xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision ec37ecbc6299781ebafeaa8a41413d08578577dd)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "lcssa"
56 
57 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
58 
59 #ifdef EXPENSIVE_CHECKS
60 static bool VerifyLoopLCSSA = true;
61 #else
62 static bool VerifyLoopLCSSA = false;
63 #endif
64 static cl::opt<bool, true>
65     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
66                         cl::Hidden,
67                         cl::desc("Verify loop lcssa form (time consuming)"));
68 
69 /// Return true if the specified block is in the list.
70 static bool isExitBlock(BasicBlock *BB,
71                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
72   return is_contained(ExitBlocks, BB);
73 }
74 
75 /// For every instruction from the worklist, check to see if it has any uses
76 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
77 /// rewrite the uses.
78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
79                                     const DominatorTree &DT, const LoopInfo &LI,
80                                     ScalarEvolution *SE, IRBuilderBase &Builder,
81                                     SmallVectorImpl<PHINode *> *PHIsToRemove) {
82   SmallVector<Use *, 16> UsesToRewrite;
83   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
84   PredIteratorCache PredCache;
85   bool Changed = false;
86 
87   IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
88 
89   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
90   // instructions within the same loops, computing the exit blocks is
91   // expensive, and we're not mutating the loop structure.
92   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
93 
94   while (!Worklist.empty()) {
95     UsesToRewrite.clear();
96 
97     Instruction *I = Worklist.pop_back_val();
98     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
99     BasicBlock *InstBB = I->getParent();
100     Loop *L = LI.getLoopFor(InstBB);
101     assert(L && "Instruction belongs to a BB that's not part of a loop");
102     if (!LoopExitBlocks.count(L))
103       L->getExitBlocks(LoopExitBlocks[L]);
104     assert(LoopExitBlocks.count(L));
105     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
106 
107     if (ExitBlocks.empty())
108       continue;
109 
110     for (Use &U : I->uses()) {
111       Instruction *User = cast<Instruction>(U.getUser());
112       BasicBlock *UserBB = User->getParent();
113 
114       // Skip uses in unreachable blocks.
115       if (!DT.isReachableFromEntry(UserBB))
116         continue;
117 
118       // For practical purposes, we consider that the use in a PHI
119       // occurs in the respective predecessor block. For more info,
120       // see the `phi` doc in LangRef and the LCSSA doc.
121       if (auto *PN = dyn_cast<PHINode>(User))
122         UserBB = PN->getIncomingBlock(U);
123 
124       if (InstBB != UserBB && !L->contains(UserBB))
125         UsesToRewrite.push_back(&U);
126     }
127 
128     // If there are no uses outside the loop, exit with no change.
129     if (UsesToRewrite.empty())
130       continue;
131 
132     ++NumLCSSA; // We are applying the transformation
133 
134     // Invoke instructions are special in that their result value is not
135     // available along their unwind edge. The code below tests to see whether
136     // DomBB dominates the value, so adjust DomBB to the normal destination
137     // block, which is effectively where the value is first usable.
138     BasicBlock *DomBB = InstBB;
139     if (auto *Inv = dyn_cast<InvokeInst>(I))
140       DomBB = Inv->getNormalDest();
141 
142     const DomTreeNode *DomNode = DT.getNode(DomBB);
143 
144     SmallVector<PHINode *, 16> AddedPHIs;
145     SmallVector<PHINode *, 8> PostProcessPHIs;
146 
147     SmallVector<PHINode *, 4> InsertedPHIs;
148     SSAUpdater SSAUpdate(&InsertedPHIs);
149     SSAUpdate.Initialize(I->getType(), I->getName());
150 
151     // Force re-computation of I, as some users now need to use the new PHI
152     // node.
153     if (SE)
154       SE->forgetValue(I);
155 
156     // Insert the LCSSA phi's into all of the exit blocks dominated by the
157     // value, and add them to the Phi's map.
158     for (BasicBlock *ExitBB : ExitBlocks) {
159       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
160         continue;
161 
162       // If we already inserted something for this BB, don't reprocess it.
163       if (SSAUpdate.HasValueForBlock(ExitBB))
164         continue;
165       Builder.SetInsertPoint(&ExitBB->front());
166       PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
167                                       I->getName() + ".lcssa");
168       // Get the debug location from the original instruction.
