) continue;
3075 
3076         Value *Ptr = SI->getOperand(1);
3077 
3078         if (isa<UndefValue>(Ptr) ||
3079             (isa<ConstantPointerNull>(Ptr) &&
3080              !NullPointerIsDefined(SI->getFunction(),
3081                                    SI->getPointerAddressSpace()))) {
3082           changeToUnreachable(SI, false, DTU);
3083           Changed = true;
3084           break;
3085         }
3086       }
3087     }
3088 
3089     Instruction *Terminator = BB->getTerminator();
3090     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
3091       // Turn invokes that call 'nounwind' functions into ordinary calls.
3092       Value *Callee = II->getCalledOperand();
3093       if ((isa<ConstantPointerNull>(Callee) &&
3094            !NullPointerIsDefined(BB->getParent())) ||
3095           isa<UndefValue>(Callee)) {
3096         changeToUnreachable(II, false, DTU);
3097         Changed = true;
3098       } else {
3099         if (II->doesNotReturn() &&
3100             !isa<UnreachableInst>(II->getNormalDest()->front())) {
3101           // If we found an invoke of a no-return function,
3102           // create a new empty basic block with an `unreachable` terminator,
3103           // and set it as the normal destination for the invoke,
3104           // unless that is already the case.
3105           // Note that the original normal destination could have other uses.
3106           BasicBlock *OrigNormalDest = II->getNormalDest();
3107           OrigNormalDest->removePredecessor(II->getParent());
3108           LLVMContext &Ctx = II->getContext();
3109           BasicBlock *UnreachableNormalDest = BasicBlock::Create(
3110               Ctx, OrigNormalDest->getName() + ".unreachable",
3111               II->getFunction(), OrigNormalDest);
3112           new UnreachableInst(Ctx, UnreachableNormalDest);
3113           II->setNormalDest(UnreachableNormalDest);
3114           if (DTU)
3115             DTU->applyUpdates(
3116                 {{DominatorTree::Delete, BB, OrigNormalDest},
3117                  {DominatorTree::Insert, BB, UnreachableNormalDest}});
3118           Changed = true;
3119         }
3120         if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
3121           if (II->use_empty() && !II->mayHaveSideEffects()) {
3122             // jump to the normal destination branch.
3123             BasicBlock *NormalDestBB = II->getNormalDest();
3124             BasicBlock *UnwindDestBB = II->getUnwindDest();
3125             BranchInst::Create(NormalDestBB, II->getIterator());
3126             UnwindDestBB->removePredecessor(II->getParent());
3127             II->eraseFromParent();
3128             if (DTU)
3129               DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
3130           } else
3131             changeToCall(II, DTU);
3132           Changed = true;
3133         }
3134       }
3135     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
3136       // Remove catchpads which cannot be reached.
3137       struct CatchPadDenseMapInfo {
3138         static CatchPadInst *getEmptyKey() {
3139           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
3140         }
3141 
3142         static CatchPadInst *getTombstoneKey() {
3143           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
3144         }
3145 
3146         static unsigned getHashValue(CatchPadInst *CatchPad) {
3147           return static_cast<unsigned>(hash_combine_range(
3148               CatchPad->value_op_begin(), CatchPad->value_op_end()));
3149         }
3150 
3151         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
3152           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
3153               RHS == getEmptyKey() || RHS == getTombstoneKey())
3154             return LHS == RHS;
3155           return LHS->isIdenticalTo(RHS);
3156         }
3157       };
3158 
3159       SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
3160       // Set of unique CatchPads.
3161       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
3162                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
3163           HandlerSet;
3164       detail::DenseSetEmpty Empty;
3165       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
3166                                              E = CatchSwitch->handler_end();
3167            I != E; ++I) {
3168         BasicBlock *HandlerBB = *I;
3169         if (DTU)
3170           ++NumPerSuccessorCases[HandlerBB];
3171         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
3172         if (!HandlerSet.insert({CatchPad, Empty}).second) {
3173           if (DTU)
3174             --NumPerSuccessorCases[HandlerBB];
3175           CatchSwitch->removeHandler(I);
3176           --I;
3177           --E;
3178           Changed = true;
3179         }
3180       }
3181       if (DTU) {
3182         std::vector<DominatorTree::UpdateType> Updates;
3183         for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
3184           if (I.second == 0)
3185             Updates.push_back({DominatorTree::Delete, BB, I.first});
3186         DTU->applyUpdates(Updates);
3187       }
3188     }
3189 
3190     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
3191     for (BasicBlock *Successor : successors(BB))
3192       if (Reachable.insert(Successor).second)
3193         Worklist.push_back(Successor);
3194   } while (!Worklist.empty());
3195   return Changed;
3196 }
3197 
3198 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
3199   Instruction *TI = BB->getTerminator();
3200 
3201   if (auto *II = dyn_cast<InvokeInst>(TI))
3202     return changeToCall(II, DTU);
3203 
3204   Instruction *NewTI;
3205   BasicBlock *UnwindDest;
3206 
3207   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3208     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator());
3209     UnwindDest = CRI->getUnwindDest();
3210   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
3211     auto *NewCatchSwitch = CatchSwitchInst::Create(
3212         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
3213         CatchSwitch->getName(), CatchSwitch->getIterator());
3214     for (BasicBlock *PadBB : CatchSwitch->handlers())
3215       NewCatchSwitch->addHandler(PadBB);
3216 
3217     NewTI = NewCatchSwitch;
3218     UnwindDest = CatchSwitch->getUnwindDest();
3219   } else {
3220     llvm_unreachable("Could not find unwind successor");
3221   }
3222 
3223   NewTI->takeName(TI);
3224   NewTI->setDebugLoc(TI->getDebugLoc());
3225   UnwindDest->removePredecessor(BB);
3226   TI->replaceAllUsesWith(NewTI);
3227   TI->eraseFromParent();
3228   if (DTU)
3229     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
3230   return NewTI;
3231 }
3232 
3233 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
3234 /// if they are in a dead cycle.  Return true if a change was made, false
3235 /// otherwise.
