xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision f38f2f2394982f3ee45461ddb0b99c12b793479d)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Owen Anderson and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if(c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4              X4 = phi(X3)
21 //                           ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Support/CFG.h"
41 #include "llvm/Support/Compiler.h"
42 #include <algorithm>
43 #include <map>
44 using namespace llvm;
45 
46 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
47 
48 namespace {
49   struct VISIBILITY_HIDDEN LCSSA : public FunctionPass {
50     // Cached analysis information for the current function.
51     LoopInfo *LI;
52     ETForest *ET;
53     std::vector<BasicBlock*> LoopBlocks;
54 
55     virtual bool runOnFunction(Function &F);
56     bool visitSubloop(Loop* L);
57     void ProcessInstruction(Instruction* Instr,
58                             const std::vector<BasicBlock*>& exitBlocks);
59 
60     /// This transformation requires natural loop information & requires that
61     /// loop preheaders be inserted into the CFG.  It maintains both of these,
62     /// as well as the CFG.  It also requires dominator information.
63     ///
64     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65       AU.setPreservesCFG();
66       AU.addRequiredID(LoopSimplifyID);
67       AU.addPreservedID(LoopSimplifyID);
68       AU.addRequired<LoopInfo>();
69       AU.addRequired<ETForest>();
70     }
71   private:
72     void getLoopValuesUsedOutsideLoop(Loop *L,
73                                       SetVector<Instruction*> &AffectedValues);
74 
75     Value *GetValueForBlock(BasicBlock *BB, Instruction *OrigInst,
76                             std::map<BasicBlock*, Value*> &Phis);
77 
78     /// inLoop - returns true if the given block is within the current loop
79     const bool inLoop(BasicBlock* B) {
80       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
81     }
82   };
83 
84   RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
85 }
86 
87 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
88 const PassInfo *llvm::LCSSAID = X.getPassInfo();
89 
90 /// runOnFunction - Process all loops in the function, inner-most out.
91 bool LCSSA::runOnFunction(Function &F) {
92   bool changed = false;
93 
94   LI = &getAnalysis<LoopInfo>();
95   ET = &getAnalysis<ETForest>();
96 
97   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
98     changed |= visitSubloop(*I);
99 
100   return changed;
101 }
102 
103 /// visitSubloop - Recursively process all subloops, and then process the given
104 /// loop if it has live-out values.
105 bool LCSSA::visitSubloop(Loop* L) {
106   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
107     visitSubloop(*I);
108 
109   // Speed up queries by creating a sorted list of blocks
110   LoopBlocks.clear();
111   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
112   std::sort(LoopBlocks.begin(), LoopBlocks.end());
113 
114   SetVector<Instruction*> AffectedValues;
115   getLoopValuesUsedOutsideLoop(L, AffectedValues);
116 
117   // If no values are affected, we can save a lot of work, since we know that
118   // nothing will be changed.
119   if (AffectedValues.empty())
120     return false;
121 
122   std::vector<BasicBlock*> exitBlocks;
123   L->getExitBlocks(exitBlocks);
124 
125 
126   // Iterate over all affected values for this loop and insert Phi nodes
127   // for them in the appropriate exit blocks
128 
129   for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
130        E = AffectedValues.end(); I != E; ++I)
131     ProcessInstruction(*I, exitBlocks);
132 
133   assert(L->isLCSSAForm());
134 
135   return true;
136 }
137 
138 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
139 /// eliminate all out-of-loop uses.
140 void LCSSA::ProcessInstruction(Instruction *Instr,
141                                const std::vector<BasicBlock*>& exitBlocks) {
142   ++NumLCSSA; // We are applying the transformation
143 
144   // Keep track of the blocks that have the value available already.
145   std::map<BasicBlock*, Value*> Phis;
146 
147   //ETNode *InstrNode = ET->getNodeForBlock(Instr->getParent());
148 
149   // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
150   // add them to the Phi's map.
