1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/PredIteratorCache.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/SSAUpdater.h" 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lcssa" 51 52 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 53 54 #ifdef EXPENSIVE_CHECKS 55 static bool VerifyLoopLCSSA = true; 56 #else 57 static bool VerifyLoopLCSSA = false; 58 #endif 59 static cl::opt<bool,true> 60 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 61 cl::desc("Verify loop lcssa form (time consuming)")); 62 63 /// Return true if the specified block is in the list. 64 static bool isExitBlock(BasicBlock *BB, 65 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 66 return is_contained(ExitBlocks, BB); 67 } 68 69 /// For every instruction from the worklist, check to see if it has any uses 70 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 71 /// rewrite the uses. 72 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 73 DominatorTree &DT, LoopInfo &LI) { 74 SmallVector<Use *, 16> UsesToRewrite; 75 SmallSetVector<PHINode *, 16> PHIsToRemove; 76 PredIteratorCache PredCache; 77 bool Changed = false; 78 79 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 80 // instructions within the same loops, computing the exit blocks is 81 // expensive, and we're not mutating the loop structure. 82 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 83 84 while (!Worklist.empty()) { 85 UsesToRewrite.clear(); 86 87 Instruction *I = Worklist.pop_back_val(); 88 BasicBlock *InstBB = I->getParent(); 89 Loop *L = LI.getLoopFor(InstBB); 90 if (!LoopExitBlocks.count(L)) 91 L->getExitBlocks(LoopExitBlocks[L]); 92 assert(LoopExitBlocks.count(L)); 93 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 94 95 if (ExitBlocks.empty()) 96 continue; 97 98 // Tokens cannot be used in PHI nodes, so we skip over them. 99 // We can run into tokens which are live out of a loop with catchswitch 100 // instructions in Windows EH if the catchswitch has one catchpad which 101 // is inside the loop and another which is not. 102 if (I->getType()->isTokenTy()) 103 continue; 104 105 for (Use &U : I->uses()) { 106 Instruction *User = cast<Instruction>(U.getUser()); 107 BasicBlock *UserBB = User->getParent(); 108 if (PHINode *PN = dyn_cast<PHINode>(User)) 109 UserBB = PN->getIncomingBlock(U); 110 111 if (InstBB != UserBB && !L->contains(UserBB)) 112 UsesToRewrite.push_back(&U); 113 } 114 115 // If there are no uses outside the loop, exit with no change. 116 if (UsesToRewrite.empty()) 117 continue; 118 119 ++NumLCSSA; // We are applying the transformation 120 121 // Invoke instructions are special in that their result value is not 122 // available along their unwind edge. The code below tests to see whether 123 // DomBB dominates the value, so adjust DomBB to the normal destination 124 // block, which is effectively where the value is first usable. 125 BasicBlock *DomBB = InstBB; 126 if (InvokeInst *Inv = dyn_cast<InvokeInst>(I)) 127 DomBB = Inv->getNormalDest(); 128 129 DomTreeNode *DomNode = DT.getNode(DomBB); 130 131 SmallVector<PHINode *, 16> AddedPHIs; 132 SmallVector<PHINode *, 8> PostProcessPHIs; 133 134 SmallVector<PHINode *, 4> InsertedPHIs; 135 SSAUpdater SSAUpdate(&InsertedPHIs); 136 SSAUpdate.Initialize(I->getType(), I->getName()); 137 138 // Insert the LCSSA phi's into all of the exit blocks dominated by the 139 // value, and add them to the Phi's map. 140 for (BasicBlock *ExitBB : ExitBlocks) { 141 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 142 continue; 143 144 // If we already inserted something for this BB, don't reprocess it. 145 if (SSAUpdate.HasValueForBlock(ExitBB)) 146 continue; 147 148 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 149 I->getName() + ".lcssa", &ExitBB->front()); 150 151 // Add inputs from inside the loop for this PHI. 152 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 153 PN->addIncoming(I, Pred); 154 155 // If the exit block has a predecessor not within the loop, arrange for 156 // the incoming value use corresponding to that predecessor to be 157 // rewritten in terms of a different LCSSA PHI. 158 if (!L->contains(Pred)) 159 UsesToRewrite.push_back( 160 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 161 PN->getNumIncomingValues() - 1))); 162 } 163 164 AddedPHIs.push_back(PN); 165 166 // Remember that this phi makes the value alive in this block. 