1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Owen Anderson and is distributed under the 6 // University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "lcssa" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Constants.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Function.h" 35 #include "llvm/Instructions.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Analysis/Dominators.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Support/CFG.h" 42 #include "llvm/Support/Compiler.h" 43 #include <algorithm> 44 #include <map> 45 using namespace llvm; 46 47 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 48 49 namespace { 50 struct VISIBILITY_HIDDEN LCSSA : public LoopPass { 51 static char ID; // Pass identification, replacement for typeid 52 LCSSA() : LoopPass((intptr_t)&ID) {} 53 54 // Cached analysis information for the current function. 55 LoopInfo *LI; 56 DominatorTree *DT; 57 std::vector<BasicBlock*> LoopBlocks; 58 59 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 60 61 void ProcessInstruction(Instruction* Instr, 62 const std::vector<BasicBlock*>& exitBlocks); 63 64 /// This transformation requires natural loop information & requires that 65 /// loop preheaders be inserted into the CFG. It maintains both of these, 66 /// as well as the CFG. It also requires dominator information. 67 /// 68 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 69 AU.setPreservesCFG(); 70 AU.addRequiredID(LoopSimplifyID); 71 AU.addPreservedID(LoopSimplifyID); 72 AU.addRequired<LoopInfo>(); 73 AU.addPreserved<LoopInfo>(); 74 AU.addRequired<DominatorTree>(); 75 AU.addPreserved<ScalarEvolution>(); 76 AU.addPreserved<DominatorTree>(); 77 78 // Request DominanceFrontier now, even though LCSSA does 79 // not use it. This allows Pass Manager to schedule Dominance 80 // Frontier early enough such that one LPPassManager can handle 81 // multiple loop transformation passes. 82 AU.addRequired<DominanceFrontier>(); 83 AU.addPreserved<DominanceFrontier>(); 84 } 85 private: 86 void getLoopValuesUsedOutsideLoop(Loop *L, 87 SetVector<Instruction*> &AffectedValues); 88 89 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 90 std::map<DomTreeNode*, Value*> &Phis); 91 92 /// inLoop - returns true if the given block is within the current loop 93 const bool inLoop(BasicBlock* B) { 94 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 95 } 96 }; 97 98 char LCSSA::ID = 0; 99 RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 100 } 101 102 LoopPass *llvm::createLCSSAPass() { return new LCSSA(); } 103 const PassInfo *llvm::LCSSAID = X.getPassInfo(); 104 105 /// runOnFunction - Process all loops in the function, inner-most out. 106 bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) { 107 108 LI = &LPM.getAnalysis<LoopInfo>(); 109 DT = &getAnalysis<DominatorTree>(); 110 111 // Speed up queries by creating a sorted list of blocks 112 LoopBlocks.clear(); 113 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 114 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 115 116 SetVector<Instruction*> AffectedValues; 117 getLoopValuesUsedOutsideLoop(L, AffectedValues); 118 119 // If no values are affected, we can save a lot of work, since we know that 120 // nothing will be changed. 121 if (AffectedValues.empty()) 122 return false; 123 124 std::vector<BasicBlock*> exitBlocks; 125 L->getExitBlocks(exitBlocks); 126 127 128 // Iterate over all affected values for this loop and insert Phi nodes 129 // for them in the appropriate exit blocks 130 131 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 132 E = AffectedValues.end(); I != E; ++I) 133 ProcessInstruction(*I, exitBlocks); 134 135 assert(L->isLCSSAForm()); 136 137 return true; 138 } 139 140 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 141 /// eliminate all out-of-loop uses. 142 void LCSSA::ProcessInstruction(Instruction *Instr, 143 const std::vector<BasicBlock*>& exitBlocks) { 144 ++NumLCSSA; // We are applying the transformation 145 146 // Keep track of the blocks that have the value available already. 147 std::map<DomTreeNode*, Value*> Phis; 148 149 DomTreeNode *InstrNode = DT->getNode(Instr->getParent()); 150 151 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 152 // add them to the Phi's map. 153 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 154 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 155 BasicBlock *BB = *BBI; 156 DomTreeNode *ExitBBNode = DT->getNode(BB); 157 Value *&Phi = Phis[ExitBBNode]; 158 if (!Phi && DT->dominates(InstrNode, ExitBBNode)) { 159 PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 160 BB->begin()); 161 PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); 162 163 // Remember that this phi makes the value alive in this block. 164 Phi = PN; 165 166 // Add inputs from inside the loop for this PHI. 167 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 168 PN->addIncoming(Instr, *PI); 169 } 170 } 171 172 173 // Record all uses of Instr outside the loop. We need to rewrite these. The 174 // LCSSA phis won't be included because they use the value in the loop. 175 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 176 UI != E;) { 177 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 178 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 179 unsigned OperandNo = UI.getOperandNo(); 180 UserBB = P->getIncomingBlock(OperandNo/2); 181 } 182 183 // If the user is in the loop, don't rewrite it! 184 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 185 ++UI; 186 continue; 187 } 188 189 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 190 // inserting PHI nodes into join points where needed. 191 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 192 193 // Preincrement the iterator to avoid invalidating it when we change the 194 // value. 195 Use &U = UI.getUse(); 196 ++UI; 197 U.set(Val); 198 } 199 } 200 201 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 202 /// are used by instructions outside of it. 203 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 204 SetVector<Instruction*> &AffectedValues) { 205 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 206 // by using dominance information. In particular, if a block does not 207 // dominate any of the loop exits, then none of the values defined in the 208 // block could be used outside the loop. 209 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 210 BB != E; ++BB) { 211 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 212 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 213 ++UI) { 214 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 215 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 216 unsigned OperandNo = UI.getOperandNo(); 217 UserBB = p->getIncomingBlock(OperandNo/2); 218 } 219 220 if (*BB != UserBB && !inLoop(UserBB)) { 221 AffectedValues.insert(I); 222 break; 223 } 224 } 225 } 226 } 227 228 /// GetValueForBlock - Get the value to use within the specified basic block. 229 /// available values are in Phis. 230 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 231 std::map<DomTreeNode*, Value*> &Phis) { 232 // If there is no dominator info for this BB, it is unreachable. 233 if (BB == 0) 234 return UndefValue::get(OrigInst->getType()); 235 236 // If we have already computed this value, return the previously computed val. 237 Value *&V = Phis[BB]; 238 if (V) return V; 239 240 DomTreeNode *IDom = BB->getIDom(); 241 242 // Otherwise, there are two cases: we either have to insert a PHI node or we 243 // don't. We need to insert a PHI node if this block is not dominated by one 244 // of the exit nodes from the loop (the loop could have multiple exits, and 245 // though the value defined *inside* the loop dominated all its uses, each 246 // exit by itself may not dominate all the uses). 247 // 248 // The simplest way to check for this condition is by checking to see if the 249 // idom is in the loop. If so, we *know* that none of the exit blocks 250 // dominate this block. Note that we *know* that the block defining the 251 // original instruction is in the idom chain, because if it weren't, then the 252 // original value didn't dominate this use. 253 if (!inLoop(IDom->getBlock())) { 254 // Idom is not in the loop, we must still be "below" the exit block and must 255 // be fully dominated by the value live in the idom. 256 return V = GetValueForBlock(IDom, OrigInst, Phis); 257 } 258 259 BasicBlock *BBN = BB->getBlock(); 260 261 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 262 // now, then get values to fill in the incoming values for the PHI. 263 PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", 264 BBN->begin()); 265 PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); 266 V = PN; 267 268 // Fill in the incoming values for the block. 269 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) 270 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 271 return PN; 272 } 273 274