1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/LoopUtils.h" 51 #include "llvm/Transforms/Utils/SSAUpdater.h" 52 using namespace llvm; 53 54 #define DEBUG_TYPE "lcssa" 55 56 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 57 58 #ifdef EXPENSIVE_CHECKS 59 static bool VerifyLoopLCSSA = true; 60 #else 61 static bool VerifyLoopLCSSA = false; 62 #endif 63 static cl::opt<bool, true> 64 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 65 cl::Hidden, 66 cl::desc("Verify loop lcssa form (time consuming)")); 67 68 /// Return true if the specified block is in the list. 69 static bool isExitBlock(BasicBlock *BB, 70 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 71 return is_contained(ExitBlocks, BB); 72 } 73 74 // Cache the Loop ExitBlocks computed during the analysis. We expect to get a 75 // lot of instructions within the same loops, computing the exit blocks is 76 // expensive, and we're not mutating the loop structure. 77 using LoopExitBlocksTy = SmallDenseMap<Loop *, SmallVector<BasicBlock *, 1>>; 78 79 /// For every instruction from the worklist, check to see if it has any uses 80 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 81 /// rewrite the uses. 82 static bool 83 formLCSSAForInstructionsImpl(SmallVectorImpl<Instruction *> &Worklist, 84 const DominatorTree &DT, const LoopInfo &LI, 85 ScalarEvolution *SE, 86 SmallVectorImpl<PHINode *> *PHIsToRemove, 87 SmallVectorImpl<PHINode *> *InsertedPHIs, 88 LoopExitBlocksTy &LoopExitBlocks) { 89 SmallVector<Use *, 16> UsesToRewrite; 90 SmallSetVector<PHINode *, 16> LocalPHIsToRemove; 91 PredIteratorCache PredCache; 92 bool Changed = false; 93 94 while (!Worklist.empty()) { 95 UsesToRewrite.clear(); 96 97 Instruction *I = Worklist.pop_back_val(); 98 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 99 BasicBlock *InstBB = I->getParent(); 100 Loop *L = LI.getLoopFor(InstBB); 101 assert(L && "Instruction belongs to a BB that's not part of a loop"); 102 if (!LoopExitBlocks.count(L)) 103 L->getExitBlocks(LoopExitBlocks[L]); 104 assert(LoopExitBlocks.count(L)); 105 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 106 107 if (ExitBlocks.empty()) 108 continue; 109 110 for (Use &U : make_early_inc_range(I->uses())) { 111 Instruction *User = cast<Instruction>(U.getUser()); 112 BasicBlock *UserBB = User->getParent(); 113 114 // Skip uses in unreachable blocks. 115 if (!DT.isReachableFromEntry(UserBB)) { 116 U.set(PoisonValue::get(I->getType())); 117 continue; 118 } 119 120 // For practical purposes, we consider that the use in a PHI 121 // occurs in the respective predecessor block. For more info, 122 // see the `phi` doc in LangRef and the LCSSA doc. 123 if (auto *PN = dyn_cast<PHINode>(User)) 124 UserBB = PN->getIncomingBlock(U); 125 126 if (InstBB != UserBB && !L->contains(UserBB)) 127 UsesToRewrite.push_back(&U); 128 } 129 130 // If there are no uses outside the loop, exit with no change. 131 if (UsesToRewrite.empty()) 132 continue; 133 134 ++NumLCSSA; // We are applying the transformation 135 136 // Invoke instructions are special in that their result value is not 137 // available along their unwind edge. The code below tests to see whether 138 // DomBB dominates the value, so adjust DomBB to the normal destination 139 // block, which is effectively where the value is first usable. 140 BasicBlock *DomBB = InstBB; 141 if (auto *Inv = dyn_cast<InvokeInst>(I)) 142 DomBB = Inv->getNormalDest(); 143 144 const DomTreeNode *DomNode = DT.getNode(DomBB); 145 146 SmallVector<PHINode *, 16> AddedPHIs; 147 SmallVector<PHINode *, 8> PostProcessPHIs; 148 149 SmallVector<PHINode *, 4> LocalInsertedPHIs; 150 SSAUpdater SSAUpdate(&LocalInsertedPHIs); 151 SSAUpdate.Initialize(I->getType(), I->getName()); 152 153 // Insert the LCSSA phi's into all of the exit blocks dominated by the 154 // value, and add them to the Phi's map. 155 bool HasSCEV = SE && SE->isSCEVable(I->getType()) && 156 SE->getExistingSCEV(I) != nullptr; 157 for (BasicBlock *ExitBB : ExitBlocks) { 158 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 159 continue; 160 161 // If we already inserted something for this BB, don't reprocess it. 162 if (SSAUpdate.HasValueForBlock(ExitBB)) 163 continue; 164 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 165 I->getName() + ".lcssa"); 166 PN->insertBefore(ExitBB->begin()); 167 if (InsertedPHIs) 168 InsertedPHIs->push_back(PN); 169 // Get the debug location from the original instruction. 