1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Owen Anderson and is distributed under the 6 // University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if(c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Constants.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Function.h" 34 #include "llvm/Instructions.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/Analysis/Dominators.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Support/CFG.h" 40 #include <algorithm> 41 #include <map> 42 43 using namespace llvm; 44 45 namespace { 46 static Statistic<> NumLCSSA("lcssa", 47 "Number of live out of a loop variables"); 48 49 struct LCSSA : public FunctionPass { 50 // Cached analysis information for the current function. 51 LoopInfo *LI; 52 DominatorTree *DT; 53 std::vector<BasicBlock*> LoopBlocks; 54 55 virtual bool runOnFunction(Function &F); 56 bool visitSubloop(Loop* L); 57 void ProcessInstruction(Instruction* Instr, 58 const std::vector<BasicBlock*>& exitBlocks); 59 60 /// This transformation requires natural loop information & requires that 61 /// loop preheaders be inserted into the CFG. It maintains both of these, 62 /// as well as the CFG. It also requires dominator information. 63 /// 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 AU.setPreservesCFG(); 66 AU.addRequiredID(LoopSimplifyID); 67 AU.addPreservedID(LoopSimplifyID); 68 AU.addRequired<LoopInfo>(); 69 AU.addRequired<DominatorTree>(); 70 } 71 private: 72 SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); 73 74 PHINode *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 75 std::map<DominatorTree::Node*, PHINode*> &Phis); 76 77 /// inLoop - returns true if the given block is within the current loop 78 const bool inLoop(BasicBlock* B) { 79 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 80 } 81 }; 82 83 RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 84 } 85 86 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 87 const PassInfo *llvm::LCSSAID = X.getPassInfo(); 88 89 /// runOnFunction - Process all loops in the function, inner-most out. 90 bool LCSSA::runOnFunction(Function &F) { 91 bool changed = false; 92 93 LI = &getAnalysis<LoopInfo>(); 94 DT = &getAnalysis<DominatorTree>(); 95 96 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 97 changed |= visitSubloop(*I); 98 99 return changed; 100 } 101 102 /// visitSubloop - Recursively process all subloops, and then process the given 103 /// loop if it has live-out values. 104 bool LCSSA::visitSubloop(Loop* L) { 105 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 106 visitSubloop(*I); 107 108 // Speed up queries by creating a sorted list of blocks 109 LoopBlocks.clear(); 110 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 111 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 112 113 SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); 114 115 // If no values are affected, we can save a lot of work, since we know that 116 // nothing will be changed. 117 if (AffectedValues.empty()) 118 return false; 119 120 std::vector<BasicBlock*> exitBlocks; 121 L->getExitBlocks(exitBlocks); 122 123 124 // Iterate over all affected values for this loop and insert Phi nodes 125 // for them in the appropriate exit blocks 126 127 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 128 E = AffectedValues.end(); I != E; ++I) 129 ProcessInstruction(*I, exitBlocks); 130 131 assert(L->isLCSSAForm()); 132 133 return true; 134 } 135 136 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 137 /// eliminate all out-of-loop uses. 138 void LCSSA::ProcessInstruction(Instruction *Instr, 139 const std::vector<BasicBlock*>& exitBlocks) { 140 ++NumLCSSA; // We are applying the transformation 141 142 // Keep track of the blocks that have the value available already. 143 std::map<DominatorTree::Node*, PHINode*> Phis; 144 145 DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent()); 146 147 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 148 // add them to the Phi's map. 149 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 150 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 151 BasicBlock *BB = *BBI; 152 DominatorTree::Node *ExitBBNode = DT->getNode(BB); 153 PHINode *&Phi = Phis[ExitBBNode]; 154 if (!Phi && InstrNode->dominates(ExitBBNode)) { 155 Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 156 BB->begin()); 157 Phi->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); 158 159 // Add inputs from inside the loop for this PHI. 160 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 161 Phi->addIncoming(Instr, *PI); 162 163 // Remember that this phi makes the value alive in this block. 164 Phis[ExitBBNode] = Phi; 165 } 166 } 167 168 169 // Record all uses of Instr outside the loop. We need to rewrite these. The 170 // LCSSA phis won't be included because they use the value in the loop. 171 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 172 UI != E;) { 173 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 174 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 175 unsigned OperandNo = UI.getOperandNo(); 176 UserBB = P->getIncomingBlock(OperandNo/2); 177 } 178 179 // If the user is in the loop, don't rewrite it! 180 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 181 ++UI; 182 continue; 183 } 184 185 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 186 // inserting PHI nodes into join points where needed. 187 DominatorTree::Node *UserBBNode = DT->getNode(UserBB); 188 189 // If the block has no dominator info, it is unreachable. 190 Value *Val; 191 if (UserBBNode) 192 Val = GetValueForBlock(UserBBNode, Instr, Phis); 193 else 194 Val = UndefValue::get(Instr->getType()); 195 196 // Preincrement the iterator to avoid invalidating it when we change the 197 // value. 198 Use &U = UI.getUse(); 199 ++UI; 200 U.set(Val); 201 } 202 } 203 204 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 205 /// are used by instructions outside of it. 206 SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { 207 208 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 209 // by using dominance information. In particular, if a block does not 210 // dominate any of the loop exits, then none of the values defined in the 211 // block could be used outside the loop. 212 213 SetVector<Instruction*> AffectedValues; 214 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 215 BB != E; ++BB) { 216 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 217 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 218 ++UI) { 219 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 220 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 221 unsigned OperandNo = UI.getOperandNo(); 222 UserBB = p->getIncomingBlock(OperandNo/2); 223 } 224 225 if (*BB != UserBB && !inLoop(UserBB)) { 226 AffectedValues.insert(I); 227 break; 228 } 229 } 230 } 231 return AffectedValues; 232 } 233 234 /// GetValueForBlock - Get the value to use within the specified basic block. 235 /// available values are in Phis. 236 PHINode *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 237 std::map<DominatorTree::Node*, PHINode*> &Phis) { 238 // If we have already computed this value, return the previously computed val. 239 PHINode *&V = Phis[BB]; 240 if (V) return V; 241 242 DominatorTree::Node *IDom = BB->getIDom(); 243 244 // Otherwise, there are two cases: we either have to insert a PHI node or we 245 // don't. We need to insert a PHI node if this block is not dominated by one 246 // of the exit nodes from the loop (the loop could have multiple exits, and 247 // though the value defined *inside* the loop dominated all its uses, each 248 // exit by itself may not dominate all the uses). 249 // 250 // The simplest way to check for this condition is by checking to see if the 251 // idom is in the loop. If so, we *know* that none of the exit blocks 252 // dominate this block. Note that we *know* that the block defining the 253 // original instruction is in the idom chain, because if it weren't, then the 254 // original value didn't dominate this use. 255 if (!inLoop(IDom->getBlock())) { 256 // Idom is not in the loop, we must still be "below" the exit block and must 257 // be fully dominated by the value live in the idom. 258 return V = GetValueForBlock(IDom, OrigInst, Phis); 259 } 260 261 BasicBlock *BBN = BB->getBlock(); 262 263 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 264 // now, then get values to fill in the incoming values for the PHI. 265 V = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", 266 BBN->begin()); 267 V->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); 268 269 // Fill in the incoming values for the block. 270 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) 271 V->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 272 return V; 273 } 274 275