3236 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
3237                                    MemorySSAUpdater *MSSAU) {
3238   SmallPtrSet<BasicBlock *, 16> Reachable;
3239   bool Changed = markAliveBlocks(F, Reachable, DTU);
3240 
3241   // If there are unreachable blocks in the CFG...
3242   if (Reachable.size() == F.size())
3243     return Changed;
3244 
3245   assert(Reachable.size() < F.size());
3246 
3247   // Are there any blocks left to actually delete?
3248   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
3249   for (BasicBlock &BB : F) {
3250     // Skip reachable basic blocks
3251     if (Reachable.count(&BB))
3252       continue;
3253     // Skip already-deleted blocks
3254     if (DTU && DTU->isBBPendingDeletion(&BB))
3255       continue;
3256     BlocksToRemove.insert(&BB);
3257   }
3258 
3259   if (BlocksToRemove.empty())
3260     return Changed;
3261 
3262   Changed = true;
3263   NumRemoved += BlocksToRemove.size();
3264 
3265   if (MSSAU)
3266     MSSAU->removeBlocks(BlocksToRemove);
3267 
3268   DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
3269 
3270   return Changed;
3271 }
3272 
3273 void llvm::combineMetadata(Instruction *K, const Instruction *J,
3274                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
3275   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
3276   K->dropUnknownNonDebugMetadata(KnownIDs);
3277   K->getAllMetadataOtherThanDebugLoc(Metadata);
3278   for (const auto &MD : Metadata) {
3279     unsigned Kind = MD.first;
3280     MDNode *JMD = J->getMetadata(Kind);
3281     MDNode *KMD = MD.second;
3282 
3283     switch (Kind) {
3284       default:
3285         K->setMetadata(Kind, nullptr); // Remove unknown metadata
3286         break;
3287       case LLVMContext::MD_dbg:
3288         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
3289       case LLVMContext::MD_DIAssignID:
3290         K->mergeDIAssignID(J);
3291         break;
3292       case LLVMContext::MD_tbaa:
3293         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
3294         break;
3295       case LLVMContext::MD_alias_scope:
3296         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
3297         break;
3298       case LLVMContext::MD_noalias:
3299       case LLVMContext::MD_mem_parallel_loop_access:
3300         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
3301         break;
3302       case LLVMContext::MD_access_group:
3303         K->setMetadata(LLVMContext::MD_access_group,
3304                        intersectAccessGroups(K, J));
3305         break;
3306       case LLVMContext::MD_range:
3307         if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3308           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
3309         break;
3310       case LLVMContext::MD_fpmath:
3311         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
3312         break;
3313       case LLVMContext::MD_invariant_load:
3314         // If K moves, only set the !invariant.load if it is present in both
3315         // instructions.
3316         if (DoesKMove)
3317           K->setMetadata(Kind, JMD);
3318         break;
3319       case LLVMContext::MD_nonnull:
3320         if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3321           K->setMetadata(Kind, JMD);
3322         break;
3323       case LLVMContext::MD_invariant_group:
3324         // Preserve !invariant.group in K.
3325         break;
3326       case LLVMContext::MD_mmra:
3327         // Combine MMRAs
3328         break;
3329       case LLVMContext::MD_align:
3330         if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
3331           K->setMetadata(
3332               Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3333         break;
3334       case LLVMContext::MD_dereferenceable:
3335       case LLVMContext::MD_dereferenceable_or_null:
3336         if (DoesKMove)
3337           K->setMetadata(Kind,
3338             MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
3339         break;
3340       case LLVMContext::MD_preserve_access_index:
3341         // Preserve !preserve.access.index in K.
3342         break;
3343       case LLVMContext::MD_noundef:
3344         // If K does move, keep noundef if it is present in both instructions.
3345         if (DoesKMove)
3346           K->setMetadata(Kind, JMD);
3347         break;
3348       case LLVMContext::MD_nontemporal:
3349         // Preserve !nontemporal if it is present on both instructions.
3350         K->setMetadata(Kind, JMD);
3351         break;
3352       case LLVMContext::MD_prof:
3353         if (DoesKMove)
3354           K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J));
3355         break;
3356     }
3357   }
3358   // Set !invariant.group from J if J has it. If both instructions have it
3359   // then we will just pick it from J - even when they are different.
3360   // Also make sure that K is load or store - f.e. combining bitcast with load
3361   // could produce bitcast with invariant.group metadata, which is invalid.
3362   // FIXME: we should try to preserve both invariant.group md if they are
3363   // different, but right now instruction can only have one invariant.group.
3364   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
3365     if (isa<LoadInst>(K) || isa<StoreInst>(K))
3366       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
3367 
3368   // Merge MMRAs.
