1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/LoopPass.h" 36 #include "llvm/Analysis/ScalarEvolution.h" 37 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 #include "llvm/Transforms/Utils/SSAUpdater.h" 49 using namespace llvm; 50 51 #define DEBUG_TYPE "lcssa" 52 53 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 54 55 #ifdef EXPENSIVE_CHECKS 56 static bool VerifyLoopLCSSA = true; 57 #else 58 static bool VerifyLoopLCSSA = false; 59 #endif 60 static cl::opt<bool, true> 61 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 62 cl::Hidden, 63 cl::desc("Verify loop lcssa form (time consuming)")); 64 65 /// Return true if the specified block is in the list. 66 static bool isExitBlock(BasicBlock *BB, 67 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 68 return is_contained(ExitBlocks, BB); 69 } 70 71 /// For every instruction from the worklist, check to see if it has any uses 72 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 73 /// rewrite the uses. 74 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 75 DominatorTree &DT, LoopInfo &LI) { 76 SmallVector<Use *, 16> UsesToRewrite; 77 SmallSetVector<PHINode *, 16> PHIsToRemove; 78 PredIteratorCache PredCache; 79 bool Changed = false; 80 81 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 82 // instructions within the same loops, computing the exit blocks is 83 // expensive, and we're not mutating the loop structure. 84 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 85 86 while (!Worklist.empty()) { 87 UsesToRewrite.clear(); 88 89 Instruction *I = Worklist.pop_back_val(); 90 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 91 BasicBlock *InstBB = I->getParent(); 92 Loop *L = LI.getLoopFor(InstBB); 93 assert(L && "Instruction belongs to a BB that's not part of a loop"); 94 if (!LoopExitBlocks.count(L)) 95 L->getExitBlocks(LoopExitBlocks[L]); 96 assert(LoopExitBlocks.count(L)); 97 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 98 99 if (ExitBlocks.empty()) 100 continue; 101 102 for (Use &U : I->uses()) { 103 Instruction *User = cast<Instruction>(U.getUser()); 104 BasicBlock *UserBB = User->getParent(); 105 if (auto *PN = dyn_cast<PHINode>(User)) 106 UserBB = PN->getIncomingBlock(U); 107 108 if (InstBB != UserBB && !L->contains(UserBB)) 109 UsesToRewrite.push_back(&U); 110 } 111 112 // If there are no uses outside the loop, exit with no change. 113 if (UsesToRewrite.empty()) 114 continue; 115 116 ++NumLCSSA; // We are applying the transformation 117 118 // Invoke instructions are special in that their result value is not 119 // available along their unwind edge. The code below tests to see whether 120 // DomBB dominates the value, so adjust DomBB to the normal destination 121 // block, which is effectively where the value is first usable. 122 BasicBlock *DomBB = InstBB; 123 if (auto *Inv = dyn_cast<InvokeInst>(I)) 124 DomBB = Inv->getNormalDest(); 125 126 DomTreeNode *DomNode = DT.getNode(DomBB); 127 128 SmallVector<PHINode *, 16> AddedPHIs; 129 SmallVector<PHINode *, 8> PostProcessPHIs; 130 131 SmallVector<PHINode *, 4> InsertedPHIs; 132 SSAUpdater SSAUpdate(&InsertedPHIs); 133 SSAUpdate.Initialize(I->getType(), I->getName()); 134 135 // Insert the LCSSA phi's into all of the exit blocks dominated by the 136 // value, and add them to the Phi's map. 137 for (BasicBlock *ExitBB : ExitBlocks) { 138 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 139 continue; 140 141 // If we already inserted something for this BB, don't reprocess it. 142 if (SSAUpdate.HasValueForBlock(ExitBB)) 143 continue; 144 145 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 146 I->getName() + ".lcssa", &ExitBB->front()); 147 // Get the debug location from the original instruction. 148 PN->setDebugLoc(I->getDebugLoc()); 149 // Add inputs from inside the loop for this PHI. 150 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 151 PN->addIncoming(I, Pred); 152 153 // If the exit block has a predecessor not within the loop, arrange for 154 // the incoming value use corresponding to that predecessor to be 155 // rewritten in terms of a different LCSSA PHI. 156 if (!L->contains(Pred)) 157 UsesToRewrite.push_back( 158 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 159 PN->getNumIncomingValues() - 1))); 160 } 161 162 AddedPHIs.push_back(PN); 163 164 // Remember that this phi makes the value alive in this block. 