xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision d5c56c5162e535baec61e385f53e512adeaa2815)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/SSAUpdater.h"
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "lcssa"
55 
56 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
57 
58 #ifdef EXPENSIVE_CHECKS
59 static bool VerifyLoopLCSSA = true;
60 #else
61 static bool VerifyLoopLCSSA = false;
62 #endif
63 static cl::opt<bool, true>
64     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
65                         cl::Hidden,
66                         cl::desc("Verify loop lcssa form (time consuming)"));
67 
68 /// Return true if the specified block is in the list.
69 static bool isExitBlock(BasicBlock *BB,
70                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
71   return is_contained(ExitBlocks, BB);
72 }
73 
74 /// For every instruction from the worklist, check to see if it has any uses
75 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
76 /// rewrite the uses.
77 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
78                                     const DominatorTree &DT, const LoopInfo &LI,
79                                     SmallVectorImpl<PHINode *> *PHIsToRemove,
80                                     SmallVectorImpl<PHINode *> *InsertedPHIs) {
81   SmallVector<Use *, 16> UsesToRewrite;
82   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
83   PredIteratorCache PredCache;
84   bool Changed = false;
85 
86   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
87   // instructions within the same loops, computing the exit blocks is
88   // expensive, and we're not mutating the loop structure.
89   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
90 
91   while (!Worklist.empty()) {
92     UsesToRewrite.clear();
93 
94     Instruction *I = Worklist.pop_back_val();
95     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
96     BasicBlock *InstBB = I->getParent();
97     Loop *L = LI.getLoopFor(InstBB);
98     assert(L && "Instruction belongs to a BB that's not part of a loop");
99     if (!LoopExitBlocks.count(L))
100       L->getExitBlocks(LoopExitBlocks[L]);
101     assert(LoopExitBlocks.count(L));
102     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
103 
104     if (ExitBlocks.empty())
105       continue;
106 
107     for (Use &U : make_early_inc_range(I->uses())) {
108       Instruction *User = cast<Instruction>(U.getUser());
109       BasicBlock *UserBB = User->getParent();
110 
111       // Skip uses in unreachable blocks.
112       if (!DT.isReachableFromEntry(UserBB)) {
113         U.set(PoisonValue::get(I->getType()));
114         continue;
115       }
116 
117       // For practical purposes, we consider that the use in a PHI
118       // occurs in the respective predecessor block. For more info,
119       // see the `phi` doc in LangRef and the LCSSA doc.
120       if (auto *PN = dyn_cast<PHINode>(User))
121         UserBB = PN->getIncomingBlock(U);
122 
123       if (InstBB != UserBB && !L->contains(UserBB))
124         UsesToRewrite.push_back(&U);
125     }
126 
127     // If there are no uses outside the loop, exit with no change.
128     if (UsesToRewrite.empty())
129       continue;
130 
131     ++NumLCSSA; // We are applying the transformation
132 
133     // Invoke instructions are special in that their result value is not
134     // available along their unwind edge. The code below tests to see whether
135     // DomBB dominates the value, so adjust DomBB to the normal destination
136     // block, which is effectively where the value is first usable.
137     BasicBlock *DomBB = InstBB;
138     if (auto *Inv = dyn_cast<InvokeInst>(I))
139       DomBB = Inv->getNormalDest();
140 
141     const DomTreeNode *DomNode = DT.getNode(DomBB);
142 
143     SmallVector<PHINode *, 16> AddedPHIs;
144     SmallVector<PHINode *, 8> PostProcessPHIs;
145 
146     SmallVector<PHINode *, 4> LocalInsertedPHIs;
147     SSAUpdater SSAUpdate(&LocalInsertedPHIs);
148     SSAUpdate.Initialize(I->getType(), I->getName());
149 
150     // Insert the LCSSA phi's into all of the exit blocks dominated by the
151     // value, and add them to the Phi's map.
152     for (BasicBlock *ExitBB : ExitBlocks) {
153       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
154         continue;
155 
156       // If we already inserted something for this BB, don't reprocess it.