3369   // This is handled separately because we also want to handle cases where K
3370   // doesn't have tags but J does.
3371   auto JMMRA = J->getMetadata(LLVMContext::MD_mmra);
3372   auto KMMRA = K->getMetadata(LLVMContext::MD_mmra);
3373   if (JMMRA || KMMRA) {
3374     K->setMetadata(LLVMContext::MD_mmra,
3375                    MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA));
3376   }
3377 }
3378 
3379 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
3380                                  bool KDominatesJ) {
3381   unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
3382                          LLVMContext::MD_alias_scope,
3383                          LLVMContext::MD_noalias,
3384                          LLVMContext::MD_range,
3385                          LLVMContext::MD_fpmath,
3386                          LLVMContext::MD_invariant_load,
3387                          LLVMContext::MD_nonnull,
3388                          LLVMContext::MD_invariant_group,
3389                          LLVMContext::MD_align,
3390                          LLVMContext::MD_dereferenceable,
3391                          LLVMContext::MD_dereferenceable_or_null,
3392                          LLVMContext::MD_access_group,
3393                          LLVMContext::MD_preserve_access_index,
3394                          LLVMContext::MD_prof,
3395                          LLVMContext::MD_nontemporal,
3396                          LLVMContext::MD_noundef,
3397                          LLVMContext::MD_mmra};
3398   combineMetadata(K, J, KnownIDs, KDominatesJ);
3399 }
3400 
3401 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
3402   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
3403   Source.getAllMetadata(MD);
3404   MDBuilder MDB(Dest.getContext());
3405   Type *NewType = Dest.getType();
3406   const DataLayout &DL = Source.getDataLayout();
3407   for (const auto &MDPair : MD) {
3408     unsigned ID = MDPair.first;
3409     MDNode *N = MDPair.second;
3410     // Note, essentially every kind of metadata should be preserved here! This
3411     // routine is supposed to clone a load instruction changing *only its type*.
3412     // The only metadata it makes sense to drop is metadata which is invalidated
3413     // when the pointer type changes. This should essentially never be the case
3414     // in LLVM, but we explicitly switch over only known metadata to be
3415     // conservatively correct. If you are adding metadata to LLVM which pertains
3416     // to loads, you almost certainly want to add it here.
3417     switch (ID) {
3418     case LLVMContext::MD_dbg:
3419     case LLVMContext::MD_tbaa:
3420     case LLVMContext::MD_prof:
3421     case LLVMContext::MD_fpmath:
3422     case LLVMContext::MD_tbaa_struct:
3423     case LLVMContext::MD_invariant_load:
3424     case LLVMContext::MD_alias_scope:
3425     case LLVMContext::MD_noalias:
3426     case LLVMContext::MD_nontemporal:
3427     case LLVMContext::MD_mem_parallel_loop_access:
3428     case LLVMContext::MD_access_group:
3429     case LLVMContext::MD_noundef:
3430       // All of these directly apply.
3431       Dest.setMetadata(ID, N);
3432       break;
3433 
3434     case LLVMContext::MD_nonnull:
3435       copyNonnullMetadata(Source, N, Dest);
3436       break;
3437 
3438     case LLVMContext::MD_align:
3439     case LLVMContext::MD_dereferenceable:
3440     case LLVMContext::MD_dereferenceable_or_null:
3441       // These only directly apply if the new type is also a pointer.
3442       if (NewType->isPointerTy())
3443         Dest.setMetadata(ID, N);
3444       break;
3445 
3446     case LLVMContext::MD_range:
3447       copyRangeMetadata(DL, Source, N, Dest);
3448       break;
3449     }
3450   }
3451 }
3452 
3453 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
3454   auto *ReplInst = dyn_cast<Instruction>(Repl);
3455   if (!ReplInst)
3456     return;
3457 
3458   // Patch the replacement so that it is not more restrictive than the value
3459   // being replaced.
3460   WithOverflowInst *UnusedWO;
3461   // When replacing the result of a llvm.*.with.overflow intrinsic with a
3462   // overflowing binary operator, nuw/nsw flags may no longer hold.
3463   if (isa<OverflowingBinaryOperator>(ReplInst) &&
3464       match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO))))
3465     ReplInst->dropPoisonGeneratingFlags();
3466   // Note that if 'I' is a load being replaced by some operation,
3467   // for example, by an arithmetic operation, then andIRFlags()
3468   // would just erase all math flags from the original arithmetic
3469   // operation, which is clearly not wanted and not needed.
3470   else if (!isa<LoadInst>(I))
3471     ReplInst->andIRFlags(I);
3472 
3473   // FIXME: If both the original and replacement value are part of the
3474   // same control-flow region (meaning that the execution of one
3475   // guarantees the execution of the other), then we can combine the
3476   // noalias scopes here and do better than the general conservative
3477   // answer used in combineMetadata().
3478 
3479   // In general, GVN unifies expressions over different control-flow
3480   // regions, and so we need a conservative combination of the noalias
3481   // scopes.