165 SSAUpdate.AddAvailableValue(ExitBB, PN); 166 167 // LoopSimplify might fail to simplify some loops (e.g. when indirect 168 // branches are involved). In such situations, it might happen that an 169 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 170 // create PHIs in such an exit block, we are also inserting PHIs into L2's 171 // header. This could break LCSSA form for L2 because these inserted PHIs 172 // can also have uses outside of L2. Remember all PHIs in such situation 173 // as to revisit than later on. FIXME: Remove this if indirectbr support 174 // into LoopSimplify gets improved. 175 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 176 if (!L->contains(OtherLoop)) 177 PostProcessPHIs.push_back(PN); 178 } 179 180 // Rewrite all uses outside the loop in terms of the new PHIs we just 181 // inserted. 182 for (Use *UseToRewrite : UsesToRewrite) { 183 // If this use is in an exit block, rewrite to use the newly inserted PHI. 184 // This is required for correctness because SSAUpdate doesn't handle uses 185 // in the same block. It assumes the PHI we inserted is at the end of the 186 // block. 187 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 188 BasicBlock *UserBB = User->getParent(); 189 if (auto *PN = dyn_cast<PHINode>(User)) 190 UserBB = PN->getIncomingBlock(*UseToRewrite); 191 192 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 193 // Tell the VHs that the uses changed. This updates SCEV's caches. 194 if (UseToRewrite->get()->hasValueHandle()) 195 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 196 UseToRewrite->set(&UserBB->front()); 197 continue; 198 } 199 200 // If we added a single PHI, it must dominate all uses and we can directly 201 // rename it. 202 if (AddedPHIs.size() == 1) { 203 // Tell the VHs that the uses changed. This updates SCEV's caches. 204 // We might call ValueIsRAUWd multiple times for the same value. 205 if (UseToRewrite->get()->hasValueHandle()) 206 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]); 207 UseToRewrite->set(AddedPHIs[0]); 208 continue; 209 } 210 211 // Otherwise, do full PHI insertion. 212 SSAUpdate.RewriteUse(*UseToRewrite); 213 } 214 215 SmallVector<DbgValueInst *, 4> DbgValues; 216 llvm::findDbgValues(DbgValues, I); 217 218 // Update pre-existing debug value uses that reside outside the loop. 219 auto &Ctx = I->getContext(); 220 for (auto DVI : DbgValues) { 221 BasicBlock *UserBB = DVI->getParent(); 222 if (InstBB == UserBB || L->contains(UserBB)) 223 continue; 224 // We currently only handle debug values residing in blocks that were 225 // traversed while rewriting the uses. If we inserted just a single PHI, 226 // we will handle all relevant debug values. 227 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 228 : SSAUpdate.FindValueForBlock(UserBB); 229 if (V) 230 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 231 } 232 233 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 234 // to post-process them to keep LCSSA form. 235 for (PHINode *InsertedPN : InsertedPHIs) { 236 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 237 if (!L->contains(OtherLoop)) 238 PostProcessPHIs.push_back(InsertedPN); 239 } 240 241 // Post process PHI instructions that were inserted into another disjoint 242 // loop and update their exits properly. 243 for (auto *PostProcessPN : PostProcessPHIs) 244 if (!PostProcessPN->use_empty()) 245 Worklist.push_back(PostProcessPN); 246 247 // Keep track of PHI nodes that we want to remove because they did not have 248 // any uses rewritten. If the new PHI is used, store it so that we can 249 // try to propagate dbg.value intrinsics to it. 250 SmallVector<PHINode *, 2> NeedDbgValues; 251 for (PHINode *PN : AddedPHIs) 252 if (PN->use_empty()) 253 PHIsToRemove.insert(PN); 254 else 255 NeedDbgValues.push_back(PN); 256 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 257 Changed = true; 258 } 259 // Remove PHI nodes that did not have any uses rewritten. We need to redo the 260 // use_empty() check here, because even if the PHI node wasn't used when added 261 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is 262 // not guaranteed to handle trees/cycles of PHI nodes that only are used by 263 // each other. Such situations has only been noticed when the input IR 264 // contains unreachable code, and leaving some extra redundant PHI nodes in 265 // such situations is considered a minor problem. 