xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision dd2ef0af4680915106086c31d4c8d936b1a0f830)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/GlobalsModRef.h"
35 #include "llvm/Analysis/LoopPass.h"
36 #include "llvm/Analysis/ScalarEvolution.h"
37 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Transforms/Utils.h"
47 #include "llvm/Transforms/Utils/LoopUtils.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "lcssa"
52 
53 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
54 
55 #ifdef EXPENSIVE_CHECKS
56 static bool VerifyLoopLCSSA = true;
57 #else
58 static bool VerifyLoopLCSSA = false;
59 #endif
60 static cl::opt<bool, true>
61     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
62                         cl::Hidden,
63                         cl::desc("Verify loop lcssa form (time consuming)"));
64 
65 /// Return true if the specified block is in the list.
66 static bool isExitBlock(BasicBlock *BB,
67                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
68   return is_contained(ExitBlocks, BB);
69 }
70 
71 /// For every instruction from the worklist, check to see if it has any uses
72 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
73 /// rewrite the uses.
74 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
75                                     DominatorTree &DT, LoopInfo &LI) {
76   SmallVector<Use *, 16> UsesToRewrite;
77   SmallSetVector<PHINode *, 16> PHIsToRemove;
78   PredIteratorCache PredCache;
79   bool Changed = false;
80 
81   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
82   // instructions within the same loops, computing the exit blocks is
83   // expensive, and we're not mutating the loop structure.
84   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
85 
86   while (!Worklist.empty()) {
87     UsesToRewrite.clear();
88 
89     Instruction *I = Worklist.pop_back_val();
90     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
91     BasicBlock *InstBB = I->getParent();
92     Loop *L = LI.getLoopFor(InstBB);
93     assert(L && "Instruction belongs to a BB that's not part of a loop");
94     if (!LoopExitBlocks.count(L))
95       L->getExitBlocks(LoopExitBlocks[L]);
96     assert(LoopExitBlocks.count(L));
97     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
98 
99     if (ExitBlocks.empty())
100       continue;
101 
102     for (Use &U : I->uses()) {
103       Instruction *User = cast<Instruction>(U.getUser());
104       BasicBlock *UserBB = User->getParent();
105       if (auto *PN = dyn_cast<PHINode>(User))
106         UserBB = PN->getIncomingBlock(U);
107 
108       if (InstBB != UserBB && !L->contains(UserBB))
109         UsesToRewrite.push_back(&U);
110     }
111 
112     // If there are no uses outside the loop, exit with no change.
113     if (UsesToRewrite.empty())
114       continue;
115 
116     ++NumLCSSA; // We are applying the transformation
117 
118     // Invoke instructions are special in that their result value is not
119     // available along their unwind edge. The code below tests to see whether
120     // DomBB dominates the value, so adjust DomBB to the normal destination
121     // block, which is effectively where the value is first usable.
122     BasicBlock *DomBB = InstBB;
123     if (auto *Inv = dyn_cast<InvokeInst>(I))
124       DomBB = Inv->getNormalDest();
125 
126     DomTreeNode *DomNode = DT.getNode(DomBB);
127 
128     SmallVector<PHINode *, 16> AddedPHIs;
129     SmallVector<PHINode *, 8> PostProcessPHIs;
130 
131     SmallVector<PHINode *, 4> InsertedPHIs;
132     SSAUpdater SSAUpdate(&InsertedPHIs);
133     SSAUpdate.Initialize(I->getType(), I->getName());
134 
135     // Insert the LCSSA phi's into all of the exit blocks dominated by the
136     // value, and add them to the Phi's map.
137     for (BasicBlock *ExitBB : ExitBlocks) {
138       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
139         continue;
140 
141       // If we already inserted something for this BB, don't reprocess it.
142       if (SSAUpdate.HasValueForBlock(ExitBB))
143         continue;
144 
145       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
146                                     I->getName() + ".lcssa", &ExitBB->front());
147       // Get the debug location from the original instruction.
148       PN->setDebugLoc(I->getDebugLoc());
149       // Add inputs from inside the loop for this PHI.
