xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision e9a47a664a67b188c553e04232f9b445890a83b2)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/SSAUpdater.h"
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "lcssa"
55 
56 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
57 
58 #ifdef EXPENSIVE_CHECKS
59 static bool VerifyLoopLCSSA = true;
60 #else
61 static bool VerifyLoopLCSSA = false;
62 #endif
63 static cl::opt<bool, true>
64     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
65                         cl::Hidden,
66                         cl::desc("Verify loop lcssa form (time consuming)"));
67 
68 /// Return true if the specified block is in the list.
69 static bool isExitBlock(BasicBlock *BB,
70                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
71   return is_contained(ExitBlocks, BB);
72 }
73 
74 // Cache the Loop ExitBlocks computed during the analysis.  We expect to get a
75 // lot of instructions within the same loops, computing the exit blocks is
76 // expensive, and we're not mutating the loop structure.
77 using LoopExitBlocksTy = SmallDenseMap<Loop *, SmallVector<BasicBlock *, 1>>;
78 
79 /// For every instruction from the worklist, check to see if it has any uses
80 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
81 /// rewrite the uses.
82 static bool
83 formLCSSAForInstructionsImpl(SmallVectorImpl<Instruction *> &Worklist,
84                              const DominatorTree &DT, const LoopInfo &LI,
85                              ScalarEvolution *SE,
86                              SmallVectorImpl<PHINode *> *PHIsToRemove,
87                              SmallVectorImpl<PHINode *> *InsertedPHIs,
88                              LoopExitBlocksTy &LoopExitBlocks) {
89   SmallVector<Use *, 16> UsesToRewrite;
90   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
91   PredIteratorCache PredCache;
92   bool Changed = false;
93 
94   while (!Worklist.empty()) {
95     UsesToRewrite.clear();
96 
97     Instruction *I = Worklist.pop_back_val();
98     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
99     BasicBlock *InstBB = I->getParent();
100     Loop *L = LI.getLoopFor(InstBB);
101     assert(L && "Instruction belongs to a BB that's not part of a loop");
102     if (!LoopExitBlocks.count(L))
103       L->getExitBlocks(LoopExitBlocks[L]);
104     assert(LoopExitBlocks.count(L));
105     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
106 
107     if (ExitBlocks.empty())
108       continue;
109 
110     for (Use &U : make_early_inc_range(I->uses())) {
111       Instruction *User = cast<Instruction>(U.getUser());
112       BasicBlock *UserBB = User->getParent();
113 
114       // Skip uses in unreachable blocks.
115       if (!DT.isReachableFromEntry(UserBB)) {
116         U.set(PoisonValue::get(I->getType()));
117         continue;
118       }
119 
120       // For practical purposes, we consider that the use in a PHI
121       // occurs in the respective predecessor block. For more info,
122       // see the `phi` doc in LangRef and the LCSSA doc.
123       if (auto *PN = dyn_cast<PHINode>(User))
124         UserBB = PN->getIncomingBlock(U);
125 
126       if (InstBB != UserBB && !L->contains(UserBB))
127         UsesToRewrite.push_back(&U);
128     }
129 
130     // If there are no uses outside the loop, exit with no change.
131     if (UsesToRewrite.empty())
132       continue;
133 
134     ++NumLCSSA; // We are applying the transformation
135 
136     // Invoke instructions are special in that their result value is not
137     // available along their unwind edge. The code below tests to see whether
138     // DomBB dominates the value, so adjust DomBB to the normal destination
139     // block, which is effectively where the value is first usable.
140     BasicBlock *DomBB = InstBB;
141     if (auto *Inv = dyn_cast<InvokeInst>(I))
142       DomBB = Inv->getNormalDest();
143 
144     const DomTreeNode *DomNode = DT.getNode(DomBB);
145 
146     SmallVector<PHINode *, 16> AddedPHIs;
147     SmallVector<PHINode *, 8> PostProcessPHIs;
148 
149     SmallVector<PHINode *, 4> LocalInsertedPHIs;
150     SSAUpdater SSAUpdate(&LocalInsertedPHIs);
151     SSAUpdate.Initialize(I->getType(), I->getName());
152 
153     // Insert the LCSSA phi's into all of the exit blocks dominated by the
154     // value, and add them to the Phi's map.