266 for (PHINode *PN : PHIsToRemove) 267 if (PN->use_empty()) 268 PN->eraseFromParent(); 269 return Changed; 270 } 271 272 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 273 static void computeBlocksDominatingExits( 274 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 275 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 276 SmallVector<BasicBlock *, 8> BBWorklist; 277 278 // We start from the exit blocks, as every block trivially dominates itself 279 // (not strictly). 280 for (BasicBlock *BB : ExitBlocks) 281 BBWorklist.push_back(BB); 282 283 while (!BBWorklist.empty()) { 284 BasicBlock *BB = BBWorklist.pop_back_val(); 285 286 // Check if this is a loop header. If this is the case, we're done. 287 if (L.getHeader() == BB) 288 continue; 289 290 // Otherwise, add its immediate predecessor in the dominator tree to the 291 // worklist, unless we visited it already. 292 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 293 294 // Exit blocks can have an immediate dominator not beloinging to the 295 // loop. For an exit block to be immediately dominated by another block 296 // outside the loop, it implies not all paths from that dominator, to the 297 // exit block, go through the loop. 298 // Example: 299 // 300 // |---- A 301 // | | 302 // | B<-- 303 // | | | 304 // |---> C -- 305 // | 306 // D 307 // 308 // C is the exit block of the loop and it's immediately dominated by A, 309 // which doesn't belong to the loop. 310 if (!L.contains(IDomBB)) 311 continue; 312 313 if (BlocksDominatingExits.insert(IDomBB)) 314 BBWorklist.push_back(IDomBB); 315 } 316 } 317 318 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 319 ScalarEvolution *SE) { 320 bool Changed = false; 321 322 #ifdef EXPENSIVE_CHECKS 323 // Verify all sub-loops are in LCSSA form already. 324 for (Loop *SubLoop: L) 325 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 326 #endif 327 328 SmallVector<BasicBlock *, 8> ExitBlocks; 329 L.getExitBlocks(ExitBlocks); 330 if (ExitBlocks.empty()) 331 return false; 332 333 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 334 335 // We want to avoid use-scanning leveraging dominance informations. 336 // If a block doesn't dominate any of the loop exits, the none of the values 337 // defined in the loop can be used outside. 338 // We compute the set of blocks fullfilling the conditions in advance 339 // walking the dominator tree upwards until we hit a loop header. 340 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 341 342 SmallVector<Instruction *, 8> Worklist; 343 344 // Look at all the instructions in the loop, checking to see if they have uses 345 // outside the loop. If so, put them into the worklist to rewrite those uses. 346 for (BasicBlock *BB : BlocksDominatingExits) { 347 // Skip blocks that are part of any sub-loops, they must be in LCSSA 348 // already. 349 if (LI->getLoopFor(BB) != &L) 350 continue; 351 for (Instruction &I : *BB) { 352 // Reject two common cases fast: instructions with no uses (like stores) 353 // and instructions with one use that is in the same block as this. 354 if (I.use_empty() || 355 (I.hasOneUse() && I.user_back()->getParent() == BB && 356 !isa<PHINode>(I.user_back()))) 357 continue; 358 359 // Tokens cannot be used in PHI nodes, so we skip over them. 360 // We can run into tokens which are live out of a loop with catchswitch 361 // instructions in Windows EH if the catchswitch has one catchpad which 362 // is inside the loop and another which is not. 363 if (I.getType()->isTokenTy()) 364 continue; 365 366 Worklist.push_back(&I); 367 } 368 } 369 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 370 371 // If we modified the code, remove any caches about the loop from SCEV to 372 // avoid dangling entries. 