150       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
151         PN->addIncoming(I, Pred);
152 
153         // If the exit block has a predecessor not within the loop, arrange for
154         // the incoming value use corresponding to that predecessor to be
155         // rewritten in terms of a different LCSSA PHI.
156         if (!L->contains(Pred))
157           UsesToRewrite.push_back(
158               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
159                   PN->getNumIncomingValues() - 1)));
160       }
161 
162       AddedPHIs.push_back(PN);
163 
164       // Remember that this phi makes the value alive in this block.
165       SSAUpdate.AddAvailableValue(ExitBB, PN);
166 
167       // LoopSimplify might fail to simplify some loops (e.g. when indirect
168       // branches are involved). In such situations, it might happen that an
169       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
170       // create PHIs in such an exit block, we are also inserting PHIs into L2's
171       // header. This could break LCSSA form for L2 because these inserted PHIs
172       // can also have uses outside of L2. Remember all PHIs in such situation
173       // as to revisit than later on. FIXME: Remove this if indirectbr support
174       // into LoopSimplify gets improved.
175       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
176         if (!L->contains(OtherLoop))
177           PostProcessPHIs.push_back(PN);
178     }
179 
180     // Rewrite all uses outside the loop in terms of the new PHIs we just
181     // inserted.
182     for (Use *UseToRewrite : UsesToRewrite) {
183       // If this use is in an exit block, rewrite to use the newly inserted PHI.
184       // This is required for correctness because SSAUpdate doesn't handle uses
185       // in the same block.  It assumes the PHI we inserted is at the end of the
186       // block.
187       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
188       BasicBlock *UserBB = User->getParent();
189       if (auto *PN = dyn_cast<PHINode>(User))
190         UserBB = PN->getIncomingBlock(*UseToRewrite);
191 
192       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
193         // Tell the VHs that the uses changed. This updates SCEV's caches.
194         if (UseToRewrite->get()->hasValueHandle())
195           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
196         UseToRewrite->set(&UserBB->front());
197         continue;
198       }
199 
200       // If we added a single PHI, it must dominate all uses and we can directly
201       // rename it.
202       if (AddedPHIs.size() == 1) {
203         // Tell the VHs that the uses changed. This updates SCEV's caches.
204         // We might call ValueIsRAUWd multiple times for the same value.
205         if (UseToRewrite->get()->hasValueHandle())
206           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]);
207         UseToRewrite->set(AddedPHIs[0]);
208         continue;
209       }
210 
211       // Otherwise, do full PHI insertion.
212       SSAUpdate.RewriteUse(*UseToRewrite);
213     }
214 
215     SmallVector<DbgValueInst *, 4> DbgValues;
216     llvm::findDbgValues(DbgValues, I);
217 
218     // Update pre-existing debug value uses that reside outside the loop.
219     auto &Ctx = I->getContext();
220     for (auto DVI : DbgValues) {
221       BasicBlock *UserBB = DVI->getParent();
222       if (InstBB == UserBB || L->contains(UserBB))
223         continue;
224       // We currently only handle debug values residing in blocks that were
225       // traversed while rewriting the uses. If we inserted just a single PHI,
226       // we will handle all relevant debug values.
227       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
228                                        : SSAUpdate.FindValueForBlock(UserBB);
229       if (V)
230         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
231     }
232 
233     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
234     // to post-process them to keep LCSSA form.
235     for (PHINode *InsertedPN : InsertedPHIs) {
236       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
237         if (!L->contains(OtherLoop))
238           PostProcessPHIs.push_back(InsertedPN);
239     }
240 
241     // Post process PHI instructions that were inserted into another disjoint
242     // loop and update their exits properly.
243     for (auto *PostProcessPN : PostProcessPHIs)
244       if (!PostProcessPN->use_empty())
245         Worklist.push_back(PostProcessPN);
246 
247     // Keep track of PHI nodes that we want to remove because they did not have
248     // any uses rewritten. If the new PHI is used, store it so that we can
249     // try to propagate dbg.value intrinsics to it.
