1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/PredIteratorCache.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/SSAUpdater.h" 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lcssa" 51 52 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 53 54 #ifdef EXPENSIVE_CHECKS 55 static bool VerifyLoopLCSSA = true; 56 #else 57 static bool VerifyLoopLCSSA = false; 58 #endif 59 static cl::opt<bool,true> 60 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 61 cl::desc("Verify loop lcssa form (time consuming)")); 62 63 /// Return true if the specified block is in the list. 64 static bool isExitBlock(BasicBlock *BB, 65 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 66 return is_contained(ExitBlocks, BB); 67 } 68 69 /// For every instruction from the worklist, check to see if it has any uses 70 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 71 /// rewrite the uses. 72 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 73 DominatorTree &DT, LoopInfo &LI) { 74 SmallVector<Use *, 16> UsesToRewrite; 75 SmallSetVector<PHINode *, 16> PHIsToRemove; 76 PredIteratorCache PredCache; 77 bool Changed = false; 78 79 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 80 // instructions within the same loops, computing the exit blocks is 81 // expensive, and we're not mutating the loop structure. 82 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 83 84 while (!Worklist.empty()) { 85 UsesToRewrite.clear(); 86 87 Instruction *I = Worklist.pop_back_val(); 88 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 89 BasicBlock *InstBB = I->getParent(); 90 Loop *L = LI.getLoopFor(InstBB); 91 assert(L && "Instruction belongs to a BB that's not part of a loop"); 92 if (!LoopExitBlocks.count(L)) 93 L->getExitBlocks(LoopExitBlocks[L]); 94 assert(LoopExitBlocks.count(L)); 95 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 96 97 if (ExitBlocks.empty()) 98 continue; 99 100 for (Use &U : I->uses()) { 101 Instruction *User = cast<Instruction>(U.getUser()); 102 BasicBlock *UserBB = User->getParent(); 103 if (auto *PN = dyn_cast<PHINode>(User)) 104 UserBB = PN->getIncomingBlock(U); 105 106 if (InstBB != UserBB && !L->contains(UserBB)) 107 UsesToRewrite.push_back(&U); 108 } 109 110 // If there are no uses outside the loop, exit with no change. 111 if (UsesToRewrite.empty()) 112 continue; 113 114 ++NumLCSSA; // We are applying the transformation 115 116 // Invoke instructions are special in that their result value is not 117 // available along their unwind edge. The code below tests to see whether 118 // DomBB dominates the value, so adjust DomBB to the normal destination 119 // block, which is effectively where the value is first usable. 120 BasicBlock *DomBB = InstBB; 121 if (auto *Inv = dyn_cast<InvokeInst>(I)) 122 DomBB = Inv->getNormalDest(); 123 124 DomTreeNode *DomNode = DT.getNode(DomBB); 125 126 SmallVector<PHINode *, 16> AddedPHIs; 127 SmallVector<PHINode *, 8> PostProcessPHIs; 128 129 SmallVector<PHINode *, 4> InsertedPHIs; 130 SSAUpdater SSAUpdate(&InsertedPHIs); 131 SSAUpdate.Initialize(I->getType(), I->getName()); 132 133 // Insert the LCSSA phi's into all of the exit blocks dominated by the 134 // value, and add them to the Phi's map. 135 for (BasicBlock *ExitBB : ExitBlocks) { 136 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 137 continue; 138 139 // If we already inserted something for this BB, don't reprocess it. 140 if (SSAUpdate.HasValueForBlock(ExitBB)) 141 continue; 142 143 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 144 I->getName() + ".lcssa", &ExitBB->front()); 145 146 // Add inputs from inside the loop for this PHI. 147 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 148 PN->addIncoming(I, Pred); 149 150 // If the exit block has a predecessor not within the loop, arrange for 151 // the incoming value use corresponding to that predecessor to be 152 // rewritten in terms of a different LCSSA PHI. 153 if (!L->contains(Pred)) 154 UsesToRewrite.push_back( 155 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 156 PN->getNumIncomingValues() - 1))); 157 } 158 159 AddedPHIs.push_back(PN); 160 161 // Remember that this phi makes the value alive in this block. 162 SSAUpdate.AddAvailableValue(ExitBB, PN); 163 164 // LoopSimplify might fail to simplify some loops (e.g. when indirect 165 // branches are involved). In such situations, it might happen that an 166 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 167 // create PHIs in such an exit block, we are also inserting PHIs into L2's 168 // header. This could break LCSSA form for L2 because these inserted PHIs 169 // can also have uses outside of L2. Remember all PHIs in such situation 170 // as to revisit than later on. FIXME: Remove this if indirectbr support 171 // into LoopSimplify gets improved. 