170 PN->setDebugLoc(I->getDebugLoc()); 171 172 // Add inputs from inside the loop for this PHI. This is valid 173 // because `I` dominates `ExitBB` (checked above). This implies 174 // that every incoming block/edge is dominated by `I` as well, 175 // i.e. we can add uses of `I` to those incoming edges/append to the incoming 176 // blocks without violating the SSA dominance property. 177 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 178 PN->addIncoming(I, Pred); 179 180 // If the exit block has a predecessor not within the loop, arrange for 181 // the incoming value use corresponding to that predecessor to be 182 // rewritten in terms of a different LCSSA PHI. 183 if (!L->contains(Pred)) 184 UsesToRewrite.push_back( 185 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 186 PN->getNumIncomingValues() - 1))); 187 } 188 189 AddedPHIs.push_back(PN); 190 191 // Remember that this phi makes the value alive in this block. 192 SSAUpdate.AddAvailableValue(ExitBB, PN); 193 194 // LoopSimplify might fail to simplify some loops (e.g. when indirect 195 // branches are involved). In such situations, it might happen that an 196 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 197 // create PHIs in such an exit block, we are also inserting PHIs into L2's 198 // header. This could break LCSSA form for L2 because these inserted PHIs 199 // can also have uses outside of L2. Remember all PHIs in such situation 200 // as to revisit than later on. FIXME: Remove this if indirectbr support 201 // into LoopSimplify gets improved. 202 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 203 if (!L->contains(OtherLoop)) 204 PostProcessPHIs.push_back(PN); 205 206 // If we have a cached SCEV for the original instruction, make sure the 207 // new LCSSA phi node is also cached. This makes sures that BECounts 208 // based on it will be invalidated when the LCSSA phi node is invalidated, 209 // which some passes rely on. 210 if (HasSCEV) 211 SE->getSCEV(PN); 212 } 213 214 // Rewrite all uses outside the loop in terms of the new PHIs we just 215 // inserted. 216 for (Use *UseToRewrite : UsesToRewrite) { 217 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 218 BasicBlock *UserBB = User->getParent(); 219 220 // For practical purposes, we consider that the use in a PHI 221 // occurs in the respective predecessor block. For more info, 222 // see the `phi` doc in LangRef and the LCSSA doc. 223 if (auto *PN = dyn_cast<PHINode>(User)) 224 UserBB = PN->getIncomingBlock(*UseToRewrite); 225 226 // If this use is in an exit block, rewrite to use the newly inserted PHI. 227 // This is required for correctness because SSAUpdate doesn't handle uses 228 // in the same block. It assumes the PHI we inserted is at the end of the 229 // block. 230 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 231 UseToRewrite->set(&UserBB->front()); 232 continue; 233 } 234 235 // If we added a single PHI, it must dominate all uses and we can directly 236 // rename it. 237 if (AddedPHIs.size() == 1) { 238 UseToRewrite->set(AddedPHIs[0]); 239 continue; 240 } 241 242 // Otherwise, do full PHI insertion. 