373 // FIXME: This is a big hammer, can we clear the cache more selectively? 374 if (SE && Changed) 375 SE->forgetLoop(&L); 376 377 assert(L.isLCSSAForm(DT)); 378 379 return Changed; 380 } 381 382 /// Process a loop nest depth first. 383 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 384 ScalarEvolution *SE) { 385 bool Changed = false; 386 387 // Recurse depth-first through inner loops. 388 for (Loop *SubLoop : L.getSubLoops()) 389 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 390 391 Changed |= formLCSSA(L, DT, LI, SE); 392 return Changed; 393 } 394 395 /// Process all loops in the function, inner-most out. 396 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 397 ScalarEvolution *SE) { 398 bool Changed = false; 399 for (auto &L : *LI) 400 Changed |= formLCSSARecursively(*L, DT, LI, SE); 401 return Changed; 402 } 403 404 namespace { 405 struct LCSSAWrapperPass : public FunctionPass { 406 static char ID; // Pass identification, replacement for typeid 407 LCSSAWrapperPass() : FunctionPass(ID) { 408 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 409 } 410 411 // Cached analysis information for the current function. 412 DominatorTree *DT; 413 LoopInfo *LI; 414 ScalarEvolution *SE; 415 416 bool runOnFunction(Function &F) override; 417 void verifyAnalysis() const override { 418 // This check is very expensive. On the loop intensive compiles it may cause 419 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 420 // always does limited form of the LCSSA verification. Similar reasoning 421 // was used for the LoopInfo verifier. 422 if (VerifyLoopLCSSA) { 423 assert(all_of(*LI, 424 [&](Loop *L) { 425 return L->isRecursivelyLCSSAForm(*DT, *LI); 426 }) && 427 "LCSSA form is broken!"); 428 } 429 }; 430 431 /// This transformation requires natural loop information & requires that 432 /// loop preheaders be inserted into the CFG. It maintains both of these, 433 /// as well as the CFG. It also requires dominator information. 434 void getAnalysisUsage(AnalysisUsage &AU) const override { 435 AU.setPreservesCFG(); 436 437 AU.addRequired<DominatorTreeWrapperPass>(); 438 AU.addRequired<LoopInfoWrapperPass>(); 439 AU.addPreservedID(LoopSimplifyID); 440 AU.addPreserved<AAResultsWrapperPass>(); 441 AU.addPreserved<BasicAAWrapperPass>(); 442 AU.addPreserved<GlobalsAAWrapperPass>(); 443 AU.addPreserved<ScalarEvolutionWrapperPass>(); 444 AU.addPreserved<SCEVAAWrapperPass>(); 445 446 // This is needed to perform LCSSA verification inside LPPassManager 447 AU.addRequired<LCSSAVerificationPass>(); 448 AU.addPreserved<LCSSAVerificationPass>(); 449 } 450 }; 451 } 452 453 char LCSSAWrapperPass::ID = 0; 454 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 455 false, false) 456 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 457 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 458 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 459 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 460 false, false) 461 462 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 463 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 464 465 /// Transform \p F into loop-closed SSA form. 466 bool LCSSAWrapperPass::runOnFunction(Function &F) { 467 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 468 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 469 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 470 SE = SEWP ? &SEWP->getSE() : nullptr; 471 472 return formLCSSAOnAllLoops(LI, *DT, SE); 473 } 474 475 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 476 auto &LI = AM.getResult<LoopAnalysis>(F); 477 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 478 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 479 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 480 return PreservedAnalyses::all(); 481 482 PreservedAnalyses PA; 483 PA.preserveSet<CFGAnalyses>(); 484 PA.preserve<BasicAA>(); 485 PA.preserve<GlobalsAA>(); 486 PA.preserve<SCEVAA>(); 487 PA.preserve<ScalarEvolutionAnalysis>(); 488 return PA; 489 } 490