157       if (SSAUpdate.HasValueForBlock(ExitBB))
158         continue;
159       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
160                                     I->getName() + ".lcssa", &ExitBB->front());
161       if (InsertedPHIs)
162         InsertedPHIs->push_back(PN);
163       // Get the debug location from the original instruction.
164       PN->setDebugLoc(I->getDebugLoc());
165 
166       // Add inputs from inside the loop for this PHI. This is valid
167       // because `I` dominates `ExitBB` (checked above).  This implies
168       // that every incoming block/edge is dominated by `I` as well,
169       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
170       // blocks without violating the SSA dominance property.
171       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
172         PN->addIncoming(I, Pred);
173 
174         // If the exit block has a predecessor not within the loop, arrange for
175         // the incoming value use corresponding to that predecessor to be
176         // rewritten in terms of a different LCSSA PHI.
177         if (!L->contains(Pred))
178           UsesToRewrite.push_back(
179               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
180                   PN->getNumIncomingValues() - 1)));
181       }
182 
183       AddedPHIs.push_back(PN);
184 
185       // Remember that this phi makes the value alive in this block.
186       SSAUpdate.AddAvailableValue(ExitBB, PN);
187 
188       // LoopSimplify might fail to simplify some loops (e.g. when indirect
189       // branches are involved). In such situations, it might happen that an
190       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
191       // create PHIs in such an exit block, we are also inserting PHIs into L2's
192       // header. This could break LCSSA form for L2 because these inserted PHIs
193       // can also have uses outside of L2. Remember all PHIs in such situation
194       // as to revisit than later on. FIXME: Remove this if indirectbr support
195       // into LoopSimplify gets improved.
196       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
197         if (!L->contains(OtherLoop))
198           PostProcessPHIs.push_back(PN);
199     }
200 
201     // Rewrite all uses outside the loop in terms of the new PHIs we just
202     // inserted.
203     for (Use *UseToRewrite : UsesToRewrite) {
204       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
205       BasicBlock *UserBB = User->getParent();
206 
207       // For practical purposes, we consider that the use in a PHI
208       // occurs in the respective predecessor block. For more info,
209       // see the `phi` doc in LangRef and the LCSSA doc.
210       if (auto *PN = dyn_cast<PHINode>(User))
211         UserBB = PN->getIncomingBlock(*UseToRewrite);
212 
213       // If this use is in an exit block, rewrite to use the newly inserted PHI.
214       // This is required for correctness because SSAUpdate doesn't handle uses
215       // in the same block.  It assumes the PHI we inserted is at the end of the
216       // block.
217       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
218         UseToRewrite->set(&UserBB->front());
219         continue;
220       }
221 
222       // If we added a single PHI, it must dominate all uses and we can directly
223       // rename it.
224       if (AddedPHIs.size() == 1) {
225         UseToRewrite->set(AddedPHIs[0]);
226         continue;
227       }
228 
229       // Otherwise, do full PHI insertion.
230       SSAUpdate.RewriteUse(*UseToRewrite);
231     }
232 
233     SmallVector<DbgValueInst *, 4> DbgValues;
234     llvm::findDbgValues(DbgValues, I);
235 
236     // Update pre-existing debug value uses that reside outside the loop.
237     for (auto *DVI : DbgValues) {
238       BasicBlock *UserBB = DVI->getParent();
239       if (InstBB == UserBB || L->contains(UserBB))
240         continue;
241       // We currently only handle debug values residing in blocks that were
242       // traversed while rewriting the uses. If we inserted just a single PHI,
243       // we will handle all relevant debug values.
244       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
245                                        : SSAUpdate.FindValueForBlock(UserBB);
246       if (V)
247         DVI->replaceVariableLocationOp(I, V);
248     }
249 
250     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
251     // to post-process them to keep LCSSA form.
252     for (PHINode *InsertedPN : LocalInsertedPHIs) {
253       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
254         if (!L->contains(OtherLoop))
255           PostProcessPHIs.push_back(InsertedPN);
256       if (InsertedPHIs)
257         InsertedPHIs->push_back(InsertedPN);
258     }
259 
260     // Post process PHI instructions that were inserted into another disjoint
261     // loop and update their exits properly.