3482   combineMetadataForCSE(ReplInst, I, false);
3483 }
3484 
3485 template <typename RootType, typename ShouldReplaceFn>
3486 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
3487                                          const RootType &Root,
3488                                          const ShouldReplaceFn &ShouldReplace) {
3489   assert(From->getType() == To->getType());
3490 
3491   unsigned Count = 0;
3492   for (Use &U : llvm::make_early_inc_range(From->uses())) {
3493     if (!ShouldReplace(Root, U))
3494       continue;
3495     LLVM_DEBUG(dbgs() << "Replace dominated use of '";
3496                From->printAsOperand(dbgs());
3497                dbgs() << "' with " << *To << " in " << *U.getUser() << "\n");
3498     U.set(To);
3499     ++Count;
3500   }
3501   return Count;
3502 }
3503 
3504 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
3505    assert(From->getType() == To->getType());
3506    auto *BB = From->getParent();
3507    unsigned Count = 0;
3508 
3509    for (Use &U : llvm::make_early_inc_range(From->uses())) {
3510     auto *I = cast<Instruction>(U.getUser());
3511     if (I->getParent() == BB)
3512       continue;
3513     U.set(To);
3514     ++Count;
3515   }
3516   return Count;
3517 }
3518 
3519 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3520                                         DominatorTree &DT,
3521                                         const BasicBlockEdge &Root) {
3522   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
3523     return DT.dominates(Root, U);
3524   };
3525   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
3526 }
3527 
3528 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
3529                                         DominatorTree &DT,
3530                                         const BasicBlock *BB) {
3531   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
3532     return DT.dominates(BB, U);
3533   };
3534   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
3535 }
3536 
3537 unsigned llvm::replaceDominatedUsesWithIf(
3538     Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root,
3539     function_ref<bool(const Use &U, const Value *To)> ShouldReplace) {
3540   auto DominatesAndShouldReplace =
3541       [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) {
3542         return DT.dominates(Root, U) && ShouldReplace(U, To);
3543       };
3544   return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace);
3545 }
3546 
3547 unsigned llvm::replaceDominatedUsesWithIf(
3548     Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB,
3549     function_ref<bool(const Use &U, const Value *To)> ShouldReplace) {
3550   auto DominatesAndShouldReplace = [&DT, &ShouldReplace,
3551                                     To](const BasicBlock *BB, const Use &U) {
3552     return DT.dominates(BB, U) && ShouldReplace(U, To);
3553   };
3554   return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace);
3555 }
3556 
3557 bool llvm::callsGCLeafFunction(const CallBase *Call,
3558                                const TargetLibraryInfo &TLI) {
3559   // Check if the function is specifically marked as a gc leaf function.
3560   if (Call->hasFnAttr("gc-leaf-function"))
3561     return true;
3562   if (const Function *F = Call->getCalledFunction()) {
3563     if (F->hasFnAttribute("gc-leaf-function"))
3564       return true;
3565 
3566     if (auto IID = F->getIntrinsicID()) {
3567       // Most LLVM intrinsics do not take safepoints.
3568       return IID != Intrinsic::experimental_gc_statepoint &&
3569              IID != Intrinsic::experimental_deoptimize &&
3570              IID != Intrinsic::memcpy_element_unordered_atomic &&
3571              IID != Intrinsic::memmove_element_unordered_atomic;
3572     }
3573   }
3574 
3575   // Lib calls can be materialized by some passes, and won't be
3576   // marked as 'gc-leaf-function.' All available Libcalls are
3577   // GC-leaf.
3578   LibFunc LF;
3579   if (TLI.getLibFunc(*Call, LF)) {
3580     return TLI.has(LF);
3581   }
3582 
3583   return false;
3584 }
3585 
3586 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
3587                                LoadInst &NewLI) {
3588   auto *NewTy = NewLI.getType();
3589 
3590   // This only directly applies if the new type is also a pointer.
3591   if (NewTy->isPointerTy()) {
3592     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
3593     return;
3594   }
3595 
3596   // The only other translation we can do is to integral loads with !range
3597   // metadata.
3598   if (!NewTy->isIntegerTy())
3599     return;
3600 
3601   MDBuilder MDB(NewLI.getContext());
3602   const Value *Ptr = OldLI.getPointerOperand();
3603   auto *ITy = cast<IntegerType>(NewTy);
3604   auto *NullInt = ConstantExpr::getPtrToInt(
3605       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
3606   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
3607   NewLI.setMetadata(LLVMContext::MD_range,
3608                     MDB.createRange(NonNullInt, NullInt));
3609 }
3610 
3611 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
3612                              MDNode *N, LoadInst &NewLI) {
3613   auto *NewTy = NewLI.getType();
3614   // Simply copy the metadata if the type did not change.
3615   if (NewTy == OldLI.getType()) {
3616     NewLI.setMetadata(LLVMContext::MD_range, N);
3617     return;
3618   }
3619 
3620   // Give up unless it is converted to a pointer where there is a single very
3621   // valuable mapping we can do reliably.
3622   // FIXME: It would be nice to propagate this in more ways, but the type
3623   // conversions make it hard.
3624   if (!NewTy->isPointerTy())
3625     return;
3626 
3627   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
3628   if (BitWidth == OldLI.getType()->getScalarSizeInBits() &&
3629       !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
3630     MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt);
3631     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
3632   }
3633 }
3634 
3635 void llvm::dropDebugUsers(Instruction &I) {
3636   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
3637   SmallVector<DbgVariableRecord *, 1> DPUsers;
3638   findDbgUsers(DbgUsers, &I, &DPUsers);
3639   for (auto *DII : DbgUsers)
3640     DII->eraseFromParent();
3641   for (auto *DVR : DPUsers)
3642     DVR->eraseFromParent();
3643 }
3644 
3645 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
3646                                     BasicBlock *BB) {
3647   // Since we are moving the instructions out of its basic block, we do not
3648   // retain their original debug locations (DILocations) and debug intrinsic
3649   // instructions.
