1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/PredIteratorCache.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/SSAUpdater.h" 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lcssa" 51 52 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 53 54 #ifdef EXPENSIVE_CHECKS 55 static bool VerifyLoopLCSSA = true; 56 #else 57 static bool VerifyLoopLCSSA = false; 58 #endif 59 static cl::opt<bool,true> 60 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 61 cl::desc("Verify loop lcssa form (time consuming)")); 62 63 /// Return true if the specified block is in the list. 64 static bool isExitBlock(BasicBlock *BB, 65 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 66 return is_contained(ExitBlocks, BB); 67 } 68 69 /// For every instruction from the worklist, check to see if it has any uses 70 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 71 /// rewrite the uses. 72 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 73 DominatorTree &DT, LoopInfo &LI) { 74 SmallVector<Use *, 16> UsesToRewrite; 75 SmallSetVector<PHINode *, 16> PHIsToRemove; 76 PredIteratorCache PredCache; 77 bool Changed = false; 78 79 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 80 // instructions within the same loops, computing the exit blocks is 81 // expensive, and we're not mutating the loop structure. 82 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 83 84 while (!Worklist.empty()) { 85 UsesToRewrite.clear(); 86 87 Instruction *I = Worklist.pop_back_val(); 88 BasicBlock *InstBB = I->getParent(); 89 Loop *L = LI.getLoopFor(InstBB); 90 assert(L && "Instruction belongs to a BB that's not part of a loop"); 91 if (!LoopExitBlocks.count(L)) 92 L->getExitBlocks(LoopExitBlocks[L]); 93 assert(LoopExitBlocks.count(L)); 94 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 95 96 if (ExitBlocks.empty()) 97 continue; 98 99 // Tokens cannot be used in PHI nodes, so we skip over them. 100 // We can run into tokens which are live out of a loop with catchswitch 101 // instructions in Windows EH if the catchswitch has one catchpad which 102 // is inside the loop and another which is not. 103 if (I->getType()->isTokenTy()) 104 continue; 105 106 for (Use &U : I->uses()) { 107 Instruction *User = cast<Instruction>(U.getUser()); 108 BasicBlock *UserBB = User->getParent(); 109 if (auto *PN = dyn_cast<PHINode>(User)) 110 UserBB = PN->getIncomingBlock(U); 111 112 if (InstBB != UserBB && !L->contains(UserBB)) 113 UsesToRewrite.push_back(&U); 114 } 115 116 // If there are no uses outside the loop, exit with no change. 117 if (UsesToRewrite.empty()) 118 continue; 119 120 ++NumLCSSA; // We are applying the transformation 121 122 // Invoke instructions are special in that their result value is not 123 // available along their unwind edge. The code below tests to see whether 124 // DomBB dominates the value, so adjust DomBB to the normal destination 125 // block, which is effectively where the value is first usable. 126 BasicBlock *DomBB = InstBB; 127 if (auto *Inv = dyn_cast<InvokeInst>(I)) 128 DomBB = Inv->getNormalDest(); 129 130 DomTreeNode *DomNode = DT.getNode(DomBB); 131 132 SmallVector<PHINode *, 16> AddedPHIs; 133 SmallVector<PHINode *, 8> PostProcessPHIs; 134 135 SmallVector<PHINode *, 4> InsertedPHIs; 136 SSAUpdater SSAUpdate(&InsertedPHIs); 137 SSAUpdate.Initialize(I->getType(), I->getName()); 138 139 // Insert the LCSSA phi's into all of the exit blocks dominated by the 140 // value, and add them to the Phi's map. 141 for (BasicBlock *ExitBB : ExitBlocks) { 142 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 143 continue; 144 145 // If we already inserted something for this BB, don't reprocess it. 146 if (SSAUpdate.HasValueForBlock(ExitBB)) 147 continue; 148 149 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 150 I->getName() + ".lcssa", &ExitBB->front()); 151 152 // Add inputs from inside the loop for this PHI. 153 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 154 PN->addIncoming(I, Pred); 155 156 // If the exit block has a predecessor not within the loop, arrange for 157 // the incoming value use corresponding to that predecessor to be 158 // rewritten in terms of a different LCSSA PHI. 159 if (!L->contains(Pred)) 160 UsesToRewrite.push_back( 161 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 162 PN->getNumIncomingValues() - 1))); 163 } 164 165 AddedPHIs.push_back(PN); 166 167 // Remember that this phi makes the value alive in this block. 