172 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 173 if (!L->contains(OtherLoop)) 174 PostProcessPHIs.push_back(PN); 175 } 176 177 // Rewrite all uses outside the loop in terms of the new PHIs we just 178 // inserted. 179 for (Use *UseToRewrite : UsesToRewrite) { 180 // If this use is in an exit block, rewrite to use the newly inserted PHI. 181 // This is required for correctness because SSAUpdate doesn't handle uses 182 // in the same block. It assumes the PHI we inserted is at the end of the 183 // block. 184 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 185 BasicBlock *UserBB = User->getParent(); 186 if (auto *PN = dyn_cast<PHINode>(User)) 187 UserBB = PN->getIncomingBlock(*UseToRewrite); 188 189 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 190 // Tell the VHs that the uses changed. This updates SCEV's caches. 191 if (UseToRewrite->get()->hasValueHandle()) 192 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 193 UseToRewrite->set(&UserBB->front()); 194 continue; 195 } 196 197 // Otherwise, do full PHI insertion. 198 SSAUpdate.RewriteUse(*UseToRewrite); 199 } 200 201 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 202 // to post-process them to keep LCSSA form. 203 for (PHINode *InsertedPN : InsertedPHIs) { 204 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 205 if (!L->contains(OtherLoop)) 206 PostProcessPHIs.push_back(InsertedPN); 207 } 208 209 // Post process PHI instructions that were inserted into another disjoint 210 // loop and update their exits properly. 211 for (auto *PostProcessPN : PostProcessPHIs) 212 if (!PostProcessPN->use_empty()) 213 Worklist.push_back(PostProcessPN); 214 215 // Keep track of PHI nodes that we want to remove because they did not have 216 // any uses rewritten. 217 for (PHINode *PN : AddedPHIs) 218 if (PN->use_empty()) 219 PHIsToRemove.insert(PN); 220 221 Changed = true; 222 } 223 // Remove PHI nodes that did not have any uses rewritten. 224 for (PHINode *PN : PHIsToRemove) { 225 assert (PN->use_empty() && "Trying to remove a phi with uses."); 226 PN->eraseFromParent(); 227 } 228 return Changed; 229 } 230 231 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 232 static void computeBlocksDominatingExits( 233 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 234 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 235 SmallVector<BasicBlock *, 8> BBWorklist; 236 237 // We start from the exit blocks, as every block trivially dominates itself 238 // (not strictly). 239 for (BasicBlock *BB : ExitBlocks) 240 BBWorklist.push_back(BB); 241 242 while (!BBWorklist.empty()) { 243 BasicBlock *BB = BBWorklist.pop_back_val(); 244 245 // Check if this is a loop header. If this is the case, we're done. 246 if (L.getHeader() == BB) 247 continue; 248 249 // Otherwise, add its immediate predecessor in the dominator tree to the 250 // worklist, unless we visited it already. 251 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 252 253 // Exit blocks can have an immediate dominator not beloinging to the 254 // loop. For an exit block to be immediately dominated by another block 255 // outside the loop, it implies not all paths from that dominator, to the 256 // exit block, go through the loop. 257 // Example: 258 // 259 // |---- A 260 // | | 261 // | B<-- 262 // | | | 263 // |---> C -- 264 // | 265 // D 266 // 267 // C is the exit block of the loop and it's immediately dominated by A, 268 // which doesn't belong to the loop. 269 if (!L.contains(IDomBB)) 270 continue; 271 272 if (BlocksDominatingExits.insert(IDomBB)) 273 BBWorklist.push_back(IDomBB); 274 } 275 } 276 277 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 278 ScalarEvolution *SE) { 279 bool Changed = false; 280 281 SmallVector<BasicBlock *, 8> ExitBlocks; 282 L.getExitBlocks(ExitBlocks); 283 if (ExitBlocks.empty()) 284 return false; 285 286 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 287 288 // We want to avoid use-scanning leveraging dominance informations. 289 // If a block doesn't dominate any of the loop exits, the none of the values 290 // defined in the loop can be used outside. 291 // We compute the set of blocks fullfilling the conditions in advance 292 // walking the dominator tree upwards until we hit a loop header. 