3650   //
3651   // Doing so would degrade the debugging experience and adversely affect the
3652   // accuracy of profiling information.
3653   //
3654   // Currently, when hoisting the instructions, we take the following actions:
3655   // - Remove their debug intrinsic instructions.
3656   // - Set their debug locations to the values from the insertion point.
3657   //
3658   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
3659   // need to be deleted, is because there will not be any instructions with a
3660   // DILocation in either branch left after performing the transformation. We
3661   // can only insert a dbg.value after the two branches are joined again.
3662   //
3663   // See PR38762, PR39243 for more details.
3664   //
3665   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
3666   // encode predicated DIExpressions that yield different results on different
3667   // code paths.
3668 
3669   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
3670     Instruction *I = &*II;
3671     I->dropUBImplyingAttrsAndMetadata();
3672     if (I->isUsedByMetadata())
3673       dropDebugUsers(*I);
3674     // RemoveDIs: drop debug-info too as the following code does.
3675     I->dropDbgRecords();
3676     if (I->isDebugOrPseudoInst()) {
3677       // Remove DbgInfo and pseudo probe Intrinsics.
3678       II = I->eraseFromParent();
3679       continue;
3680     }
3681     I->setDebugLoc(InsertPt->getDebugLoc());
3682     ++II;
3683   }
3684   DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(),
3685                    BB->getTerminator()->getIterator());
3686 }
3687 
3688 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C,
3689                                              Type &Ty) {
3690   // Create integer constant expression.
3691   auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * {
3692     const APInt &API = cast<ConstantInt>(&CV)->getValue();
3693     std::optional<int64_t> InitIntOpt = API.trySExtValue();
3694     return InitIntOpt ? DIB.createConstantValueExpression(
3695                             static_cast<uint64_t>(*InitIntOpt))
3696                       : nullptr;
3697   };
3698 
3699   if (isa<ConstantInt>(C))
3700     return createIntegerExpression(C);
3701 
3702   auto *FP = dyn_cast<ConstantFP>(&C);
3703   if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) {
3704     const APFloat &APF = FP->getValueAPF();
3705     APInt const &API = APF.bitcastToAPInt();
3706     if (auto Temp = API.getZExtValue())
3707       return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp));
3708     return DIB.createConstantValueExpression(*API.getRawData());
3709   }
3710 
3711   if (!Ty.isPointerTy())
3712     return nullptr;
3713 
3714   if (isa<ConstantPointerNull>(C))
3715     return DIB.createConstantValueExpression(0);
3716 
3717   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C))
3718     if (CE->getOpcode() == Instruction::IntToPtr) {
3719       const Value *V = CE->getOperand(0);
3720       if (auto CI = dyn_cast_or_null<ConstantInt>(V))
3721         return createIntegerExpression(*CI);
3722     }
3723   return nullptr;
3724 }
3725 
3726 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) {
3727   auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) {
3728     for (auto *Op : Set) {
3729       auto I = Mapping.find(Op);
3730       if (I != Mapping.end())
3731         DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true);
3732     }
3733   };
3734   auto RemapAssignAddress = [&Mapping](auto *DA) {
3735     auto I = Mapping.find(DA->getAddress());
3736     if (I != Mapping.end())
3737       DA->setAddress(I->second);
3738   };
3739   if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst))
3740     RemapDebugOperands(DVI, DVI->location_ops());
3741   if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst))
3742     RemapAssignAddress(DAI);
3743   for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) {
3744     RemapDebugOperands(&DVR, DVR.location_ops());
3745     if (DVR.isDbgAssign())
3746       RemapAssignAddress(&DVR);
3747   }
3748 }
3749 
3750 namespace {
3751 
3752 /// A potential constituent of a bitreverse or bswap expression. See
3753 /// collectBitParts for a fuller explanation.
3754 struct BitPart {
3755   BitPart(Value *P, unsigned BW) : Provider(P) {
3756     Provenance.resize(BW);
3757   }
3758 
3759   /// The Value that this is a bitreverse/bswap of.
3760   Value *Provider;
3761 
3762   /// The "provenance" of each bit. Provenance[A] = B means that bit A
3763   /// in Provider becomes bit B in the result of this expression.
3764   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
3765 
3766   enum { Unset = -1 };
3767 };
3768 
3769 } // end anonymous namespace
3770 
3771 /// Analyze the specified subexpression and see if it is capable of providing
3772 /// pieces of a bswap or bitreverse. The subexpression provides a potential
3773 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
3774 /// the output of the expression came from a corresponding bit in some other
3775 /// value. This function is recursive, and the end result is a mapping of
3776 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
3777 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
3778 ///
3779 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
3780 /// that the expression deposits the low byte of %X into the high byte of the
3781 /// result and that all other bits are zero. This expression is accepted and a
3782 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
3783 /// [0-7].
3784 ///
3785 /// For vector types, all analysis is performed at the per-element level. No
3786 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
3787 /// constant masks must be splatted across all elements.
3788 ///
3789 /// To avoid revisiting values, the BitPart results are memoized into the
3790 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
3791 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
3792 /// store BitParts objects, not pointers. As we need the concept of a nullptr
3793 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
3794 /// type instead to provide the same functionality.