169       PN->setDebugLoc(I->getDebugLoc());
170 
171       // Add inputs from inside the loop for this PHI. This is valid
172       // because `I` dominates `ExitBB` (checked above).  This implies
173       // that every incoming block/edge is dominated by `I` as well,
174       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
175       // blocks without violating the SSA dominance property.
176       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
177         PN->addIncoming(I, Pred);
178 
179         // If the exit block has a predecessor not within the loop, arrange for
180         // the incoming value use corresponding to that predecessor to be
181         // rewritten in terms of a different LCSSA PHI.
182         if (!L->contains(Pred))
183           UsesToRewrite.push_back(
184               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
185                   PN->getNumIncomingValues() - 1)));
186       }
187 
188       AddedPHIs.push_back(PN);
189 
190       // Remember that this phi makes the value alive in this block.
191       SSAUpdate.AddAvailableValue(ExitBB, PN);
192 
193       // LoopSimplify might fail to simplify some loops (e.g. when indirect
194       // branches are involved). In such situations, it might happen that an
195       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
196       // create PHIs in such an exit block, we are also inserting PHIs into L2's
197       // header. This could break LCSSA form for L2 because these inserted PHIs
198       // can also have uses outside of L2. Remember all PHIs in such situation
199       // as to revisit than later on. FIXME: Remove this if indirectbr support
200       // into LoopSimplify gets improved.
201       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
202         if (!L->contains(OtherLoop))
203           PostProcessPHIs.push_back(PN);
204     }
205 
206     // Rewrite all uses outside the loop in terms of the new PHIs we just
207     // inserted.
208     for (Use *UseToRewrite : UsesToRewrite) {
209       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
210       BasicBlock *UserBB = User->getParent();
211 
212       // For practical purposes, we consider that the use in a PHI
213       // occurs in the respective predecessor block. For more info,
214       // see the `phi` doc in LangRef and the LCSSA doc.
215       if (auto *PN = dyn_cast<PHINode>(User))
216         UserBB = PN->getIncomingBlock(*UseToRewrite);
217 
218       // If this use is in an exit block, rewrite to use the newly inserted PHI.
219       // This is required for correctness because SSAUpdate doesn't handle uses
220       // in the same block.  It assumes the PHI we inserted is at the end of the
221       // block.
222       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
223         UseToRewrite->set(&UserBB->front());
224         continue;
225       }
226 
227       // If we added a single PHI, it must dominate all uses and we can directly
228       // rename it.
229       if (AddedPHIs.size() == 1) {
230         UseToRewrite->set(AddedPHIs[0]);
231         continue;
232       }
233 
234       // Otherwise, do full PHI insertion.
235       SSAUpdate.RewriteUse(*UseToRewrite);
236     }
237 
238     SmallVector<DbgValueInst *, 4> DbgValues;
239     llvm::findDbgValues(DbgValues, I);
240 
241     // Update pre-existing debug value uses that reside outside the loop.
242     for (auto DVI : DbgValues) {
243       BasicBlock *UserBB = DVI->getParent();
244       if (InstBB == UserBB || L->contains(UserBB))
245         continue;
246       // We currently only handle debug values residing in blocks that were
247       // traversed while rewriting the uses. If we inserted just a single PHI,
248       // we will handle all relevant debug values.
249       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
250                                        : SSAUpdate.FindValueForBlock(UserBB);
251       if (V)
252         DVI->replaceVariableLocationOp(I, V);
253     }
254 
255     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
256     // to post-process them to keep LCSSA form.
257     for (PHINode *InsertedPN : InsertedPHIs) {
258       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
259         if (!L->contains(OtherLoop))
260           PostProcessPHIs.push_back(InsertedPN);
261     }
262 
263     // Post process PHI instructions that were inserted into another disjoint
264     // loop and update their exits properly.
265     for (auto *PostProcessPN : PostProcessPHIs)
266       if (!PostProcessPN->use_empty())
267         Worklist.push_back(PostProcessPN);
268 
269     // Keep track of PHI nodes that we want to remove because they did not have
270     // any uses rewritten.