151   for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
152       BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
153     BasicBlock *BB = *BBI;
154     Value *&Phi = Phis[BB];
155     if (!Phi && ET->dominates(Instr->getParent(), BB)) {
156       PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
157                                 BB->begin());
158       PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
159 
160       // Remember that this phi makes the value alive in this block.
161       Phi = PN;
162 
163       // Add inputs from inside the loop for this PHI.
164       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
165         PN->addIncoming(Instr, *PI);
166     }
167   }
168 
169 
170   // Record all uses of Instr outside the loop.  We need to rewrite these.  The
171   // LCSSA phis won't be included because they use the value in the loop.
172   for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
173        UI != E;) {
174     BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
175     if (PHINode *P = dyn_cast<PHINode>(*UI)) {
176       unsigned OperandNo = UI.getOperandNo();
177       UserBB = P->getIncomingBlock(OperandNo/2);
178     }
179 
180     // If the user is in the loop, don't rewrite it!
181     if (UserBB == Instr->getParent() || inLoop(UserBB)) {
182       ++UI;
183       continue;
184     }
185 
186     // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
187     // inserting PHI nodes into join points where needed.
188     Value *Val = GetValueForBlock(UserBB, Instr, Phis);
189 
190     // Preincrement the iterator to avoid invalidating it when we change the
191     // value.
192     Use &U = UI.getUse();
193     ++UI;
194     U.set(Val);
195   }
196 }
197 
198 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
199 /// are used by instructions outside of it.
200 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
201                                       SetVector<Instruction*> &AffectedValues) {
202   // FIXME: For large loops, we may be able to avoid a lot of use-scanning
203   // by using dominance information.  In particular, if a block does not
204   // dominate any of the loop exits, then none of the values defined in the
205   // block could be used outside the loop.
206   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
207        BB != E; ++BB) {
208     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
209       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
210            ++UI) {
211         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
212         if (PHINode* p = dyn_cast<PHINode>(*UI)) {
213           unsigned OperandNo = UI.getOperandNo();
214           UserBB = p->getIncomingBlock(OperandNo/2);
215         }
216 
217         if (*BB != UserBB && !inLoop(UserBB)) {
218           AffectedValues.insert(I);
219           break;
220         }
221       }
222   }
223 }
224 
225 /// GetValueForBlock - Get the value to use within the specified basic block.
226 /// available values are in Phis.
227 Value *LCSSA::GetValueForBlock(BasicBlock *BB, Instruction *OrigInst,
228                                std::map<BasicBlock*, Value*> &Phis) {
229   // If there is no dominator info for this BB, it is unreachable.
230   if (BB == 0)
231     return UndefValue::get(OrigInst->getType());
232 
233   // If we have already computed this value, return the previously computed val.
234   Value *&V = Phis[BB];
235   if (V) return V;
236 
237   BasicBlock* IDom = ET->getIDom(BB);
238 
239   // Otherwise, there are two cases: we either have to insert a PHI node or we
240   // don't.  We need to insert a PHI node if this block is not dominated by one
241   // of the exit nodes from the loop (the loop could have multiple exits, and
242   // though the value defined *inside* the loop dominated all its uses, each
243   // exit by itself may not dominate all the uses).
244   //
245   // The simplest way to check for this condition is by checking to see if the
246   // idom is in the loop.  If so, we *know* that none of the exit blocks
247   // dominate this block.  Note that we *know* that the block defining the
248   // original instruction is in the idom chain, because if it weren't, then the
249   // original value didn't dominate this use.
250   if (!inLoop(IDom)) {
251     // Idom is not in the loop, we must still be "below" the exit block and must
252     // be fully dominated by the value live in the idom.
253     return V = GetValueForBlock(IDom, OrigInst, Phis);
254   }
255 
256   // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
257   // now, then get values to fill in the incoming values for the PHI.
258   PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
259                             BB->begin());
260   PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
261   V = PN;
262 
263   // Fill in the incoming values for the block.
264   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
265     PN->addIncoming(GetValueForBlock(*PI, OrigInst, Phis), *PI);
266   return PN;
267 }
268 
269