3795 ///
3796 /// Because we pass around references into \c BPS, we must use a container that
3797 /// does not invalidate internal references (std::map instead of DenseMap).
3798 static const std::optional<BitPart> &
3799 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
3800                 std::map<Value *, std::optional<BitPart>> &BPS, int Depth,
3801                 bool &FoundRoot) {
3802   auto I = BPS.find(V);
3803   if (I != BPS.end())
3804     return I->second;
3805 
3806   auto &Result = BPS[V] = std::nullopt;
3807   auto BitWidth = V->getType()->getScalarSizeInBits();
3808 
3809   // Can't do integer/elements > 128 bits.
3810   if (BitWidth > 128)
3811     return Result;
3812 
3813   // Prevent stack overflow by limiting the recursion depth
3814   if (Depth == BitPartRecursionMaxDepth) {
3815     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
3816     return Result;
3817   }
3818 
3819   if (auto *I = dyn_cast<Instruction>(V)) {
3820     Value *X, *Y;
3821     const APInt *C;
3822 
3823     // If this is an or instruction, it may be an inner node of the bswap.
3824     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
3825       // Check we have both sources and they are from the same provider.
3826       const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3827                                       Depth + 1, FoundRoot);
3828       if (!A || !A->Provider)
3829         return Result;
3830 
3831       const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3832                                       Depth + 1, FoundRoot);
3833       if (!B || A->Provider != B->Provider)
3834         return Result;
3835 
3836       // Try and merge the two together.
3837       Result = BitPart(A->Provider, BitWidth);
3838       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
3839         if (A->Provenance[BitIdx] != BitPart::Unset &&
3840             B->Provenance[BitIdx] != BitPart::Unset &&
3841             A->Provenance[BitIdx] != B->Provenance[BitIdx])
3842           return Result = std::nullopt;
3843 
3844         if (A->Provenance[BitIdx] == BitPart::Unset)
3845           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
3846         else
3847           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
3848       }
3849 
3850       return Result;
3851     }
3852 
3853     // If this is a logical shift by a constant, recurse then shift the result.
3854     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
3855       const APInt &BitShift = *C;
3856 
3857       // Ensure the shift amount is defined.
3858       if (BitShift.uge(BitWidth))
3859         return Result;
3860 
3861       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3862       if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
3863         return Result;
3864 
3865       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3866                                         Depth + 1, FoundRoot);
3867       if (!Res)
3868         return Result;
3869       Result = Res;
3870 
3871       // Perform the "shift" on BitProvenance.
3872       auto &P = Result->Provenance;
3873       if (I->getOpcode() == Instruction::Shl) {
3874         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
3875         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
3876       } else {
3877         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3878         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3879       }
3880 
3881       return Result;
3882     }
3883 
3884     // If this is a logical 'and' with a mask that clears bits, recurse then
3885     // unset the appropriate bits.
3886     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3887       const APInt &AndMask = *C;
3888 
3889       // Check that the mask allows a multiple of 8 bits for a bswap, for an
3890       // early exit.
3891       unsigned NumMaskedBits = AndMask.popcount();
3892       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3893         return Result;
3894 
3895       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3896                                         Depth + 1, FoundRoot);
3897       if (!Res)
3898         return Result;
3899       Result = Res;
3900 
3901       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3902         // If the AndMask is zero for this bit, clear the bit.
3903         if (AndMask[BitIdx] == 0)
3904           Result->Provenance[BitIdx] = BitPart::Unset;
3905       return Result;
3906     }
3907 
3908     // If this is a zext instruction zero extend the result.
3909     if (match(V, m_ZExt(m_Value(X)))) {
3910       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3911                                         Depth + 1, FoundRoot);
3912       if (!Res)
3913         return Result;
3914 
3915       Result = BitPart(Res->Provider, BitWidth);
3916       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3917       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3918         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3919       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3920         Result->Provenance[BitIdx] = BitPart::Unset;
3921       return Result;
3922     }
3923 
3924     // If this is a truncate instruction, extract the lower bits.
3925     if (match(V, m_Trunc(m_Value(X)))) {
3926       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3927                                         Depth + 1, FoundRoot);
3928       if (!Res)
3929         return Result;
3930 
3931       Result = BitPart(Res->Provider, BitWidth);
3932       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3933         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3934       return Result;
3935     }
3936 
3937     // BITREVERSE - most likely due to us previous matching a partial
3938     // bitreverse.
3939     if (match(V, m_BitReverse(m_Value(X)))) {
3940       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3941                                         Depth + 1, FoundRoot);
3942       if (!Res)
3943         return Result;
3944 
3945       Result = BitPart(Res->Provider, BitWidth);
3946       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3947         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3948       return Result;
3949     }
3950 
3951     // BSWAP - most likely due to us previous matching a partial bswap.
3952     if (match(V, m_BSwap(m_Value(X)))) {
3953       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3954                                         Depth + 1, FoundRoot);
3955       if (!Res)
3956         return Result;
3957 
3958       unsigned ByteWidth = BitWidth / 8;
3959       Result = BitPart(Res->Provider, BitWidth);
3960       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3961         unsigned ByteBitOfs = ByteIdx * 8;
3962         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3963           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3964               Res->Provenance[ByteBitOfs + BitIdx];
3965       }
3966       return Result;
3967     }
3968 
3969     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3970     // amount (modulo).
