xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision c5e340eded97ce31d5de20c70f6c1736e6559de7)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Owen Anderson and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4              X4 = phi(X3)
21 //                           ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Support/CFG.h"
42 #include "llvm/Support/Compiler.h"
43 #include <algorithm>
44 #include <map>
45 using namespace llvm;
46 
47 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
48 
49 namespace {
50   struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
51     static char ID; // Pass identification, replacement for typeid
52     LCSSA() : LoopPass((intptr_t)&ID) {}
53 
54     // Cached analysis information for the current function.
55     LoopInfo *LI;
56     DominatorTree *DT;
57     std::vector<BasicBlock*> LoopBlocks;
58 
59     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
60 
61     void ProcessInstruction(Instruction* Instr,
62                             const std::vector<BasicBlock*>& exitBlocks);
63 
64     /// This transformation requires natural loop information & requires that
65     /// loop preheaders be inserted into the CFG.  It maintains both of these,
66     /// as well as the CFG.  It also requires dominator information.
67     ///
68     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69       AU.setPreservesCFG();
70       AU.addRequiredID(LoopSimplifyID);
71       AU.addPreservedID(LoopSimplifyID);
72       AU.addRequired<LoopInfo>();
73       AU.addPreserved<LoopInfo>();
74       AU.addRequired<DominatorTree>();
75       AU.addPreserved<ScalarEvolution>();
76       AU.addPreserved<DominatorTree>();
77 
78       // Request DominanceFrontier now, even though LCSSA does
79       // not use it. This allows Pass Manager to schedule Dominance
80       // Frontier early enough such that one LPPassManager can handle
81       // multiple loop transformation passes.
82       AU.addRequired<DominanceFrontier>();
83       AU.addPreserved<DominanceFrontier>();
84     }
85   private:
86     void getLoopValuesUsedOutsideLoop(Loop *L,
87                                       SetVector<Instruction*> &AffectedValues);
88 
89     Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
90                             std::map<DomTreeNode*, Value*> &Phis);
91 
92     /// inLoop - returns true if the given block is within the current loop
93     const bool inLoop(BasicBlock* B) {
94       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
95     }
96   };
97 
98   char LCSSA::ID = 0;
99   RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
100 }
101 
102 LoopPass *llvm::createLCSSAPass() { return new LCSSA(); }
103 const PassInfo *llvm::LCSSAID = X.getPassInfo();
104 
105 /// runOnFunction - Process all loops in the function, inner-most out.
106 bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
107 
108   LI = &LPM.getAnalysis<LoopInfo>();
109   DT = &getAnalysis<DominatorTree>();
110 
111   // Speed up queries by creating a sorted list of blocks
112   LoopBlocks.clear();
113   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
114   std::sort(LoopBlocks.begin(), LoopBlocks.end());
115 
116   SetVector<Instruction*> AffectedValues;
117   getLoopValuesUsedOutsideLoop(L, AffectedValues);
118 
119   // If no values are affected, we can save a lot of work, since we know that
120   // nothing will be changed.
121   if (AffectedValues.empty())
122     return false;
123 
124   std::vector<BasicBlock*> exitBlocks;
125   L->getExitBlocks(exitBlocks);
126 
127 
128   // Iterate over all affected values for this loop and insert Phi nodes
129   // for them in the appropriate exit blocks
130 
131   for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
132        E = AffectedValues.end(); I != E; ++I)
133     ProcessInstruction(*I, exitBlocks);
134 
135   assert(L->isLCSSAForm());
136 
137   return true;
138 }
139 
140 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
141 /// eliminate all out-of-loop uses.
142 void LCSSA::ProcessInstruction(Instruction *Instr,
143                                const std::vector<BasicBlock*>& exitBlocks) {
144   ++NumLCSSA; // We are applying the transformation
145 
146   // Keep track of the blocks that have the value available already.
147   std::map<DomTreeNode*, Value*> Phis;
148 
149   DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
150 
151   // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
152   // add them to the Phi's map.