293 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 294 295 SmallVector<Instruction *, 8> Worklist; 296 297 // Look at all the instructions in the loop, checking to see if they have uses 298 // outside the loop. If so, put them into the worklist to rewrite those uses. 299 for (BasicBlock *BB : BlocksDominatingExits) { 300 for (Instruction &I : *BB) { 301 // Reject two common cases fast: instructions with no uses (like stores) 302 // and instructions with one use that is in the same block as this. 303 if (I.use_empty() || 304 (I.hasOneUse() && I.user_back()->getParent() == BB && 305 !isa<PHINode>(I.user_back()))) 306 continue; 307 308 // Tokens cannot be used in PHI nodes, so we skip over them. 309 // We can run into tokens which are live out of a loop with catchswitch 310 // instructions in Windows EH if the catchswitch has one catchpad which 311 // is inside the loop and another which is not. 312 if (I.getType()->isTokenTy()) 313 continue; 314 315 Worklist.push_back(&I); 316 } 317 } 318 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 319 320 // If we modified the code, remove any caches about the loop from SCEV to 321 // avoid dangling entries. 322 // FIXME: This is a big hammer, can we clear the cache more selectively? 323 if (SE && Changed) 324 SE->forgetLoop(&L); 325 326 assert(L.isLCSSAForm(DT)); 327 328 return Changed; 329 } 330 331 /// Process a loop nest depth first. 332 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 333 ScalarEvolution *SE) { 334 bool Changed = false; 335 336 // Recurse depth-first through inner loops. 337 for (Loop *SubLoop : L.getSubLoops()) 338 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 339 340 Changed |= formLCSSA(L, DT, LI, SE); 341 return Changed; 342 } 343 344 /// Process all loops in the function, inner-most out. 345 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 346 ScalarEvolution *SE) { 347 bool Changed = false; 348 for (auto &L : *LI) 349 Changed |= formLCSSARecursively(*L, DT, LI, SE); 350 return Changed; 351 } 352 353 namespace { 354 struct LCSSAWrapperPass : public FunctionPass { 355 static char ID; // Pass identification, replacement for typeid 356 LCSSAWrapperPass() : FunctionPass(ID) { 357 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 358 } 359 360 // Cached analysis information for the current function. 361 DominatorTree *DT; 362 LoopInfo *LI; 363 ScalarEvolution *SE; 364 365 bool runOnFunction(Function &F) override; 366 void verifyAnalysis() const override { 367 // This check is very expensive. On the loop intensive compiles it may cause 368 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 369 // always does limited form of the LCSSA verification. Similar reasoning 370 // was used for the LoopInfo verifier. 371 if (VerifyLoopLCSSA) { 372 assert(all_of(*LI, 373 [&](Loop *L) { 374 return L->isRecursivelyLCSSAForm(*DT, *LI); 375 }) && 376 "LCSSA form is broken!"); 377 } 378 }; 379 380 /// This transformation requires natural loop information & requires that 381 /// loop preheaders be inserted into the CFG. It maintains both of these, 382 /// as well as the CFG. It also requires dominator information. 383 void getAnalysisUsage(AnalysisUsage &AU) const override { 384 AU.setPreservesCFG(); 385 386 AU.addRequired<DominatorTreeWrapperPass>(); 387 AU.addRequired<LoopInfoWrapperPass>(); 388 AU.addPreservedID(LoopSimplifyID); 389 AU.addPreserved<AAResultsWrapperPass>(); 390 AU.addPreserved<BasicAAWrapperPass>(); 391 AU.addPreserved<GlobalsAAWrapperPass>(); 392 AU.addPreserved<ScalarEvolutionWrapperPass>(); 393 AU.addPreserved<SCEVAAWrapperPass>(); 394 395 // This is needed to perform LCSSA verification inside LPPassManager 396 AU.addRequired<LCSSAVerificationPass>(); 397 AU.addPreserved<LCSSAVerificationPass>(); 398 } 399 }; 400 } 401 402 char LCSSAWrapperPass::ID = 0; 403 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 404 false, false) 405 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 406 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 407 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 408 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 409 false, false) 410 411 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 412 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 413 414 /// Transform \p F into loop-closed SSA form. 415 bool LCSSAWrapperPass::runOnFunction(Function &F) { 416 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 417 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 418 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 419 SE = SEWP ? &SEWP->getSE() : nullptr; 420 421 return formLCSSAOnAllLoops(LI, *DT, SE); 422 } 423 424 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 425 auto &LI = AM.getResult<LoopAnalysis>(F); 426 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 427 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 428 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 429 return PreservedAnalyses::all(); 430 431 PreservedAnalyses PA; 432 PA.preserveSet<CFGAnalyses>(); 433 PA.preserve<BasicAA>(); 434 PA.preserve<GlobalsAA>(); 435 PA.preserve<SCEVAA>(); 436 PA.preserve<ScalarEvolutionAnalysis>(); 437 return PA; 438 } 439