243 SSAUpdate.RewriteUse(*UseToRewrite); 244 } 245 246 SmallVector<DbgValueInst *, 4> DbgValues; 247 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 248 llvm::findDbgValues(DbgValues, I, &DbgVariableRecords); 249 250 // Update pre-existing debug value uses that reside outside the loop. 251 for (auto *DVI : DbgValues) { 252 BasicBlock *UserBB = DVI->getParent(); 253 if (InstBB == UserBB || L->contains(UserBB)) 254 continue; 255 // We currently only handle debug values residing in blocks that were 256 // traversed while rewriting the uses. If we inserted just a single PHI, 257 // we will handle all relevant debug values. 258 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 259 : SSAUpdate.FindValueForBlock(UserBB); 260 if (V) 261 DVI->replaceVariableLocationOp(I, V); 262 } 263 264 // RemoveDIs: copy-paste of block above, using non-instruction debug-info 265 // records. 266 for (DbgVariableRecord *DVR : DbgVariableRecords) { 267 BasicBlock *UserBB = DVR->getMarker()->getParent(); 268 if (InstBB == UserBB || L->contains(UserBB)) 269 continue; 270 // We currently only handle debug values residing in blocks that were 271 // traversed while rewriting the uses. If we inserted just a single PHI, 272 // we will handle all relevant debug values. 273 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 274 : SSAUpdate.FindValueForBlock(UserBB); 275 if (V) 276 DVR->replaceVariableLocationOp(I, V); 277 } 278 279 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 280 // to post-process them to keep LCSSA form. 281 for (PHINode *InsertedPN : LocalInsertedPHIs) { 282 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 283 if (!L->contains(OtherLoop)) 284 PostProcessPHIs.push_back(InsertedPN); 285 if (InsertedPHIs) 286 InsertedPHIs->push_back(InsertedPN); 287 } 288 289 // Post process PHI instructions that were inserted into another disjoint 290 // loop and update their exits properly. 291 for (auto *PostProcessPN : PostProcessPHIs) 292 if (!PostProcessPN->use_empty()) 293 Worklist.push_back(PostProcessPN); 294 295 // Keep track of PHI nodes that we want to remove because they did not have 296 // any uses rewritten. 297 for (PHINode *PN : AddedPHIs) 298 if (PN->use_empty()) 299 LocalPHIsToRemove.insert(PN); 300 301 Changed = true; 302 } 303 304 // Remove PHI nodes that did not have any uses rewritten or add them to 305 // PHIsToRemove, so the caller can remove them after some additional cleanup. 306 // We need to redo the use_empty() check here, because even if the PHI node 307 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be 308 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI 309 // nodes that only are used by each other. Such situations has only been 310 // noticed when the input IR contains unreachable code, and leaving some extra 311 // redundant PHI nodes in such situations is considered a minor problem. 312 if (PHIsToRemove) { 313 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); 314 } else { 315 for (PHINode *PN : LocalPHIsToRemove) 316 if (PN->use_empty()) 317 PN->eraseFromParent(); 318 } 319 return Changed; 320 } 321 322 /// For every instruction from the worklist, check to see if it has any uses 323 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 324 /// rewrite the uses. 325 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 326 const DominatorTree &DT, const LoopInfo &LI, 327 ScalarEvolution *SE, 328 SmallVectorImpl<PHINode *> *PHIsToRemove, 329 SmallVectorImpl<PHINode *> *InsertedPHIs) { 330 LoopExitBlocksTy LoopExitBlocks; 331 332 return formLCSSAForInstructionsImpl(Worklist, DT, LI, SE, PHIsToRemove, 333 InsertedPHIs, LoopExitBlocks); 334 } 335 336 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 337 static void computeBlocksDominatingExits( 338 Loop &L, const DominatorTree &DT, ArrayRef<BasicBlock *> ExitBlocks, 339 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 340 // We start from the exit blocks, as every block trivially dominates itself 341 // (not strictly). 342 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks); 343 344 while (!BBWorklist.empty()) { 345 BasicBlock *BB = BBWorklist.pop_back_val(); 346 347 // Check if this is a loop header. If this is the case, we're done. 348 if (L.getHeader() == BB) 349 continue; 350 351 // Otherwise, add its immediate predecessor in the dominator tree to the 352 // worklist, unless we visited it already. 