3971     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3972     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3973     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3974         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3975       // We can treat fshr as a fshl by flipping the modulo amount.
3976       unsigned ModAmt = C->urem(BitWidth);
3977       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3978         ModAmt = BitWidth - ModAmt;
3979 
3980       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3981       if (!MatchBitReversals && (ModAmt % 8) != 0)
3982         return Result;
3983 
3984       // Check we have both sources and they are from the same provider.
3985       const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3986                                         Depth + 1, FoundRoot);
3987       if (!LHS || !LHS->Provider)
3988         return Result;
3989 
3990       const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3991                                         Depth + 1, FoundRoot);
3992       if (!RHS || LHS->Provider != RHS->Provider)
3993         return Result;
3994 
3995       unsigned StartBitRHS = BitWidth - ModAmt;
3996       Result = BitPart(LHS->Provider, BitWidth);
3997       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3998         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3999       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
4000         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
4001       return Result;
4002     }
4003   }
4004 
4005   // If we've already found a root input value then we're never going to merge
4006   // these back together.
4007   if (FoundRoot)
4008     return Result;
4009 
4010   // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
4011   // be the root input value to the bswap/bitreverse.
4012   FoundRoot = true;
4013   Result = BitPart(V, BitWidth);
4014   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
4015     Result->Provenance[BitIdx] = BitIdx;
4016   return Result;
4017 }
4018 
4019 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
4020                                           unsigned BitWidth) {
4021   if (From % 8 != To % 8)
4022     return false;
4023   // Convert from bit indices to byte indices and check for a byte reversal.
4024   From >>= 3;
4025   To >>= 3;
4026   BitWidth >>= 3;
4027   return From == BitWidth - To - 1;
4028 }
4029 
4030 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
4031                                                unsigned BitWidth) {
4032   return From == BitWidth - To - 1;
4033 }
4034 
4035 bool llvm::recognizeBSwapOrBitReverseIdiom(
4036     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
4037     SmallVectorImpl<Instruction *> &InsertedInsts) {
4038   if (!match(I, m_Or(m_Value(), m_Value())) &&
4039       !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
4040       !match(I, m_FShr(m_Value(), m_Value(), m_Value())) &&
4041       !match(I, m_BSwap(m_Value())))
4042     return false;
4043   if (!MatchBSwaps && !MatchBitReversals)
4044     return false;
4045   Type *ITy = I->getType();
4046   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
4047     return false;  // Can't do integer/elements > 128 bits.
4048 
4049   // Try to find all the pieces corresponding to the bswap.
4050   bool FoundRoot = false;
4051   std::map<Value *, std::optional<BitPart>> BPS;
4052   const auto &Res =
4053       collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
4054   if (!Res)
4055     return false;
4056   ArrayRef<int8_t> BitProvenance = Res->Provenance;
4057   assert(all_of(BitProvenance,
4058                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
4059          "Illegal bit provenance index");
4060 
4061   // If the upper bits are zero, then attempt to perform as a truncated op.
4062   Type *DemandedTy = ITy;
4063   if (BitProvenance.back() == BitPart::Unset) {
4064     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
4065       BitProvenance = BitProvenance.drop_back();
4066     if (BitProvenance.empty())
4067       return false; // TODO - handle null value?
4068     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
4069     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
4070       DemandedTy = VectorType::get(DemandedTy, IVecTy);
4071   }
4072 
4073   // Check BitProvenance hasn't found a source larger than the result type.
4074   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
4075   if (DemandedBW > ITy->getScalarSizeInBits())
4076     return false;
4077 
4078   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
4079   // only byteswap values with an even number of bytes.
4080   APInt DemandedMask = APInt::getAllOnes(DemandedBW);
4081   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
4082   bool OKForBitReverse = MatchBitReversals;
4083   for (unsigned BitIdx = 0;
4084        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
4085     if (BitProvenance[BitIdx] == BitPart::Unset) {
4086       DemandedMask.clearBit(BitIdx);
4087       continue;
4088     }
4089     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
4090                                                 DemandedBW);
4091     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
4092                                                           BitIdx, DemandedBW);
4093   }
4094 
4095   Intrinsic::ID Intrin;
4096   if (OKForBSwap)
4097     Intrin = Intrinsic::bswap;
4098   else if (OKForBitReverse)
4099     Intrin = Intrinsic::bitreverse;
4100   else
4101     return false;
4102 
4103   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
4104   Value *Provider = Res->Provider;
4105 
4106   // We may need to truncate the provider.
4107   if (DemandedTy != Provider->getType()) {
4108     auto *Trunc =
4109         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator());
4110     InsertedInsts.push_back(Trunc);
4111     Provider = Trunc;
4112   }
4113 
4114   Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator());
4115   InsertedInsts.push_back(Result);
4116 
4117   if (!DemandedMask.isAllOnes()) {
4118     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
4119     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator());
4120     InsertedInsts.push_back(Result);
4121   }
4122 
4123   // We may need to zeroextend back to the result type.
4124   if (ITy != Result->getType()) {
4125     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator());
4126     InsertedInsts.push_back(ExtInst);
4127   }
4128 
4129   return true;
4130 }
4131 
4132 // CodeGen has special handling for some string functions that may replace
4133 // them with target-specific intrinsics.  Since that'd skip our interceptors
4134 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
4135 // we mark affected calls as NoBuiltin, which will disable optimization
4136 // in CodeGen.
