xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision eb68f080ef2af65d09521816d2202d445ea9586c)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Owen Anderson and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if(c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4              X4 = phi(X3)
21 //                           ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Analysis/Dominators.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Support/CFG.h"
40 #include <algorithm>
41 #include <map>
42 
43 using namespace llvm;
44 
45 namespace {
46   static Statistic<> NumLCSSA("lcssa",
47                               "Number of live out of a loop variables");
48 
49   struct LCSSA : public FunctionPass {
50     // Cached analysis information for the current function.
51     LoopInfo *LI;
52     DominatorTree *DT;
53     std::vector<BasicBlock*> LoopBlocks;
54 
55     virtual bool runOnFunction(Function &F);
56     bool visitSubloop(Loop* L);
57     void ProcessInstruction(Instruction* Instr,
58                             const std::vector<BasicBlock*>& exitBlocks);
59 
60     /// This transformation requires natural loop information & requires that
61     /// loop preheaders be inserted into the CFG.  It maintains both of these,
62     /// as well as the CFG.  It also requires dominator information.
63     ///
64     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65       AU.setPreservesCFG();
66       AU.addRequiredID(LoopSimplifyID);
67       AU.addPreservedID(LoopSimplifyID);
68       AU.addRequired<LoopInfo>();
69       AU.addRequired<DominatorTree>();
70     }
71   private:
72     SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L);
73 
74     PHINode *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst,
75                               std::map<DominatorTree::Node*, PHINode*> &Phis);
76 
77     /// inLoop - returns true if the given block is within the current loop
78     const bool inLoop(BasicBlock* B) {
79       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
80     }
81   };
82 
83   RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
84 }
85 
86 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
87 const PassInfo *llvm::LCSSAID = X.getPassInfo();
88 
89 /// runOnFunction - Process all loops in the function, inner-most out.
90 bool LCSSA::runOnFunction(Function &F) {
91   bool changed = false;
92 
93   LI = &getAnalysis<LoopInfo>();
94   DT = &getAnalysis<DominatorTree>();
95 
96   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
97     changed |= visitSubloop(*I);
98 
99   return changed;
100 }
101 
102 /// visitSubloop - Recursively process all subloops, and then process the given
103 /// loop if it has live-out values.
104 bool LCSSA::visitSubloop(Loop* L) {
105   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
106     visitSubloop(*I);
107 
108   // Speed up queries by creating a sorted list of blocks
109   LoopBlocks.clear();
110   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
111   std::sort(LoopBlocks.begin(), LoopBlocks.end());
112 
113   SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L);
114 
115   // If no values are affected, we can save a lot of work, since we know that
116   // nothing will be changed.
117   if (AffectedValues.empty())
118     return false;
119 
120   std::vector<BasicBlock*> exitBlocks;
121   L->getExitBlocks(exitBlocks);
122 
123 
124   // Iterate over all affected values for this loop and insert Phi nodes
125   // for them in the appropriate exit blocks
126 
127   for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
128        E = AffectedValues.end(); I != E; ++I)
129     ProcessInstruction(*I, exitBlocks);
130 
131   assert(L->isLCSSAForm());
132 
133   return true;
134 }
135 
136 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
137 /// eliminate all out-of-loop uses.
138 void LCSSA::ProcessInstruction(Instruction *Instr,
139                                const std::vector<BasicBlock*>& exitBlocks) {
140   ++NumLCSSA; // We are applying the transformation
141 
142   // Keep track of the blocks that have the value available already.
143   std::map<DominatorTree::Node*, PHINode*> Phis;
144 
145   DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent());
146 
147   // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
148   // add them to the Phi's map.
149   for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
150       BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
151     BasicBlock *BB = *BBI;
152     DominatorTree::Node *ExitBBNode = DT->getNode(BB);
153     PHINode *&Phi = Phis[ExitBBNode];
154     if (!Phi && InstrNode->dominates(ExitBBNode)) {
155       Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
156                         BB->begin());
157       Phi->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
158 
159       // Add inputs from inside the loop for this PHI.