250     SmallVector<PHINode *, 2> NeedDbgValues;
251     for (PHINode *PN : AddedPHIs)
252       if (PN->use_empty())
253         PHIsToRemove.insert(PN);
254       else
255         NeedDbgValues.push_back(PN);
256     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
257     Changed = true;
258   }
259   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
260   // use_empty() check here, because even if the PHI node wasn't used when added
261   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
262   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
263   // each other. Such situations has only been noticed when the input IR
264   // contains unreachable code, and leaving some extra redundant PHI nodes in
265   // such situations is considered a minor problem.
266   for (PHINode *PN : PHIsToRemove)
267     if (PN->use_empty())
268       PN->eraseFromParent();
269   return Changed;
270 }
271 
272 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
273 static void computeBlocksDominatingExits(
274     Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
275     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
276   SmallVector<BasicBlock *, 8> BBWorklist;
277 
278   // We start from the exit blocks, as every block trivially dominates itself
279   // (not strictly).
280   for (BasicBlock *BB : ExitBlocks)
281     BBWorklist.push_back(BB);
282 
283   while (!BBWorklist.empty()) {
284     BasicBlock *BB = BBWorklist.pop_back_val();
285 
286     // Check if this is a loop header. If this is the case, we're done.
287     if (L.getHeader() == BB)
288       continue;
289 
290     // Otherwise, add its immediate predecessor in the dominator tree to the
291     // worklist, unless we visited it already.
292     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
293 
294     // Exit blocks can have an immediate dominator not beloinging to the
295     // loop. For an exit block to be immediately dominated by another block
296     // outside the loop, it implies not all paths from that dominator, to the
297     // exit block, go through the loop.
298     // Example:
299     //
300     // |---- A
301     // |     |
302     // |     B<--
303     // |     |  |
304     // |---> C --
305     //       |
306     //       D
307     //
308     // C is the exit block of the loop and it's immediately dominated by A,
309     // which doesn't belong to the loop.
310     if (!L.contains(IDomBB))
311       continue;
312 
313     if (BlocksDominatingExits.insert(IDomBB))
314       BBWorklist.push_back(IDomBB);
315   }
316 }
317 
318 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
319                      ScalarEvolution *SE) {
320   bool Changed = false;
321 
322 #ifdef EXPENSIVE_CHECKS
323   // Verify all sub-loops are in LCSSA form already.
324   for (Loop *SubLoop: L)
325     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
326 #endif
327 
328   SmallVector<BasicBlock *, 8> ExitBlocks;
329   L.getExitBlocks(ExitBlocks);
330   if (ExitBlocks.empty())
331     return false;
332 
333   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
334 
335   // We want to avoid use-scanning leveraging dominance informations.
336   // If a block doesn't dominate any of the loop exits, the none of the values
337   // defined in the loop can be used outside.
338   // We compute the set of blocks fullfilling the conditions in advance
339   // walking the dominator tree upwards until we hit a loop header.
340   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
341 
342   SmallVector<Instruction *, 8> Worklist;
343 
344   // Look at all the instructions in the loop, checking to see if they have uses
345   // outside the loop.  If so, put them into the worklist to rewrite those uses.
346   for (BasicBlock *BB : BlocksDominatingExits) {
347     // Skip blocks that are part of any sub-loops, they must be in LCSSA
348     // already.
349     if (LI->getLoopFor(BB) != &L)
350       continue;
351     for (Instruction &I : *BB) {
352       // Reject two common cases fast: instructions with no uses (like stores)
353       // and instructions with one use that is in the same block as this.
354       if (I.use_empty() ||
355           (I.hasOneUse() && I.user_back()->getParent() == BB &&
356            !isa<PHINode>(I.user_back())))
357         continue;
358 
359       // Tokens cannot be used in PHI nodes, so we skip over them.
360       // We can run into tokens which are live out of a loop with catchswitch
361       // instructions in Windows EH if the catchswitch has one catchpad which
362       // is inside the loop and another which is not.
