1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Owen Anderson and is distributed under the 6 // University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if(c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "lcssa" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Constants.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Function.h" 35 #include "llvm/Instructions.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Analysis/Dominators.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Support/CFG.h" 41 #include "llvm/Support/Compiler.h" 42 #include <algorithm> 43 #include <map> 44 using namespace llvm; 45 46 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 47 48 namespace { 49 struct VISIBILITY_HIDDEN LCSSA : public FunctionPass { 50 static char ID; // Pass identification, replacement for typeid 51 LCSSA() : FunctionPass((intptr_t)&ID) {} 52 53 // Cached analysis information for the current function. 54 LoopInfo *LI; 55 DominatorTree *DT; 56 std::vector<BasicBlock*> LoopBlocks; 57 58 virtual bool runOnFunction(Function &F); 59 bool visitSubloop(Loop* L); 60 void ProcessInstruction(Instruction* Instr, 61 const std::vector<BasicBlock*>& exitBlocks); 62 63 /// This transformation requires natural loop information & requires that 64 /// loop preheaders be inserted into the CFG. It maintains both of these, 65 /// as well as the CFG. It also requires dominator information. 66 /// 67 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 68 AU.setPreservesCFG(); 69 AU.addRequiredID(LoopSimplifyID); 70 AU.addPreservedID(LoopSimplifyID); 71 AU.addRequired<LoopInfo>(); 72 AU.addRequired<DominatorTree>(); 73 } 74 private: 75 void getLoopValuesUsedOutsideLoop(Loop *L, 76 SetVector<Instruction*> &AffectedValues); 77 78 Value *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 79 std::map<DominatorTree::Node*, Value*> &Phis); 80 81 /// inLoop - returns true if the given block is within the current loop 82 const bool inLoop(BasicBlock* B) { 83 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 84 } 85 }; 86 87 char LCSSA::ID = 0; 88 RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 89 } 90 91 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 92 const PassInfo *llvm::LCSSAID = X.getPassInfo(); 93 94 /// runOnFunction - Process all loops in the function, inner-most out. 95 bool LCSSA::runOnFunction(Function &F) { 96 bool changed = false; 97 98 LI = &getAnalysis<LoopInfo>(); 99 DT = &getAnalysis<DominatorTree>(); 100 101 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 102 changed |= visitSubloop(*I); 103 104 return changed; 105 } 106 107 /// visitSubloop - Recursively process all subloops, and then process the given 108 /// loop if it has live-out values. 109 bool LCSSA::visitSubloop(Loop* L) { 110 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 111 visitSubloop(*I); 112 113 // Speed up queries by creating a sorted list of blocks 114 LoopBlocks.clear(); 115 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 116 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 117 118 SetVector<Instruction*> AffectedValues; 119 getLoopValuesUsedOutsideLoop(L, AffectedValues); 120 121 // If no values are affected, we can save a lot of work, since we know that 122 // nothing will be changed. 123 if (AffectedValues.empty()) 124 return false; 125 126 std::vector<BasicBlock*> exitBlocks; 127 L->getExitBlocks(exitBlocks); 128 129 130 // Iterate over all affected values for this loop and insert Phi nodes 131 // for them in the appropriate exit blocks 132 133 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 134 E = AffectedValues.end(); I != E; ++I) 135 ProcessInstruction(*I, exitBlocks); 136 137 assert(L->isLCSSAForm()); 138 139 return true; 140 } 141 142 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 143 /// eliminate all out-of-loop uses. 144 void LCSSA::ProcessInstruction(Instruction *Instr, 145 const std::vector<BasicBlock*>& exitBlocks) { 146 ++NumLCSSA; // We are applying the transformation 147 148 // Keep track of the blocks that have the value available already. 149 std::map<DominatorTree::Node*, Value*> Phis; 150 151 DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent()); 152 153 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 154 // add them to the Phi's map. 155 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 156 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 157 BasicBlock *BB = *BBI; 158 DominatorTree::Node *ExitBBNode = DT->getNode(BB); 159 Value *&Phi = Phis[ExitBBNode]; 160 if (!Phi && InstrNode->dominates(ExitBBNode)) { 161 PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 162 BB->begin()); 163 PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); 164 165 // Remember that this phi makes the value alive in this block. 166 Phi = PN; 167 168 // Add inputs from inside the loop for this PHI. 169 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 170 PN->addIncoming(Instr, *PI); 171 } 172 } 173 174 175 // Record all uses of Instr outside the loop. We need to rewrite these. The 176 // LCSSA phis won't be included because they use the value in the loop. 177 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 178 UI != E;) { 179 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 180 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 181 unsigned OperandNo = UI.getOperandNo(); 182 UserBB = P->getIncomingBlock(OperandNo/2); 183 } 184 185 // If the user is in the loop, don't rewrite it! 186 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 187 ++UI; 188 continue; 189 } 190 191 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 192 // inserting PHI nodes into join points where needed. 193 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 194 195 // Preincrement the iterator to avoid invalidating it when we change the 196 // value. 197 Use &U = UI.getUse(); 198 ++UI; 199 U.set(Val); 200 } 201 } 202 203 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 204 /// are used by instructions outside of it. 205 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 206 SetVector<Instruction*> &AffectedValues) { 207 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 208 // by using dominance information. In particular, if a block does not 209 // dominate any of the loop exits, then none of the values defined in the 210 // block could be used outside the loop. 211 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 212 BB != E; ++BB) { 213 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 214 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 215 ++UI) { 216 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 217 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 218 unsigned OperandNo = UI.getOperandNo(); 219 UserBB = p->getIncomingBlock(OperandNo/2); 220 } 221 222 if (*BB != UserBB && !inLoop(UserBB)) { 223 AffectedValues.insert(I); 224 break; 225 } 226 } 227 } 228 } 229 230 /// GetValueForBlock - Get the value to use within the specified basic block. 231 /// available values are in Phis. 232 Value *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst, 233 std::map<DominatorTree::Node*, Value*> &Phis) { 234 // If there is no dominator info for this BB, it is unreachable. 235 if (BB == 0) 236 return UndefValue::get(OrigInst->getType()); 237 238 // If we have already computed this value, return the previously computed val. 239 Value *&V = Phis[BB]; 240 if (V) return V; 241 242 DominatorTree::Node *IDom = BB->getIDom(); 243 244 // Otherwise, there are two cases: we either have to insert a PHI node or we 245 // don't. We need to insert a PHI node if this block is not dominated by one 246 // of the exit nodes from the loop (the loop could have multiple exits, and 247 // though the value defined *inside* the loop dominated all its uses, each 248 // exit by itself may not dominate all the uses). 249 // 250 // The simplest way to check for this condition is by checking to see if the 251 // idom is in the loop. If so, we *know* that none of the exit blocks 252 // dominate this block. Note that we *know* that the block defining the 253 // original instruction is in the idom chain, because if it weren't, then the 254 // original value didn't dominate this use. 255 if (!inLoop(IDom->getBlock())) { 256 // Idom is not in the loop, we must still be "below" the exit block and must 257 // be fully dominated by the value live in the idom. 258 return V = GetValueForBlock(IDom, OrigInst, Phis); 259 } 260 261 BasicBlock *BBN = BB->getBlock(); 262 263 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 264 // now, then get values to fill in the incoming values for the PHI. 265 PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", 266 BBN->begin()); 267 PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); 268 V = PN; 269 270 // Fill in the incoming values for the block. 271 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) 272 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 273 return PN; 274 } 275 276