155     bool HasSCEV = SE && SE->isSCEVable(I->getType()) &&
156                    SE->getExistingSCEV(I) != nullptr;
157     for (BasicBlock *ExitBB : ExitBlocks) {
158       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
159         continue;
160 
161       // If we already inserted something for this BB, don't reprocess it.
162       if (SSAUpdate.HasValueForBlock(ExitBB))
163         continue;
164       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
165                                     I->getName() + ".lcssa");
166       PN->insertBefore(ExitBB->begin());
167       if (InsertedPHIs)
168         InsertedPHIs->push_back(PN);
169       // Get the debug location from the original instruction.
170       PN->setDebugLoc(I->getDebugLoc());
171 
172       // Add inputs from inside the loop for this PHI. This is valid
173       // because `I` dominates `ExitBB` (checked above).  This implies
174       // that every incoming block/edge is dominated by `I` as well,
175       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
176       // blocks without violating the SSA dominance property.
177       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
178         PN->addIncoming(I, Pred);
179 
180         // If the exit block has a predecessor not within the loop, arrange for
181         // the incoming value use corresponding to that predecessor to be
182         // rewritten in terms of a different LCSSA PHI.
183         if (!L->contains(Pred))
184           UsesToRewrite.push_back(
185               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
186                   PN->getNumIncomingValues() - 1)));
187       }
188 
189       AddedPHIs.push_back(PN);
190 
191       // Remember that this phi makes the value alive in this block.
192       SSAUpdate.AddAvailableValue(ExitBB, PN);
193 
194       // LoopSimplify might fail to simplify some loops (e.g. when indirect
195       // branches are involved). In such situations, it might happen that an
196       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
197       // create PHIs in such an exit block, we are also inserting PHIs into L2's
198       // header. This could break LCSSA form for L2 because these inserted PHIs
199       // can also have uses outside of L2. Remember all PHIs in such situation
200       // as to revisit than later on. FIXME: Remove this if indirectbr support
201       // into LoopSimplify gets improved.
202       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
203         if (!L->contains(OtherLoop))
204           PostProcessPHIs.push_back(PN);
205 
206       // If we have a cached SCEV for the original instruction, make sure the
207       // new LCSSA phi node is also cached. This makes sures that BECounts
208       // based on it will be invalidated when the LCSSA phi node is invalidated,
209       // which some passes rely on.
210       if (HasSCEV)
211         SE->getSCEV(PN);
212     }
213 
214     // Rewrite all uses outside the loop in terms of the new PHIs we just
215     // inserted.
216     for (Use *UseToRewrite : UsesToRewrite) {
217       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
218       BasicBlock *UserBB = User->getParent();
219 
220       // For practical purposes, we consider that the use in a PHI
221       // occurs in the respective predecessor block. For more info,
222       // see the `phi` doc in LangRef and the LCSSA doc.
223       if (auto *PN = dyn_cast<PHINode>(User))
224         UserBB = PN->getIncomingBlock(*UseToRewrite);
225 
226       // If this use is in an exit block, rewrite to use the newly inserted PHI.
227       // This is required for correctness because SSAUpdate doesn't handle uses
228       // in the same block.  It assumes the PHI we inserted is at the end of the
229       // block.
230       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
231         UseToRewrite->set(&UserBB->front());
232         continue;
233       }
234 
235       // If we added a single PHI, it must dominate all uses and we can directly
236       // rename it.
237       if (AddedPHIs.size() == 1) {
238         UseToRewrite->set(AddedPHIs[0]);
239         continue;
240       }
241 
242       // Otherwise, do full PHI insertion.
243       SSAUpdate.RewriteUse(*UseToRewrite);
244     }
245 
246     SmallVector<DbgValueInst *, 4> DbgValues;
247     SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
248     llvm::findDbgValues(DbgValues, I, &DbgVariableRecords);
249 
250     // Update pre-existing debug value uses that reside outside the loop.