271     for (PHINode *PN : AddedPHIs)
272       if (PN->use_empty())
273         LocalPHIsToRemove.insert(PN);
274 
275     Changed = true;
276   }
277 
278   // Remove PHI nodes that did not have any uses rewritten or add them to
279   // PHIsToRemove, so the caller can remove them after some additional cleanup.
280   // We need to redo the use_empty() check here, because even if the PHI node
281   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
282   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
283   // nodes that only are used by each other. Such situations has only been
284   // noticed when the input IR contains unreachable code, and leaving some extra
285   // redundant PHI nodes in such situations is considered a minor problem.
286   if (PHIsToRemove) {
287     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
288   } else {
289     for (PHINode *PN : LocalPHIsToRemove)
290       if (PN->use_empty())
291         PN->eraseFromParent();
292   }
293   return Changed;
294 }
295 
296 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
297 static void computeBlocksDominatingExits(
298     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
299     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
300   // We start from the exit blocks, as every block trivially dominates itself
301   // (not strictly).
302   SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
303 
304   while (!BBWorklist.empty()) {
305     BasicBlock *BB = BBWorklist.pop_back_val();
306 
307     // Check if this is a loop header. If this is the case, we're done.
308     if (L.getHeader() == BB)
309       continue;
310 
311     // Otherwise, add its immediate predecessor in the dominator tree to the
312     // worklist, unless we visited it already.
313     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
314 
315     // Exit blocks can have an immediate dominator not belonging to the
316     // loop. For an exit block to be immediately dominated by another block
317     // outside the loop, it implies not all paths from that dominator, to the
318     // exit block, go through the loop.
319     // Example:
320     //
321     // |---- A
322     // |     |
323     // |     B<--
324     // |     |  |
325     // |---> C --
326     //       |
327     //       D
328     //
329     // C is the exit block of the loop and it's immediately dominated by A,
330     // which doesn't belong to the loop.
331     if (!L.contains(IDomBB))
332       continue;
333 
334     if (BlocksDominatingExits.insert(IDomBB))
335       BBWorklist.push_back(IDomBB);
336   }
337 }
338 
339 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
340                      ScalarEvolution *SE) {
341   bool Changed = false;
342 
343 #ifdef EXPENSIVE_CHECKS
344   // Verify all sub-loops are in LCSSA form already.
345   for (Loop *SubLoop: L) {
346     (void)SubLoop; // Silence unused variable warning.
347     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
348   }
349 #endif
350 
351   SmallVector<BasicBlock *, 8> ExitBlocks;
352   L.getExitBlocks(ExitBlocks);
353   if (ExitBlocks.empty())
354     return false;
355 
356   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
357 
358   // We want to avoid use-scanning leveraging dominance informations.
359   // If a block doesn't dominate any of the loop exits, the none of the values
360   // defined in the loop can be used outside.
361   // We compute the set of blocks fullfilling the conditions in advance
362   // walking the dominator tree upwards until we hit a loop header.
363   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
364 
365   SmallVector<Instruction *, 8> Worklist;
366 
367   // Look at all the instructions in the loop, checking to see if they have uses
368   // outside the loop.  If so, put them into the worklist to rewrite those uses.
369   for (BasicBlock *BB : BlocksDominatingExits) {
370     // Skip blocks that are part of any sub-loops, they must be in LCSSA
371     // already.
372     if (LI->getLoopFor(BB) != &L)
373       continue;
374     for (Instruction &I : *BB) {
375       // Reject two common cases fast: instructions with no uses (like stores)
376       // and instructions with one use that is in the same block as this.
377       if (I.use_empty() ||
378           (I.hasOneUse() && I.user_back()->getParent() == BB &&
379            !isa<PHINode>(I.user_back())))
380         continue;
381 
382       // Tokens cannot be used in PHI nodes, so we skip over them.
383       // We can run into tokens which are live out of a loop with catchswitch
384       // instructions in Windows EH if the catchswitch has one catchpad which
385       // is inside the loop and another which is not.
386       if (I.getType()->isTokenTy())
387         continue;
388 
389       Worklist.push_back(&I);
390     }
391   }
392 
393   IRBuilder<> Builder(L.getHeader()->getContext());
394   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
395 
396   // If we modified the code, remove any caches about the loop from SCEV to
397   // avoid dangling entries.