353 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 354 355 // Exit blocks can have an immediate dominator not belonging to the 356 // loop. For an exit block to be immediately dominated by another block 357 // outside the loop, it implies not all paths from that dominator, to the 358 // exit block, go through the loop. 359 // Example: 360 // 361 // |---- A 362 // | | 363 // | B<-- 364 // | | | 365 // |---> C -- 366 // | 367 // D 368 // 369 // C is the exit block of the loop and it's immediately dominated by A, 370 // which doesn't belong to the loop. 371 if (!L.contains(IDomBB)) 372 continue; 373 374 if (BlocksDominatingExits.insert(IDomBB)) 375 BBWorklist.push_back(IDomBB); 376 } 377 } 378 379 static bool formLCSSAImpl(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 380 ScalarEvolution *SE, 381 LoopExitBlocksTy &LoopExitBlocks) { 382 bool Changed = false; 383 384 #ifdef EXPENSIVE_CHECKS 385 // Verify all sub-loops are in LCSSA form already. 386 for (Loop *SubLoop: L) { 387 (void)SubLoop; // Silence unused variable warning. 388 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 389 } 390 #endif 391 392 if (!LoopExitBlocks.count(&L)) 393 L.getExitBlocks(LoopExitBlocks[&L]); 394 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[&L]; 395 if (ExitBlocks.empty()) 396 return false; 397 398 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 399 400 // We want to avoid use-scanning leveraging dominance informations. 401 // If a block doesn't dominate any of the loop exits, the none of the values 402 // defined in the loop can be used outside. 403 // We compute the set of blocks fullfilling the conditions in advance 404 // walking the dominator tree upwards until we hit a loop header. 405 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 406 407 SmallVector<Instruction *, 8> Worklist; 408 409 // Look at all the instructions in the loop, checking to see if they have uses 410 // outside the loop. If so, put them into the worklist to rewrite those uses. 411 for (BasicBlock *BB : BlocksDominatingExits) { 412 // Skip blocks that are part of any sub-loops, they must be in LCSSA 413 // already. 414 if (LI->getLoopFor(BB) != &L) 415 continue; 416 for (Instruction &I : *BB) { 417 // Reject two common cases fast: instructions with no uses (like stores) 418 // and instructions with one use that is in the same block as this. 419 if (I.use_empty() || 420 (I.hasOneUse() && I.user_back()->getParent() == BB && 421 !isa<PHINode>(I.user_back()))) 422 continue; 423 424 // Tokens cannot be used in PHI nodes, so we skip over them. 425 // We can run into tokens which are live out of a loop with catchswitch 426 // instructions in Windows EH if the catchswitch has one catchpad which 427 // is inside the loop and another which is not. 428 if (I.getType()->isTokenTy()) 429 continue; 430 431 Worklist.push_back(&I); 432 } 433 } 434 435 Changed = formLCSSAForInstructionsImpl(Worklist, DT, *LI, SE, nullptr, 436 nullptr, LoopExitBlocks); 437 438 assert(L.isLCSSAForm(DT)); 439 440 return Changed; 441 } 442 443 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 444 ScalarEvolution *SE) { 445 LoopExitBlocksTy LoopExitBlocks; 446 447 return formLCSSAImpl(L, DT, LI, SE, LoopExitBlocks); 448 } 449 450 /// Process a loop nest depth first. 451 static bool formLCSSARecursivelyImpl(Loop &L, const DominatorTree &DT, 452 const LoopInfo *LI, ScalarEvolution *SE, 453 LoopExitBlocksTy &LoopExitBlocks) { 454 bool Changed = false; 455 456 // Recurse depth-first through inner loops. 457 for (Loop *SubLoop : L.getSubLoops()) 458 Changed |= formLCSSARecursivelyImpl(*SubLoop, DT, LI, SE, LoopExitBlocks); 459 460 Changed |= formLCSSAImpl(L, DT, LI, SE, LoopExitBlocks); 461 return Changed; 462 } 463 464 /// Process a loop nest depth first. 