262     for (auto *PostProcessPN : PostProcessPHIs)
263       if (!PostProcessPN->use_empty())
264         Worklist.push_back(PostProcessPN);
265 
266     // Keep track of PHI nodes that we want to remove because they did not have
267     // any uses rewritten.
268     for (PHINode *PN : AddedPHIs)
269       if (PN->use_empty())
270         LocalPHIsToRemove.insert(PN);
271 
272     Changed = true;
273   }
274 
275   // Remove PHI nodes that did not have any uses rewritten or add them to
276   // PHIsToRemove, so the caller can remove them after some additional cleanup.
277   // We need to redo the use_empty() check here, because even if the PHI node
278   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
279   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
280   // nodes that only are used by each other. Such situations has only been
281   // noticed when the input IR contains unreachable code, and leaving some extra
282   // redundant PHI nodes in such situations is considered a minor problem.
283   if (PHIsToRemove) {
284     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
285   } else {
286     for (PHINode *PN : LocalPHIsToRemove)
287       if (PN->use_empty())
288         PN->eraseFromParent();
289   }
290   return Changed;
291 }
292 
293 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
294 static void computeBlocksDominatingExits(
295     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
296     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
297   // We start from the exit blocks, as every block trivially dominates itself
298   // (not strictly).
299   SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
300 
301   while (!BBWorklist.empty()) {
302     BasicBlock *BB = BBWorklist.pop_back_val();
303 
304     // Check if this is a loop header. If this is the case, we're done.
305     if (L.getHeader() == BB)
306       continue;
307 
308     // Otherwise, add its immediate predecessor in the dominator tree to the
309     // worklist, unless we visited it already.
310     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
311 
312     // Exit blocks can have an immediate dominator not belonging to the
313     // loop. For an exit block to be immediately dominated by another block
314     // outside the loop, it implies not all paths from that dominator, to the
315     // exit block, go through the loop.
316     // Example:
317     //
318     // |---- A
319     // |     |
320     // |     B<--
321     // |     |  |
322     // |---> C --
323     //       |
324     //       D
325     //
326     // C is the exit block of the loop and it's immediately dominated by A,
327     // which doesn't belong to the loop.
328     if (!L.contains(IDomBB))
329       continue;
330 
331     if (BlocksDominatingExits.insert(IDomBB))
332       BBWorklist.push_back(IDomBB);
333   }
334 }
335 
336 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI) {
337   bool Changed = false;
338 
339 #ifdef EXPENSIVE_CHECKS
340   // Verify all sub-loops are in LCSSA form already.
341   for (Loop *SubLoop: L) {
342     (void)SubLoop; // Silence unused variable warning.
343     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
344   }
345 #endif
346 
347   SmallVector<BasicBlock *, 8> ExitBlocks;
348   L.getExitBlocks(ExitBlocks);
349   if (ExitBlocks.empty())
350     return false;
351 
352   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
353 
354   // We want to avoid use-scanning leveraging dominance informations.
355   // If a block doesn't dominate any of the loop exits, the none of the values
356   // defined in the loop can be used outside.
357   // We compute the set of blocks fullfilling the conditions in advance
358   // walking the dominator tree upwards until we hit a loop header.
359   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
360 
361   SmallVector<Instruction *, 8> Worklist;
362 
363   // Look at all the instructions in the loop, checking to see if they have uses
364   // outside the loop.  If so, put them into the worklist to rewrite those uses.
365   for (BasicBlock *BB : BlocksDominatingExits) {
366     // Skip blocks that are part of any sub-loops, they must be in LCSSA
367     // already.
368     if (LI->getLoopFor(BB) != &L)
369       continue;
370     for (Instruction &I : *BB) {
371       // Reject two common cases fast: instructions with no uses (like stores)
372       // and instructions with one use that is in the same block as this.
373       if (I.use_empty() ||
374           (I.hasOneUse() && I.user_back()->getParent() == BB &&
375            !isa<PHINode>(I.user_back())))
376         continue;
377 
378       // Tokens cannot be used in PHI nodes, so we skip over them.
