1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Owen Anderson and is distributed under the 6 // University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if(c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "lcssa" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Constants.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Function.h" 35 #include "llvm/Instructions.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SetVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/Analysis/Dominators.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Support/CFG.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 46 47 namespace { 48 struct LCSSA : public FunctionPass { 49 // Cached analysis information for the current function. 50 LoopInfo *LI; 51 DominatorTree *DT; 52 std::vector<BasicBlock*> LoopBlocks; 53 54 virtual bool runOnFunction(Function &F); 55 bool visitSubloop(Loop* L); 56 void ProcessInstruction(Instruction* Instr, 57 const std::vector<BasicBlock*>& exitBlocks); 58 59 /// This transformation requires natural loop information & requires that 60 /// loop preheaders be inserted into the CFG. It maintains both of these, 61 /// as well as the CFG. It also requires dominator information. 62 /// 63 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 64 AU.setPreservesCFG(); 65 AU.addRequiredID(LoopSimplifyID); 66 AU.addPreservedID(LoopSimplifyID); 67 AU.addRequired<LoopInfo>(); 68 AU.addRequired<DominatorTree>(); 69 } 70 private: 71 SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); 72 73 Value *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 74 DenseMap<DominatorTree::Node*, Value*> &Phis); 75 76 /// inLoop - returns true if the given block is within the current loop 77 const bool inLoop(BasicBlock* B) { 78 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 79 } 80 }; 81 82 RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 83 } 84 85 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 86 const PassInfo *llvm::LCSSAID = X.getPassInfo(); 87 88 /// runOnFunction - Process all loops in the function, inner-most out. 89 bool LCSSA::runOnFunction(Function &F) { 90 bool changed = false; 91 92 LI = &getAnalysis<LoopInfo>(); 93 DT = &getAnalysis<DominatorTree>(); 94 95 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 96 changed |= visitSubloop(*I); 97 98 return changed; 99 } 100 101 /// visitSubloop - Recursively process all subloops, and then process the given 102 /// loop if it has live-out values. 103 bool LCSSA::visitSubloop(Loop* L) { 104 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 105 visitSubloop(*I); 106 107 // Speed up queries by creating a sorted list of blocks 108 LoopBlocks.clear(); 109 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 110 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 111 112 SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); 113 114 // If no values are affected, we can save a lot of work, since we know that 115 // nothing will be changed. 116 if (AffectedValues.empty()) 117 return false; 118 119 std::vector<BasicBlock*> exitBlocks; 120 L->getExitBlocks(exitBlocks); 121 122 123 // Iterate over all affected values for this loop and insert Phi nodes 124 // for them in the appropriate exit blocks 125 126 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 127 E = AffectedValues.end(); I != E; ++I) 128 ProcessInstruction(*I, exitBlocks); 129 130 assert(L->isLCSSAForm()); 131 132 return true; 133 } 134 135 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 136 /// eliminate all out-of-loop uses. 137 void LCSSA::ProcessInstruction(Instruction *Instr, 138 const std::vector<BasicBlock*>& exitBlocks) { 139 ++NumLCSSA; // We are applying the transformation 140 141 // Keep track of the blocks that have the value available already. 142 DenseMap<DominatorTree::Node*, Value*> Phis; 143 144 DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent()); 145 146 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 147 // add them to the Phi's map. 148 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 149 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 150 BasicBlock *BB = *BBI; 151 DominatorTree::Node *ExitBBNode = DT->getNode(BB); 152 Value *&Phi = Phis[ExitBBNode]; 153 if (!Phi && InstrNode->dominates(ExitBBNode)) { 154 PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 155 BB->begin()); 156 PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); 157 158 // Remember that this phi makes the value alive in this block. 159 Phi = PN; 160 161 // Add inputs from inside the loop for this PHI. 162 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 163 PN->addIncoming(Instr, *PI); 164 } 165 } 166 167 168 // Record all uses of Instr outside the loop. We need to rewrite these. The 169 // LCSSA phis won't be included because they use the value in the loop. 170 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 171 UI != E;) { 172 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 173 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 174 unsigned OperandNo = UI.getOperandNo(); 175 UserBB = P->getIncomingBlock(OperandNo/2); 176 } 177 178 // If the user is in the loop, don't rewrite it! 179 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 180 ++UI; 181 continue; 182 } 183 184 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 185 // inserting PHI nodes into join points where needed. 186 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 187 188 // Preincrement the iterator to avoid invalidating it when we change the 189 // value. 190 Use &U = UI.getUse(); 191 ++UI; 192 U.set(Val); 193 } 194 } 195 196 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 197 /// are used by instructions outside of it. 198 SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { 199 200 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 201 // by using dominance information. In particular, if a block does not 202 // dominate any of the loop exits, then none of the values defined in the 203 // block could be used outside the loop. 204 205 SetVector<Instruction*> AffectedValues; 206 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 207 BB != E; ++BB) { 208 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 209 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 210 ++UI) { 211 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 212 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 213 unsigned OperandNo = UI.getOperandNo(); 214 UserBB = p->getIncomingBlock(OperandNo/2); 215 } 216 217 if (*BB != UserBB && !inLoop(UserBB)) { 218 AffectedValues.insert(I); 219 break; 220 } 221 } 222 } 223 return AffectedValues; 224 } 225 226 /// GetValueForBlock - Get the value to use within the specified basic block. 227 /// available values are in Phis. 228 Value *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 229 DenseMap<DominatorTree::Node*, Value*> &Phis) { 230 // If there is no dominator info for this BB, it is unreachable. 231 if (BB == 0) 232 return UndefValue::get(OrigInst->getType()); 233 234 // If we have already computed this value, return the previously computed val. 235 Value *&V = Phis[BB]; 236 if (V) return V; 237 238 DominatorTree::Node *IDom = BB->getIDom(); 239 240 // Otherwise, there are two cases: we either have to insert a PHI node or we 241 // don't. We need to insert a PHI node if this block is not dominated by one 242 // of the exit nodes from the loop (the loop could have multiple exits, and 243 // though the value defined *inside* the loop dominated all its uses, each 244 // exit by itself may not dominate all the uses). 245 // 246 // The simplest way to check for this condition is by checking to see if the 247 // idom is in the loop. If so, we *know* that none of the exit blocks 248 // dominate this block. Note that we *know* that the block defining the 249 // original instruction is in the idom chain, because if it weren't, then the 250 // original value didn't dominate this use. 251 if (!inLoop(IDom->getBlock())) { 252 // Idom is not in the loop, we must still be "below" the exit block and must 253 // be fully dominated by the value live in the idom. 254 return V = GetValueForBlock(IDom, OrigInst, Phis); 255 } 256 257 BasicBlock *BBN = BB->getBlock(); 258 259 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 260 // now, then get values to fill in the incoming values for the PHI. 261 PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", 262 BBN->begin()); 263 PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); 264 V = PN; 265 266 // Fill in the incoming values for the block. 267 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) 268 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 269 return PN; 270 } 271 272