168 SSAUpdate.AddAvailableValue(ExitBB, PN); 169 170 // LoopSimplify might fail to simplify some loops (e.g. when indirect 171 // branches are involved). In such situations, it might happen that an 172 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 173 // create PHIs in such an exit block, we are also inserting PHIs into L2's 174 // header. This could break LCSSA form for L2 because these inserted PHIs 175 // can also have uses outside of L2. Remember all PHIs in such situation 176 // as to revisit than later on. FIXME: Remove this if indirectbr support 177 // into LoopSimplify gets improved. 178 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 179 if (!L->contains(OtherLoop)) 180 PostProcessPHIs.push_back(PN); 181 } 182 183 // Rewrite all uses outside the loop in terms of the new PHIs we just 184 // inserted. 185 for (Use *UseToRewrite : UsesToRewrite) { 186 // If this use is in an exit block, rewrite to use the newly inserted PHI. 187 // This is required for correctness because SSAUpdate doesn't handle uses 188 // in the same block. It assumes the PHI we inserted is at the end of the 189 // block. 190 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 191 BasicBlock *UserBB = User->getParent(); 192 if (auto *PN = dyn_cast<PHINode>(User)) 193 UserBB = PN->getIncomingBlock(*UseToRewrite); 194 195 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 196 // Tell the VHs that the uses changed. This updates SCEV's caches. 197 if (UseToRewrite->get()->hasValueHandle()) 198 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 199 UseToRewrite->set(&UserBB->front()); 200 continue; 201 } 202 203 // Otherwise, do full PHI insertion. 204 SSAUpdate.RewriteUse(*UseToRewrite); 205 } 206 207 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 208 // to post-process them to keep LCSSA form. 209 for (PHINode *InsertedPN : InsertedPHIs) { 210 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 211 if (!L->contains(OtherLoop)) 212 PostProcessPHIs.push_back(InsertedPN); 213 } 214 215 // Post process PHI instructions that were inserted into another disjoint 216 // loop and update their exits properly. 217 for (auto *PostProcessPN : PostProcessPHIs) { 218 if (PostProcessPN->use_empty()) 219 continue; 220 221 // Reprocess each PHI instruction. 222 Worklist.push_back(PostProcessPN); 223 } 224 225 // Keep track of PHI nodes that we want to remove because they did not have 226 // any uses rewritten. 227 for (PHINode *PN : AddedPHIs) 228 if (PN->use_empty()) 229 PHIsToRemove.insert(PN); 230 231 Changed = true; 232 } 233 // Remove PHI nodes that did not have any uses rewritten. 234 for (PHINode *PN : PHIsToRemove) { 235 assert (PN->use_empty() && "Trying to remove a phi with uses."); 236 PN->eraseFromParent(); 237 } 238 return Changed; 239 } 240 241 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 242 static void computeBlocksDominatingExits( 243 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 244 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 245 SmallVector<BasicBlock *, 8> BBWorklist; 246 247 // We start from the exit blocks, as every block trivially dominates itself 248 // (not strictly). 249 for (BasicBlock *BB : ExitBlocks) 250 BBWorklist.push_back(BB); 251 252 while (!BBWorklist.empty()) { 253 BasicBlock *BB = BBWorklist.pop_back_val(); 254 255 // Check if this is a loop header. If this is the case, we're done. 256 if (L.getHeader() == BB) 257 continue; 258 259 // Otherwise, add its immediate predecessor in the dominator tree to the 260 // worklist, unless we visited it already. 261 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 262 263 // Exit blocks can have an immediate dominator not beloinging to the 264 // loop. For an exit block to be immediately dominated by another block 265 // outside the loop, it implies not all paths from that dominator, to the 266 // exit block, go through the loop. 267 // Example: 268 // 269 // |---- A 270 // | | 271 // | B<-- 272 // | | | 273 // |---> C -- 274 // | 275 // D 276 // 277 // C is the exit block of the loop and it's immediately dominated by A, 278 // which doesn't belong to the loop. 279 if (!L.contains(IDomBB)) 280 continue; 281 282 if (BlocksDominatingExits.insert(IDomBB)) 283 BBWorklist.push_back(IDomBB); 284 } 285 } 286 287 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 288 ScalarEvolution *SE) { 289 bool Changed = false; 290 291 SmallVector<BasicBlock *, 8> ExitBlocks; 292 L.getExitBlocks(ExitBlocks); 293 if (ExitBlocks.empty()) 294 return false; 295 296 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 297 298 // We want to avoid use-scanning leveraging dominance informations. 299 // If a block doesn't dominate any of the loop exits, the none of the values 300 // defined in the loop can be used outside. 301 // We compute the set of blocks fullfilling the conditions in advance 302 // walking the dominator tree upwards until we hit a loop header. 