363       if (I.getType()->isTokenTy())
364         continue;
365 
366       Worklist.push_back(&I);
367     }
368   }
369   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
370 
371   // If we modified the code, remove any caches about the loop from SCEV to
372   // avoid dangling entries.
373   // FIXME: This is a big hammer, can we clear the cache more selectively?
374   if (SE && Changed)
375     SE->forgetLoop(&L);
376 
377   assert(L.isLCSSAForm(DT));
378 
379   return Changed;
380 }
381 
382 /// Process a loop nest depth first.
383 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
384                                 ScalarEvolution *SE) {
385   bool Changed = false;
386 
387   // Recurse depth-first through inner loops.
388   for (Loop *SubLoop : L.getSubLoops())
389     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
390 
391   Changed |= formLCSSA(L, DT, LI, SE);
392   return Changed;
393 }
394 
395 /// Process all loops in the function, inner-most out.
396 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
397                                 ScalarEvolution *SE) {
398   bool Changed = false;
399   for (auto &L : *LI)
400     Changed |= formLCSSARecursively(*L, DT, LI, SE);
401   return Changed;
402 }
403 
404 namespace {
405 struct LCSSAWrapperPass : public FunctionPass {
406   static char ID; // Pass identification, replacement for typeid
407   LCSSAWrapperPass() : FunctionPass(ID) {
408     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
409   }
410 
411   // Cached analysis information for the current function.
412   DominatorTree *DT;
413   LoopInfo *LI;
414   ScalarEvolution *SE;
415 
416   bool runOnFunction(Function &F) override;
417   void verifyAnalysis() const override {
418     // This check is very expensive. On the loop intensive compiles it may cause
419     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
420     // always does limited form of the LCSSA verification. Similar reasoning
421     // was used for the LoopInfo verifier.
422     if (VerifyLoopLCSSA) {
423       assert(all_of(*LI,
424                     [&](Loop *L) {
425                       return L->isRecursivelyLCSSAForm(*DT, *LI);
426                     }) &&
427              "LCSSA form is broken!");
428     }
429   };
430 
431   /// This transformation requires natural loop information & requires that
432   /// loop preheaders be inserted into the CFG.  It maintains both of these,
433   /// as well as the CFG.  It also requires dominator information.
434   void getAnalysisUsage(AnalysisUsage &AU) const override {
435     AU.setPreservesCFG();
436 
437     AU.addRequired<DominatorTreeWrapperPass>();
438     AU.addRequired<LoopInfoWrapperPass>();
439     AU.addPreservedID(LoopSimplifyID);
440     AU.addPreserved<AAResultsWrapperPass>();
441     AU.addPreserved<BasicAAWrapperPass>();
442     AU.addPreserved<GlobalsAAWrapperPass>();
443     AU.addPreserved<ScalarEvolutionWrapperPass>();
444     AU.addPreserved<SCEVAAWrapperPass>();
445 
446     // This is needed to perform LCSSA verification inside LPPassManager
447     AU.addRequired<LCSSAVerificationPass>();
448     AU.addPreserved<LCSSAVerificationPass>();
449   }
450 };
451 }
452 
453 char LCSSAWrapperPass::ID = 0;
454 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
455                       false, false)
456 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
457 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
458 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
459 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
460                     false, false)
461 
462 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
463 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
464 
465 /// Transform \p F into loop-closed SSA form.
466 bool LCSSAWrapperPass::runOnFunction(Function &F) {
467   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
468   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
469   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
470   SE = SEWP ? &SEWP->getSE() : nullptr;
471 
472   return formLCSSAOnAllLoops(LI, *DT, SE);
473 }
474 
475 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
476   auto &LI = AM.getResult<LoopAnalysis>(F);
477   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
478   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
479   if (!formLCSSAOnAllLoops(&LI, DT, SE))
480     return PreservedAnalyses::all();
481 
482   PreservedAnalyses PA;
483   PA.preserveSet<CFGAnalyses>();
484   PA.preserve<BasicAA>();
485   PA.preserve<GlobalsAA>();
486   PA.preserve<SCEVAA>();
487   PA.preserve<ScalarEvolutionAnalysis>();
488   return PA;
489 }
490