167 SSAUpdate.AddAvailableValue(ExitBB, PN); 168 169 // LoopSimplify might fail to simplify some loops (e.g. when indirect 170 // branches are involved). In such situations, it might happen that an 171 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 172 // create PHIs in such an exit block, we are also inserting PHIs into L2's 173 // header. This could break LCSSA form for L2 because these inserted PHIs 174 // can also have uses outside of L2. Remember all PHIs in such situation 175 // as to revisit than later on. FIXME: Remove this if indirectbr support 176 // into LoopSimplify gets improved. 177 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 178 if (!L->contains(OtherLoop)) 179 PostProcessPHIs.push_back(PN); 180 } 181 182 // Rewrite all uses outside the loop in terms of the new PHIs we just 183 // inserted. 184 for (Use *UseToRewrite : UsesToRewrite) { 185 // If this use is in an exit block, rewrite to use the newly inserted PHI. 186 // This is required for correctness because SSAUpdate doesn't handle uses 187 // in the same block. It assumes the PHI we inserted is at the end of the 188 // block. 189 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 190 BasicBlock *UserBB = User->getParent(); 191 if (PHINode *PN = dyn_cast<PHINode>(User)) 192 UserBB = PN->getIncomingBlock(*UseToRewrite); 193 194 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 195 // Tell the VHs that the uses changed. This updates SCEV's caches. 196 if (UseToRewrite->get()->hasValueHandle()) 197 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 198 UseToRewrite->set(&UserBB->front()); 199 continue; 200 } 201 202 // Otherwise, do full PHI insertion. 203 SSAUpdate.RewriteUse(*UseToRewrite); 204 } 205 206 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 207 // to post-process them to keep LCSSA form. 208 for (PHINode *InsertedPN : InsertedPHIs) { 209 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 210 if (!L->contains(OtherLoop)) 211 PostProcessPHIs.push_back(InsertedPN); 212 } 213 214 // Post process PHI instructions that were inserted into another disjoint 215 // loop and update their exits properly. 216 for (auto *PostProcessPN : PostProcessPHIs) { 217 if (PostProcessPN->use_empty()) 218 continue; 219 220 // Reprocess each PHI instruction. 221 Worklist.push_back(PostProcessPN); 222 } 223 224 // Keep track of PHI nodes that we want to remove because they did not have 225 // any uses rewritten. 226 for (PHINode *PN : AddedPHIs) 227 if (PN->use_empty()) 228 PHIsToRemove.insert(PN); 229 230 Changed = true; 231 } 232 // Remove PHI nodes that did not have any uses rewritten. 233 for (PHINode *PN : PHIsToRemove) { 234 assert (PN->use_empty() && "Trying to remove a phi with uses."); 235 PN->eraseFromParent(); 236 } 237 return Changed; 238 } 239 240 /// Return true if the specified block dominates at least 241 /// one of the blocks in the specified list. 242 static bool 243 blockDominatesAnExit(BasicBlock *BB, 244 DominatorTree &DT, 245 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 246 DomTreeNode *DomNode = DT.getNode(BB); 247 return any_of(ExitBlocks, [&](BasicBlock *EB) { 248 return DT.dominates(DomNode, DT.getNode(EB)); 249 }); 250 } 251 252 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 253 ScalarEvolution *SE) { 254 bool Changed = false; 255 256 // Get the set of exiting blocks. 257 SmallVector<BasicBlock *, 8> ExitBlocks; 258 L.getExitBlocks(ExitBlocks); 259 260 if (ExitBlocks.empty()) 261 return false; 262 263 SmallVector<Instruction *, 8> Worklist; 264 265 // Look at all the instructions in the loop, checking to see if they have uses 266 // outside the loop. If so, put them into the worklist to rewrite those uses. 267 for (BasicBlock *BB : L.blocks()) { 268 // For large loops, avoid use-scanning by using dominance information: In 269 // particular, if a block does not dominate any of the loop exits, then none 270 // of the values defined in the block could be used outside the loop. 271 if (!blockDominatesAnExit(BB, DT, ExitBlocks)) 272 continue; 273 274 for (Instruction &I : *BB) { 275 // Reject two common cases fast: instructions with no uses (like stores) 276 // and instructions with one use that is in the same block as this. 277 if (I.use_empty() || 278 (I.hasOneUse() && I.user_back()->getParent() == BB && 279 !isa<PHINode>(I.user_back()))) 280 continue; 281 282 Worklist.push_back(&I); 283 } 284 } 285 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 286 287 // If we modified the code, remove any caches about the loop from SCEV to 288 // avoid dangling entries. 