379       // We can run into tokens which are live out of a loop with catchswitch
380       // instructions in Windows EH if the catchswitch has one catchpad which
381       // is inside the loop and another which is not.
382       if (I.getType()->isTokenTy())
383         continue;
384 
385       Worklist.push_back(&I);
386     }
387   }
388 
389   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
390 
391   assert(L.isLCSSAForm(DT));
392 
393   return Changed;
394 }
395 
396 /// Process a loop nest depth first.
397 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
398                                 const LoopInfo *LI) {
399   bool Changed = false;
400 
401   // Recurse depth-first through inner loops.
402   for (Loop *SubLoop : L.getSubLoops())
403     Changed |= formLCSSARecursively(*SubLoop, DT, LI);
404 
405   Changed |= formLCSSA(L, DT, LI);
406   return Changed;
407 }
408 
409 /// Process all loops in the function, inner-most out.
410 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT) {
411   bool Changed = false;
412   for (const auto &L : *LI)
413     Changed |= formLCSSARecursively(*L, DT, LI);
414   return Changed;
415 }
416 
417 namespace {
418 struct LCSSAWrapperPass : public FunctionPass {
419   static char ID; // Pass identification, replacement for typeid
420   LCSSAWrapperPass() : FunctionPass(ID) {
421     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
422   }
423 
424   // Cached analysis information for the current function.
425   DominatorTree *DT;
426   LoopInfo *LI;
427 
428   bool runOnFunction(Function &F) override;
429   void verifyAnalysis() const override {
430     // This check is very expensive. On the loop intensive compiles it may cause
431     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
432     // always does limited form of the LCSSA verification. Similar reasoning
433     // was used for the LoopInfo verifier.
434     if (VerifyLoopLCSSA) {
435       assert(all_of(*LI,
436                     [&](Loop *L) {
437                       return L->isRecursivelyLCSSAForm(*DT, *LI);
438                     }) &&
439              "LCSSA form is broken!");
440     }
441   };
442 
443   /// This transformation requires natural loop information & requires that
444   /// loop preheaders be inserted into the CFG.  It maintains both of these,
445   /// as well as the CFG.  It also requires dominator information.
446   void getAnalysisUsage(AnalysisUsage &AU) const override {
447     AU.setPreservesCFG();
448 
449     AU.addRequired<DominatorTreeWrapperPass>();
450     AU.addRequired<LoopInfoWrapperPass>();
451     AU.addPreservedID(LoopSimplifyID);
452     AU.addPreserved<AAResultsWrapperPass>();
453     AU.addPreserved<BasicAAWrapperPass>();
454     AU.addPreserved<GlobalsAAWrapperPass>();
455     AU.addPreserved<ScalarEvolutionWrapperPass>();
456     AU.addPreserved<SCEVAAWrapperPass>();
457     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
458     AU.addPreserved<MemorySSAWrapperPass>();
459 
460     // This is needed to perform LCSSA verification inside LPPassManager
461     AU.addRequired<LCSSAVerificationPass>();
462     AU.addPreserved<LCSSAVerificationPass>();
463   }
464 };
465 }
466 
467 char LCSSAWrapperPass::ID = 0;
468 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
469                       false, false)
470 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
471 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
472 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
473 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
474                     false, false)
475 
476 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
477 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
478 
479 /// Transform \p F into loop-closed SSA form.
480 bool LCSSAWrapperPass::runOnFunction(Function &F) {
481   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
482   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
483   return formLCSSAOnAllLoops(LI, *DT);
484 }
485 
486 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
487   auto &LI = AM.getResult<LoopAnalysis>(F);
488   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
489   if (!formLCSSAOnAllLoops(&LI, DT))
490     return PreservedAnalyses::all();
491 
492   PreservedAnalyses PA;
493   PA.preserveSet<CFGAnalyses>();
494   PA.preserve<ScalarEvolutionAnalysis>();
495   // BPI maps terminators to probabilities, since we don't modify the CFG, no
496   // updates are needed to preserve it.
497   PA.preserve<BranchProbabilityAnalysis>();
498   PA.preserve<MemorySSAAnalysis>();
499   return PA;
500 }
501