160       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
161         Phi->addIncoming(Instr, *PI);
162 
163       // Remember that this phi makes the value alive in this block.
164       Phis[ExitBBNode] = Phi;
165     }
166   }
167 
168 
169   // Record all uses of Instr outside the loop.  We need to rewrite these.  The
170   // LCSSA phis won't be included because they use the value in the loop.
171   for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
172        UI != E;) {
173     BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
174     if (PHINode *P = dyn_cast<PHINode>(*UI)) {
175       unsigned OperandNo = UI.getOperandNo();
176       UserBB = P->getIncomingBlock(OperandNo/2);
177     }
178 
179     // If the user is in the loop, don't rewrite it!
180     if (UserBB == Instr->getParent() || inLoop(UserBB)) {
181       ++UI;
182       continue;
183     }
184 
185     // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
186     // inserting PHI nodes into join points where needed.
187     DominatorTree::Node *UserBBNode = DT->getNode(UserBB);
188 
189     // If the block has no dominator info, it is unreachable.
190     Value *Val;
191     if (UserBBNode)
192       Val = GetValueForBlock(UserBBNode, Instr, Phis);
193     else
194       Val = UndefValue::get(Instr->getType());
195 
196     // Preincrement the iterator to avoid invalidating it when we change the
197     // value.
198     Use &U = UI.getUse();
199     ++UI;
200     U.set(Val);
201   }
202 }
203 
204 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
205 /// are used by instructions outside of it.
206 SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) {
207 
208   // FIXME: For large loops, we may be able to avoid a lot of use-scanning
209   // by using dominance information.  In particular, if a block does not
210   // dominate any of the loop exits, then none of the values defined in the
211   // block could be used outside the loop.
212 
213   SetVector<Instruction*> AffectedValues;
214   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
215        BB != E; ++BB) {
216     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
217       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
218            ++UI) {
219         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
220         if (PHINode* p = dyn_cast<PHINode>(*UI)) {
221           unsigned OperandNo = UI.getOperandNo();
222           UserBB = p->getIncomingBlock(OperandNo/2);
223         }
224 
225         if (*BB != UserBB && !inLoop(UserBB)) {
226           AffectedValues.insert(I);
227           break;
228         }
229       }
230   }
231   return AffectedValues;
232 }
233 
234 /// GetValueForBlock - Get the value to use within the specified basic block.
235 /// available values are in Phis.
236 PHINode *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst,
237                                std::map<DominatorTree::Node*, PHINode*> &Phis) {
238   // If we have already computed this value, return the previously computed val.
239   PHINode *&V = Phis[BB];
240   if (V) return V;
241 
242   DominatorTree::Node *IDom = BB->getIDom();
243 
244   // Otherwise, there are two cases: we either have to insert a PHI node or we
245   // don't.  We need to insert a PHI node if this block is not dominated by one
246   // of the exit nodes from the loop (the loop could have multiple exits, and
247   // though the value defined *inside* the loop dominated all its uses, each
248   // exit by itself may not dominate all the uses).
249   //
250   // The simplest way to check for this condition is by checking to see if the
251   // idom is in the loop.  If so, we *know* that none of the exit blocks
252   // dominate this block.  Note that we *know* that the block defining the
253   // original instruction is in the idom chain, because if it weren't, then the
254   // original value didn't dominate this use.
255   if (!inLoop(IDom->getBlock())) {
256     // Idom is not in the loop, we must still be "below" the exit block and must
257     // be fully dominated by the value live in the idom.
258     return V = GetValueForBlock(IDom, OrigInst, Phis);
259   }
260 
261   BasicBlock *BBN = BB->getBlock();
262 
263   // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
264   // now, then get values to fill in the incoming values for the PHI.
265   V = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
266                   BBN->begin());
267   V->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
268 
269   // Fill in the incoming values for the block.
270   for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
271     V->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
272   return V;
273 }
274 
275