4137 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
4138     CallInst *CI, const TargetLibraryInfo *TLI) {
4139   Function *F = CI->getCalledFunction();
4140   LibFunc Func;
4141   if (F && !F->hasLocalLinkage() && F->hasName() &&
4142       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
4143       !F->doesNotAccessMemory())
4144     CI->addFnAttr(Attribute::NoBuiltin);
4145 }
4146 
4147 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
4148   // We can't have a PHI with a metadata type.
4149   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
4150     return false;
4151 
4152   // Early exit.
4153   if (!isa<Constant>(I->getOperand(OpIdx)))
4154     return true;
4155 
4156   switch (I->getOpcode()) {
4157   default:
4158     return true;
4159   case Instruction::Call:
4160   case Instruction::Invoke: {
4161     const auto &CB = cast<CallBase>(*I);
4162 
4163     // Can't handle inline asm. Skip it.
4164     if (CB.isInlineAsm())
4165       return false;
4166 
4167     // Constant bundle operands may need to retain their constant-ness for
4168     // correctness.
4169     if (CB.isBundleOperand(OpIdx))
4170       return false;
4171 
4172     if (OpIdx < CB.arg_size()) {
4173       // Some variadic intrinsics require constants in the variadic arguments,
4174       // which currently aren't markable as immarg.
4175       if (isa<IntrinsicInst>(CB) &&
4176           OpIdx >= CB.getFunctionType()->getNumParams()) {
4177         // This is known to be OK for stackmap.
4178         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
4179       }
4180 
4181       // gcroot is a special case, since it requires a constant argument which
4182       // isn't also required to be a simple ConstantInt.
4183       if (CB.getIntrinsicID() == Intrinsic::gcroot)
4184         return false;
4185 
4186       // Some intrinsic operands are required to be immediates.
4187       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
4188     }
4189 
4190     // It is never allowed to replace the call argument to an intrinsic, but it
4191     // may be possible for a call.
4192     return !isa<IntrinsicInst>(CB);
4193   }
4194   case Instruction::ShuffleVector:
4195     // Shufflevector masks are constant.
4196     return OpIdx != 2;
4197   case Instruction::Switch:
4198   case Instruction::ExtractValue:
4199     // All operands apart from the first are constant.
4200     return OpIdx == 0;
4201   case Instruction::InsertValue:
4202     // All operands apart from the first and the second are constant.
4203     return OpIdx < 2;
4204   case Instruction::Alloca:
4205     // Static allocas (constant size in the entry block) are handled by
4206     // prologue/epilogue insertion so they're free anyway. We definitely don't
4207     // want to make them non-constant.
4208     return !cast<AllocaInst>(I)->isStaticAlloca();
4209   case Instruction::GetElementPtr:
4210     if (OpIdx == 0)
4211       return true;
4212     gep_type_iterator It = gep_type_begin(I);
4213     for (auto E = std::next(It, OpIdx); It != E; ++It)
4214       if (It.isStruct())
4215         return false;
4216     return true;
4217   }
4218 }
4219 
4220 Value *llvm::invertCondition(Value *Condition) {
4221   // First: Check if it's a constant
4222   if (Constant *C = dyn_cast<Constant>(Condition))
4223     return ConstantExpr::getNot(C);
4224 
4225   // Second: If the condition is already inverted, return the original value
4226   Value *NotCondition;
4227   if (match(Condition, m_Not(m_Value(NotCondition))))
4228     return NotCondition;
4229 
4230   BasicBlock *Parent = nullptr;
4231   Instruction *Inst = dyn_cast<Instruction>(Condition);
4232   if (Inst)
4233     Parent = Inst->getParent();
4234   else if (Argument *Arg = dyn_cast<Argument>(Condition))
4235     Parent = &Arg->getParent()->getEntryBlock();
4236   assert(Parent && "Unsupported condition to invert");
4237 
4238   // Third: Check all the users for an invert
4239   for (User *U : Condition->users())
4240     if (Instruction *I = dyn_cast<Instruction>(U))
4241       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
4242         return I;
4243 
4244   // Last option: Create a new instruction
4245   auto *Inverted =
4246       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
4247   if (Inst && !isa<PHINode>(Inst))
4248     Inverted->insertAfter(Inst);
4249   else
4250     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
4251   return Inverted;
4252 }
4253 
4254 bool llvm::inferAttributesFromOthers(Function &F) {
4255   // Note: We explicitly check for attributes rather than using cover functions
4256   // because some of the cover functions include the logic being implemented.
4257 
4258   bool Changed = false;
4259   // readnone + not convergent implies nosync
4260   if (!F.hasFnAttribute(Attribute::NoSync) &&
4261       F.doesNotAccessMemory() && !F.isConvergent()) {
4262     F.setNoSync();
4263     Changed = true;
4264   }
4265 
4266   // readonly implies nofree
4267   if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
4268     F.setDoesNotFreeMemory();
4269     Changed = true;
4270   }
4271 
4272   // willreturn implies mustprogress
4273   if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
4274     F.setMustProgress();
4275     Changed = true;
4276   }
4277 
4278   // TODO: There are a bunch of cases of restrictive memory effects we
4279   // can infer by inspecting arguments of argmemonly-ish functions.
4280 
4281   return Changed;
4282 }
4283