251     for (auto *DVI : DbgValues) {
252       BasicBlock *UserBB = DVI->getParent();
253       if (InstBB == UserBB || L->contains(UserBB))
254         continue;
255       // We currently only handle debug values residing in blocks that were
256       // traversed while rewriting the uses. If we inserted just a single PHI,
257       // we will handle all relevant debug values.
258       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
259                                        : SSAUpdate.FindValueForBlock(UserBB);
260       if (V)
261         DVI->replaceVariableLocationOp(I, V);
262     }
263 
264     // RemoveDIs: copy-paste of block above, using non-instruction debug-info
265     // records.
266     for (DbgVariableRecord *DVR : DbgVariableRecords) {
267       BasicBlock *UserBB = DVR->getMarker()->getParent();
268       if (InstBB == UserBB || L->contains(UserBB))
269         continue;
270       // We currently only handle debug values residing in blocks that were
271       // traversed while rewriting the uses. If we inserted just a single PHI,
272       // we will handle all relevant debug values.
273       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
274                                        : SSAUpdate.FindValueForBlock(UserBB);
275       if (V)
276         DVR->replaceVariableLocationOp(I, V);
277     }
278 
279     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
280     // to post-process them to keep LCSSA form.
281     for (PHINode *InsertedPN : LocalInsertedPHIs) {
282       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
283         if (!L->contains(OtherLoop))
284           PostProcessPHIs.push_back(InsertedPN);
285       if (InsertedPHIs)
286         InsertedPHIs->push_back(InsertedPN);
287     }
288 
289     // Post process PHI instructions that were inserted into another disjoint
290     // loop and update their exits properly.
291     for (auto *PostProcessPN : PostProcessPHIs)
292       if (!PostProcessPN->use_empty())
293         Worklist.push_back(PostProcessPN);
294 
295     // Keep track of PHI nodes that we want to remove because they did not have
296     // any uses rewritten.
297     for (PHINode *PN : AddedPHIs)
298       if (PN->use_empty())
299         LocalPHIsToRemove.insert(PN);
300 
301     Changed = true;
302   }
303 
304   // Remove PHI nodes that did not have any uses rewritten or add them to
305   // PHIsToRemove, so the caller can remove them after some additional cleanup.
306   // We need to redo the use_empty() check here, because even if the PHI node
307   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
308   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
309   // nodes that only are used by each other. Such situations has only been
310   // noticed when the input IR contains unreachable code, and leaving some extra
311   // redundant PHI nodes in such situations is considered a minor problem.
312   if (PHIsToRemove) {
313     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
314   } else {
315     for (PHINode *PN : LocalPHIsToRemove)
316       if (PN->use_empty())
317         PN->eraseFromParent();
318   }
319   return Changed;
320 }
321 
322 /// For every instruction from the worklist, check to see if it has any uses
323 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
324 /// rewrite the uses.
325 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
326                                     const DominatorTree &DT, const LoopInfo &LI,
327                                     ScalarEvolution *SE,
328                                     SmallVectorImpl<PHINode *> *PHIsToRemove,
329                                     SmallVectorImpl<PHINode *> *InsertedPHIs) {
330   LoopExitBlocksTy LoopExitBlocks;
331 
332   return formLCSSAForInstructionsImpl(Worklist, DT, LI, SE, PHIsToRemove,
333                                       InsertedPHIs, LoopExitBlocks);
334 }
335 
336 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
337 static void computeBlocksDominatingExits(
338     Loop &L, const DominatorTree &DT, ArrayRef<BasicBlock *> ExitBlocks,
339     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
340   // We start from the exit blocks, as every block trivially dominates itself
341   // (not strictly).
342   SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
343 
344   while (!BBWorklist.empty()) {
345     BasicBlock *BB = BBWorklist.pop_back_val();
346 
347     // Check if this is a loop header. If this is the case, we're done.