398   // FIXME: This is a big hammer, can we clear the cache more selectively?
399   if (SE && Changed)
400     SE->forgetLoop(&L);
401 
402   assert(L.isLCSSAForm(DT));
403 
404   return Changed;
405 }
406 
407 /// Process a loop nest depth first.
408 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
409                                 const LoopInfo *LI, ScalarEvolution *SE) {
410   bool Changed = false;
411 
412   // Recurse depth-first through inner loops.
413   for (Loop *SubLoop : L.getSubLoops())
414     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
415 
416   Changed |= formLCSSA(L, DT, LI, SE);
417   return Changed;
418 }
419 
420 /// Process all loops in the function, inner-most out.
421 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
422                                 ScalarEvolution *SE) {
423   bool Changed = false;
424   for (const auto &L : *LI)
425     Changed |= formLCSSARecursively(*L, DT, LI, SE);
426   return Changed;
427 }
428 
429 namespace {
430 struct LCSSAWrapperPass : public FunctionPass {
431   static char ID; // Pass identification, replacement for typeid
432   LCSSAWrapperPass() : FunctionPass(ID) {
433     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
434   }
435 
436   // Cached analysis information for the current function.
437   DominatorTree *DT;
438   LoopInfo *LI;
439   ScalarEvolution *SE;
440 
441   bool runOnFunction(Function &F) override;
442   void verifyAnalysis() const override {
443     // This check is very expensive. On the loop intensive compiles it may cause
444     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
445     // always does limited form of the LCSSA verification. Similar reasoning
446     // was used for the LoopInfo verifier.
447     if (VerifyLoopLCSSA) {
448       assert(all_of(*LI,
449                     [&](Loop *L) {
450                       return L->isRecursivelyLCSSAForm(*DT, *LI);
451                     }) &&
452              "LCSSA form is broken!");
453     }
454   };
455 
456   /// This transformation requires natural loop information & requires that
457   /// loop preheaders be inserted into the CFG.  It maintains both of these,
458   /// as well as the CFG.  It also requires dominator information.
459   void getAnalysisUsage(AnalysisUsage &AU) const override {
460     AU.setPreservesCFG();
461 
462     AU.addRequired<DominatorTreeWrapperPass>();
463     AU.addRequired<LoopInfoWrapperPass>();
464     AU.addPreservedID(LoopSimplifyID);
465     AU.addPreserved<AAResultsWrapperPass>();
466     AU.addPreserved<BasicAAWrapperPass>();
467     AU.addPreserved<GlobalsAAWrapperPass>();
468     AU.addPreserved<ScalarEvolutionWrapperPass>();
469     AU.addPreserved<SCEVAAWrapperPass>();
470     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
471     AU.addPreserved<MemorySSAWrapperPass>();
472 
473     // This is needed to perform LCSSA verification inside LPPassManager
474     AU.addRequired<LCSSAVerificationPass>();
475     AU.addPreserved<LCSSAVerificationPass>();
476   }
477 };
478 }
479 
480 char LCSSAWrapperPass::ID = 0;
481 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
482                       false, false)
483 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
484 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
485 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
486 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
487                     false, false)
488 
489 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
490 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
491 
492 /// Transform \p F into loop-closed SSA form.
493 bool LCSSAWrapperPass::runOnFunction(Function &F) {
494   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
495   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
496   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
497   SE = SEWP ? &SEWP->getSE() : nullptr;
498 
499   return formLCSSAOnAllLoops(LI, *DT, SE);
500 }
501 
502 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
503   auto &LI = AM.getResult<LoopAnalysis>(F);
504   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
505   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
506   if (!formLCSSAOnAllLoops(&LI, DT, SE))
507     return PreservedAnalyses::all();
508 
509   PreservedAnalyses PA;
510   PA.preserveSet<CFGAnalyses>();
511   PA.preserve<ScalarEvolutionAnalysis>();
512   // BPI maps terminators to probabilities, since we don't modify the CFG, no
513   // updates are needed to preserve it.
514   PA.preserve<BranchProbabilityAnalysis>();
515   PA.preserve<MemorySSAAnalysis>();
516   return PA;
517 }
518