303 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 304 305 SmallVector<Instruction *, 8> Worklist; 306 307 // Look at all the instructions in the loop, checking to see if they have uses 308 // outside the loop. If so, put them into the worklist to rewrite those uses. 309 for (BasicBlock *BB : BlocksDominatingExits) { 310 for (Instruction &I : *BB) { 311 // Reject two common cases fast: instructions with no uses (like stores) 312 // and instructions with one use that is in the same block as this. 313 if (I.use_empty() || 314 (I.hasOneUse() && I.user_back()->getParent() == BB && 315 !isa<PHINode>(I.user_back()))) 316 continue; 317 318 Worklist.push_back(&I); 319 } 320 } 321 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 322 323 // If we modified the code, remove any caches about the loop from SCEV to 324 // avoid dangling entries. 325 // FIXME: This is a big hammer, can we clear the cache more selectively? 326 if (SE && Changed) 327 SE->forgetLoop(&L); 328 329 assert(L.isLCSSAForm(DT)); 330 331 return Changed; 332 } 333 334 /// Process a loop nest depth first. 335 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 336 ScalarEvolution *SE) { 337 bool Changed = false; 338 339 // Recurse depth-first through inner loops. 340 for (Loop *SubLoop : L.getSubLoops()) 341 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 342 343 Changed |= formLCSSA(L, DT, LI, SE); 344 return Changed; 345 } 346 347 /// Process all loops in the function, inner-most out. 348 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 349 ScalarEvolution *SE) { 350 bool Changed = false; 351 for (auto &L : *LI) 352 Changed |= formLCSSARecursively(*L, DT, LI, SE); 353 return Changed; 354 } 355 356 namespace { 357 struct LCSSAWrapperPass : public FunctionPass { 358 static char ID; // Pass identification, replacement for typeid 359 LCSSAWrapperPass() : FunctionPass(ID) { 360 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 361 } 362 363 // Cached analysis information for the current function. 364 DominatorTree *DT; 365 LoopInfo *LI; 366 ScalarEvolution *SE; 367 368 bool runOnFunction(Function &F) override; 369 void verifyAnalysis() const override { 370 // This check is very expensive. On the loop intensive compiles it may cause 371 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 372 // always does limited form of the LCSSA verification. Similar reasoning 373 // was used for the LoopInfo verifier. 374 if (VerifyLoopLCSSA) { 375 assert(all_of(*LI, 376 [&](Loop *L) { 377 return L->isRecursivelyLCSSAForm(*DT, *LI); 378 }) && 379 "LCSSA form is broken!"); 380 } 381 }; 382 383 /// This transformation requires natural loop information & requires that 384 /// loop preheaders be inserted into the CFG. It maintains both of these, 385 /// as well as the CFG. It also requires dominator information. 386 void getAnalysisUsage(AnalysisUsage &AU) const override { 387 AU.setPreservesCFG(); 388 389 AU.addRequired<DominatorTreeWrapperPass>(); 390 AU.addRequired<LoopInfoWrapperPass>(); 391 AU.addPreservedID(LoopSimplifyID); 392 AU.addPreserved<AAResultsWrapperPass>(); 393 AU.addPreserved<BasicAAWrapperPass>(); 394 AU.addPreserved<GlobalsAAWrapperPass>(); 395 AU.addPreserved<ScalarEvolutionWrapperPass>(); 396 AU.addPreserved<SCEVAAWrapperPass>(); 397 398 // This is needed to perform LCSSA verification inside LPPassManager 399 AU.addRequired<LCSSAVerificationPass>(); 400 AU.addPreserved<LCSSAVerificationPass>(); 401 } 402 }; 403 } 404 405 char LCSSAWrapperPass::ID = 0; 406 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 407 false, false) 408 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 409 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 410 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 411 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 412 false, false) 413 414 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 415 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 416 417 /// Transform \p F into loop-closed SSA form. 418 bool LCSSAWrapperPass::runOnFunction(Function &F) { 419 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 420 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 421 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 422 SE = SEWP ? &SEWP->getSE() : nullptr; 423 424 return formLCSSAOnAllLoops(LI, *DT, SE); 425 } 426 427 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 428 auto &LI = AM.getResult<LoopAnalysis>(F); 429 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 430 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 431 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 432 return PreservedAnalyses::all(); 433 434 PreservedAnalyses PA; 435 PA.preserveSet<CFGAnalyses>(); 436 PA.preserve<BasicAA>(); 437 PA.preserve<GlobalsAA>(); 438 PA.preserve<SCEVAA>(); 439 PA.preserve<ScalarEvolutionAnalysis>(); 440 return PA; 441 } 442