348     if (L.getHeader() == BB)
349       continue;
350 
351     // Otherwise, add its immediate predecessor in the dominator tree to the
352     // worklist, unless we visited it already.
353     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
354 
355     // Exit blocks can have an immediate dominator not belonging to the
356     // loop. For an exit block to be immediately dominated by another block
357     // outside the loop, it implies not all paths from that dominator, to the
358     // exit block, go through the loop.
359     // Example:
360     //
361     // |---- A
362     // |     |
363     // |     B<--
364     // |     |  |
365     // |---> C --
366     //       |
367     //       D
368     //
369     // C is the exit block of the loop and it's immediately dominated by A,
370     // which doesn't belong to the loop.
371     if (!L.contains(IDomBB))
372       continue;
373 
374     if (BlocksDominatingExits.insert(IDomBB))
375       BBWorklist.push_back(IDomBB);
376   }
377 }
378 
379 static bool formLCSSAImpl(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
380                           ScalarEvolution *SE,
381                           LoopExitBlocksTy &LoopExitBlocks) {
382   bool Changed = false;
383 
384 #ifdef EXPENSIVE_CHECKS
385   // Verify all sub-loops are in LCSSA form already.
386   for (Loop *SubLoop: L) {
387     (void)SubLoop; // Silence unused variable warning.
388     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
389   }
390 #endif
391 
392   if (!LoopExitBlocks.count(&L))
393     L.getExitBlocks(LoopExitBlocks[&L]);
394   const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[&L];
395   if (ExitBlocks.empty())
396     return false;
397 
398   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
399 
400   // We want to avoid use-scanning leveraging dominance informations.
401   // If a block doesn't dominate any of the loop exits, the none of the values
402   // defined in the loop can be used outside.
403   // We compute the set of blocks fullfilling the conditions in advance
404   // walking the dominator tree upwards until we hit a loop header.
405   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
406 
407   SmallVector<Instruction *, 8> Worklist;
408 
409   // Look at all the instructions in the loop, checking to see if they have uses
410   // outside the loop.  If so, put them into the worklist to rewrite those uses.
411   for (BasicBlock *BB : BlocksDominatingExits) {
412     // Skip blocks that are part of any sub-loops, they must be in LCSSA
413     // already.
414     if (LI->getLoopFor(BB) != &L)
415       continue;
416     for (Instruction &I : *BB) {
417       // Reject two common cases fast: instructions with no uses (like stores)
418       // and instructions with one use that is in the same block as this.
419       if (I.use_empty() ||
420           (I.hasOneUse() && I.user_back()->getParent() == BB &&
421            !isa<PHINode>(I.user_back())))
422         continue;
423 
424       // Tokens cannot be used in PHI nodes, so we skip over them.
425       // We can run into tokens which are live out of a loop with catchswitch
426       // instructions in Windows EH if the catchswitch has one catchpad which
427       // is inside the loop and another which is not.
428       if (I.getType()->isTokenTy())
429         continue;
430 
431       Worklist.push_back(&I);
432     }
433   }
434 
435   Changed = formLCSSAForInstructionsImpl(Worklist, DT, *LI, SE, nullptr,
436                                          nullptr, LoopExitBlocks);
437 
438   assert(L.isLCSSAForm(DT));
439 
440   return Changed;
441 }
442 
443 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
444                      ScalarEvolution *SE) {
445   LoopExitBlocksTy LoopExitBlocks;
446 
447   return formLCSSAImpl(L, DT, LI, SE, LoopExitBlocks);
448 }
449 
450 /// Process a loop nest depth first.
451 static bool formLCSSARecursivelyImpl(Loop &L, const DominatorTree &DT,
452                                      const LoopInfo *LI, ScalarEvolution *SE,
453                                      LoopExitBlocksTy &LoopExitBlocks) {
454   bool Changed = false;
455 
456   // Recurse depth-first through inner loops.