153   for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
154       BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
155     BasicBlock *BB = *BBI;
156     DomTreeNode *ExitBBNode = DT->getNode(BB);
157     Value *&Phi = Phis[ExitBBNode];
158     if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
159       PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
160                                 BB->begin());
161       PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
162 
163       // Remember that this phi makes the value alive in this block.
164       Phi = PN;
165 
166       // Add inputs from inside the loop for this PHI.
167       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
168         PN->addIncoming(Instr, *PI);
169     }
170   }
171 
172 
173   // Record all uses of Instr outside the loop.  We need to rewrite these.  The
174   // LCSSA phis won't be included because they use the value in the loop.
175   for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
176        UI != E;) {
177     BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
178     if (PHINode *P = dyn_cast<PHINode>(*UI)) {
179       unsigned OperandNo = UI.getOperandNo();
180       UserBB = P->getIncomingBlock(OperandNo/2);
181     }
182 
183     // If the user is in the loop, don't rewrite it!
184     if (UserBB == Instr->getParent() || inLoop(UserBB)) {
185       ++UI;
186       continue;
187     }
188 
189     // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
190     // inserting PHI nodes into join points where needed.
191     Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
192 
193     // Preincrement the iterator to avoid invalidating it when we change the
194     // value.
195     Use &U = UI.getUse();
196     ++UI;
197     U.set(Val);
198   }
199 }
200 
201 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
202 /// are used by instructions outside of it.
203 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
204                                       SetVector<Instruction*> &AffectedValues) {
205   // FIXME: For large loops, we may be able to avoid a lot of use-scanning
206   // by using dominance information.  In particular, if a block does not
207   // dominate any of the loop exits, then none of the values defined in the
208   // block could be used outside the loop.
209   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
210        BB != E; ++BB) {
211     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
212       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
213            ++UI) {
214         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
215         if (PHINode* p = dyn_cast<PHINode>(*UI)) {
216           unsigned OperandNo = UI.getOperandNo();
217           UserBB = p->getIncomingBlock(OperandNo/2);
218         }
219 
220         if (*BB != UserBB && !inLoop(UserBB)) {
221           AffectedValues.insert(I);
222           break;
223         }
224       }
225   }
226 }
227 
228 /// GetValueForBlock - Get the value to use within the specified basic block.
229 /// available values are in Phis.
230 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
231                                std::map<DomTreeNode*, Value*> &Phis) {
232   // If there is no dominator info for this BB, it is unreachable.
233   if (BB == 0)
234     return UndefValue::get(OrigInst->getType());
235 
236   // If we have already computed this value, return the previously computed val.
237   Value *&V = Phis[BB];
238   if (V) return V;
239 
240   DomTreeNode *IDom = BB->getIDom();
241 
242   // Otherwise, there are two cases: we either have to insert a PHI node or we
243   // don't.  We need to insert a PHI node if this block is not dominated by one
244   // of the exit nodes from the loop (the loop could have multiple exits, and
245   // though the value defined *inside* the loop dominated all its uses, each
246   // exit by itself may not dominate all the uses).
247   //
248   // The simplest way to check for this condition is by checking to see if the
249   // idom is in the loop.  If so, we *know* that none of the exit blocks
250   // dominate this block.  Note that we *know* that the block defining the
251   // original instruction is in the idom chain, because if it weren't, then the
252   // original value didn't dominate this use.
253   if (!inLoop(IDom->getBlock())) {
254     // Idom is not in the loop, we must still be "below" the exit block and must
255     // be fully dominated by the value live in the idom.
256     return V = GetValueForBlock(IDom, OrigInst, Phis);
257   }
258 
259   BasicBlock *BBN = BB->getBlock();
260 
261   // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
262   // now, then get values to fill in the incoming values for the PHI.
263   PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
264                             BBN->begin());
265   PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
266   V = PN;
267 
268   // Fill in the incoming values for the block.
269   for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
270     PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
271   return PN;
272 }
273 
274