289 // FIXME: This is a big hammer, can we clear the cache more selectively? 290 if (SE && Changed) 291 SE->forgetLoop(&L); 292 293 assert(L.isLCSSAForm(DT)); 294 295 return Changed; 296 } 297 298 /// Process a loop nest depth first. 299 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 300 ScalarEvolution *SE) { 301 bool Changed = false; 302 303 // Recurse depth-first through inner loops. 304 for (Loop *SubLoop : L.getSubLoops()) 305 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 306 307 Changed |= formLCSSA(L, DT, LI, SE); 308 return Changed; 309 } 310 311 /// Process all loops in the function, inner-most out. 312 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 313 ScalarEvolution *SE) { 314 bool Changed = false; 315 for (auto &L : *LI) 316 Changed |= formLCSSARecursively(*L, DT, LI, SE); 317 return Changed; 318 } 319 320 namespace { 321 struct LCSSAWrapperPass : public FunctionPass { 322 static char ID; // Pass identification, replacement for typeid 323 LCSSAWrapperPass() : FunctionPass(ID) { 324 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 325 } 326 327 // Cached analysis information for the current function. 328 DominatorTree *DT; 329 LoopInfo *LI; 330 ScalarEvolution *SE; 331 332 bool runOnFunction(Function &F) override; 333 void verifyAnalysis() const override { 334 // This check is very expensive. On the loop intensive compiles it may cause 335 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 336 // always does limited form of the LCSSA verification. Similar reasoning 337 // was used for the LoopInfo verifier. 338 if (VerifyLoopLCSSA) { 339 assert(all_of(*LI, 340 [&](Loop *L) { 341 return L->isRecursivelyLCSSAForm(*DT, *LI); 342 }) && 343 "LCSSA form is broken!"); 344 } 345 }; 346 347 /// This transformation requires natural loop information & requires that 348 /// loop preheaders be inserted into the CFG. It maintains both of these, 349 /// as well as the CFG. It also requires dominator information. 350 void getAnalysisUsage(AnalysisUsage &AU) const override { 351 AU.setPreservesCFG(); 352 353 AU.addRequired<DominatorTreeWrapperPass>(); 354 AU.addRequired<LoopInfoWrapperPass>(); 355 AU.addPreservedID(LoopSimplifyID); 356 AU.addPreserved<AAResultsWrapperPass>(); 357 AU.addPreserved<BasicAAWrapperPass>(); 358 AU.addPreserved<GlobalsAAWrapperPass>(); 359 AU.addPreserved<ScalarEvolutionWrapperPass>(); 360 AU.addPreserved<SCEVAAWrapperPass>(); 361 362 // This is needed to perform LCSSA verification inside LPPassManager 363 AU.addRequired<LCSSAVerificationPass>(); 364 AU.addPreserved<LCSSAVerificationPass>(); 365 } 366 }; 367 } 368 369 char LCSSAWrapperPass::ID = 0; 370 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 371 false, false) 372 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 373 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 374 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 375 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 376 false, false) 377 378 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 379 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 380 381 /// Transform \p F into loop-closed SSA form. 382 bool LCSSAWrapperPass::runOnFunction(Function &F) { 383 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 384 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 385 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 386 SE = SEWP ? &SEWP->getSE() : nullptr; 387 388 return formLCSSAOnAllLoops(LI, *DT, SE); 389 } 390 391 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 392 auto &LI = AM.getResult<LoopAnalysis>(F); 393 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 394 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 395 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 396 return PreservedAnalyses::all(); 397 398 // FIXME: This should also 'preserve the CFG'. 399 PreservedAnalyses PA; 400 PA.preserve<BasicAA>(); 401 PA.preserve<GlobalsAA>(); 402 PA.preserve<SCEVAA>(); 403 PA.preserve<ScalarEvolutionAnalysis>(); 404 return PA; 405 } 406