457   for (Loop *SubLoop : L.getSubLoops())
458     Changed |= formLCSSARecursivelyImpl(*SubLoop, DT, LI, SE, LoopExitBlocks);
459 
460   Changed |= formLCSSAImpl(L, DT, LI, SE, LoopExitBlocks);
461   return Changed;
462 }
463 
464 /// Process a loop nest depth first.
465 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
466                                 const LoopInfo *LI, ScalarEvolution *SE) {
467   LoopExitBlocksTy LoopExitBlocks;
468 
469   return formLCSSARecursivelyImpl(L, DT, LI, SE, LoopExitBlocks);
470 }
471 
472 /// Process all loops in the function, inner-most out.
473 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
474                                 ScalarEvolution *SE) {
475   bool Changed = false;
476   for (const auto &L : *LI)
477     Changed |= formLCSSARecursively(*L, DT, LI, SE);
478   return Changed;
479 }
480 
481 namespace {
482 struct LCSSAWrapperPass : public FunctionPass {
483   static char ID; // Pass identification, replacement for typeid
484   LCSSAWrapperPass() : FunctionPass(ID) {
485     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
486   }
487 
488   // Cached analysis information for the current function.
489   DominatorTree *DT;
490   LoopInfo *LI;
491   ScalarEvolution *SE;
492 
493   bool runOnFunction(Function &F) override;
494   void verifyAnalysis() const override {
495     // This check is very expensive. On the loop intensive compiles it may cause
496     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
497     // always does limited form of the LCSSA verification. Similar reasoning
498     // was used for the LoopInfo verifier.
499     if (VerifyLoopLCSSA) {
500       assert(all_of(*LI,
501                     [&](Loop *L) {
502                       return L->isRecursivelyLCSSAForm(*DT, *LI);
503                     }) &&
504              "LCSSA form is broken!");
505     }
506   };
507 
508   /// This transformation requires natural loop information & requires that
509   /// loop preheaders be inserted into the CFG.  It maintains both of these,
510   /// as well as the CFG.  It also requires dominator information.
511   void getAnalysisUsage(AnalysisUsage &AU) const override {
512     AU.setPreservesCFG();
513 
514     AU.addRequired<DominatorTreeWrapperPass>();
515     AU.addRequired<LoopInfoWrapperPass>();
516     AU.addPreservedID(LoopSimplifyID);
517     AU.addPreserved<AAResultsWrapperPass>();
518     AU.addPreserved<BasicAAWrapperPass>();
519     AU.addPreserved<GlobalsAAWrapperPass>();
520     AU.addPreserved<ScalarEvolutionWrapperPass>();
521     AU.addPreserved<SCEVAAWrapperPass>();
522     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
523     AU.addPreserved<MemorySSAWrapperPass>();
524 
525     // This is needed to perform LCSSA verification inside LPPassManager
526     AU.addRequired<LCSSAVerificationPass>();
527     AU.addPreserved<LCSSAVerificationPass>();
528   }
529 };
530 }
531 
532 char LCSSAWrapperPass::ID = 0;
533 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
534                       false, false)
535 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
536 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
537 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
538 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
539                     false, false)
540 
541 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
542 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
543 
544 /// Transform \p F into loop-closed SSA form.
545 bool LCSSAWrapperPass::runOnFunction(Function &F) {
546   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
547   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
548   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
549   SE = SEWP ? &SEWP->getSE() : nullptr;
550 
551   return formLCSSAOnAllLoops(LI, *DT, SE);
552 }
553 
554 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
555   auto &LI = AM.getResult<LoopAnalysis>(F);
556   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
557   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
558   if (!formLCSSAOnAllLoops(&LI, DT, SE))
559     return PreservedAnalyses::all();
560 
561   PreservedAnalyses PA;
562   PA.preserveSet<CFGAnalyses>();
563   PA.preserve<ScalarEvolutionAnalysis>();
564   // BPI maps terminators to probabilities, since we don't modify the CFG, no
565   // updates are needed to preserve it.
566   PA.preserve<BranchProbabilityAnalysis>();
567   PA.preserve<MemorySSAAnalysis>();
568   return PA;
569 }
570