465 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 466 const LoopInfo *LI, ScalarEvolution *SE) { 467 LoopExitBlocksTy LoopExitBlocks; 468 469 return formLCSSARecursivelyImpl(L, DT, LI, SE, LoopExitBlocks); 470 } 471 472 /// Process all loops in the function, inner-most out. 473 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 474 ScalarEvolution *SE) { 475 bool Changed = false; 476 for (const auto &L : *LI) 477 Changed |= formLCSSARecursively(*L, DT, LI, SE); 478 return Changed; 479 } 480 481 namespace { 482 struct LCSSAWrapperPass : public FunctionPass { 483 static char ID; // Pass identification, replacement for typeid 484 LCSSAWrapperPass() : FunctionPass(ID) { 485 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 486 } 487 488 // Cached analysis information for the current function. 489 DominatorTree *DT; 490 LoopInfo *LI; 491 ScalarEvolution *SE; 492 493 bool runOnFunction(Function &F) override; 494 void verifyAnalysis() const override { 495 // This check is very expensive. On the loop intensive compiles it may cause 496 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 497 // always does limited form of the LCSSA verification. Similar reasoning 498 // was used for the LoopInfo verifier. 499 if (VerifyLoopLCSSA) { 500 assert(all_of(*LI, 501 [&](Loop *L) { 502 return L->isRecursivelyLCSSAForm(*DT, *LI); 503 }) && 504 "LCSSA form is broken!"); 505 } 506 }; 507 508 /// This transformation requires natural loop information & requires that 509 /// loop preheaders be inserted into the CFG. It maintains both of these, 510 /// as well as the CFG. It also requires dominator information. 511 void getAnalysisUsage(AnalysisUsage &AU) const override { 512 AU.setPreservesCFG(); 513 514 AU.addRequired<DominatorTreeWrapperPass>(); 515 AU.addRequired<LoopInfoWrapperPass>(); 516 AU.addPreservedID(LoopSimplifyID); 517 AU.addPreserved<AAResultsWrapperPass>(); 518 AU.addPreserved<BasicAAWrapperPass>(); 519 AU.addPreserved<GlobalsAAWrapperPass>(); 520 AU.addPreserved<ScalarEvolutionWrapperPass>(); 521 AU.addPreserved<SCEVAAWrapperPass>(); 522 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 523 AU.addPreserved<MemorySSAWrapperPass>(); 524 525 // This is needed to perform LCSSA verification inside LPPassManager 526 AU.addRequired<LCSSAVerificationPass>(); 527 AU.addPreserved<LCSSAVerificationPass>(); 528 } 529 }; 530 } 531 532 char LCSSAWrapperPass::ID = 0; 533 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 534 false, false) 535 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 536 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 537 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 538 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 539 false, false) 540 541 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 542 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 543 544 /// Transform \p F into loop-closed SSA form. 545 bool LCSSAWrapperPass::runOnFunction(Function &F) { 546 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 547 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 548 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 549 SE = SEWP ? &SEWP->getSE() : nullptr; 550 551 return formLCSSAOnAllLoops(LI, *DT, SE); 552 } 553 554 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 555 auto &LI = AM.getResult<LoopAnalysis>(F); 556 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 557 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 558 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 559 return PreservedAnalyses::all(); 560 561 PreservedAnalyses PA; 562 PA.preserveSet<CFGAnalyses>(); 563 PA.preserve<ScalarEvolutionAnalysis>(); 564 // BPI maps terminators to probabilities, since we don't modify the CFG, no 565 // updates are needed to preserve it. 566 PA.preserve<BranchProbabilityAnalysis>(); 567 PA.preserve<MemorySSAAnalysis>(); 568 return PA; 569 } 570