xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision bfe3801d1670a81dc704bbf1a805570b46a34455)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/PredIteratorCache.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include "llvm/Transforms/Utils/SSAUpdater.h"
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "lcssa"
50 
51 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
52 
53 /// Return true if the specified block is in the list.
54 static bool isExitBlock(BasicBlock *BB,
55                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
56   return llvm::any_of(ExitBlocks, [&](BasicBlock *EB) { return EB == BB; });
57 }
58 
59 /// Given an instruction in the loop, check to see if it has any uses that are
60 /// outside the current loop.  If so, insert LCSSA PHI nodes and rewrite the
61 /// uses.
62 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT,
63                                const SmallVectorImpl<BasicBlock *> &ExitBlocks,
64                                PredIteratorCache &PredCache, LoopInfo *LI) {
65   SmallVector<Use *, 16> UsesToRewrite;
66 
67   // Tokens cannot be used in PHI nodes, so we skip over them.
68   // We can run into tokens which are live out of a loop with catchswitch
69   // instructions in Windows EH if the catchswitch has one catchpad which
70   // is inside the loop and another which is not.
71   if (Inst.getType()->isTokenTy())
72     return false;
73 
74   BasicBlock *InstBB = Inst.getParent();
75 
76   for (Use &U : Inst.uses()) {
77     Instruction *User = cast<Instruction>(U.getUser());
78     BasicBlock *UserBB = User->getParent();
79     if (PHINode *PN = dyn_cast<PHINode>(User))
80       UserBB = PN->getIncomingBlock(U);
81 
82     if (InstBB != UserBB && !L.contains(UserBB))
83       UsesToRewrite.push_back(&U);
84   }
85 
86   // If there are no uses outside the loop, exit with no change.
87   if (UsesToRewrite.empty())
88     return false;
89 
90   ++NumLCSSA; // We are applying the transformation
91 
92   // Invoke instructions are special in that their result value is not available
93   // along their unwind edge. The code below tests to see whether DomBB
94   // dominates the value, so adjust DomBB to the normal destination block,
95   // which is effectively where the value is first usable.
96   BasicBlock *DomBB = Inst.getParent();
97   if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst))
98     DomBB = Inv->getNormalDest();
99 
100   DomTreeNode *DomNode = DT.getNode(DomBB);
101 
102   SmallVector<PHINode *, 16> AddedPHIs;
103   SmallVector<PHINode *, 8> PostProcessPHIs;
104 
105   SSAUpdater SSAUpdate;
106   SSAUpdate.Initialize(Inst.getType(), Inst.getName());
107 
108   // Insert the LCSSA phi's into all of the exit blocks dominated by the
109   // value, and add them to the Phi's map.
110   for (BasicBlock *ExitBB : ExitBlocks) {
111     if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
112       continue;
113 
114     // If we already inserted something for this BB, don't reprocess it.
115     if (SSAUpdate.HasValueForBlock(ExitBB))
116       continue;
117 
118     PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB),
119                                   Inst.getName() + ".lcssa", &ExitBB->front());
120 
121     // Add inputs from inside the loop for this PHI.
122     for (BasicBlock *Pred : PredCache.get(ExitBB)) {
123       PN->addIncoming(&Inst, Pred);
124 
125       // If the exit block has a predecessor not within the loop, arrange for
126       // the incoming value use corresponding to that predecessor to be
127       // rewritten in terms of a different LCSSA PHI.
128       if (!L.contains(Pred))
129         UsesToRewrite.push_back(
130             &PN->getOperandUse(PN->getOperandNumForIncomingValue(
131                  PN->getNumIncomingValues() - 1)));
132     }
133 
134     AddedPHIs.push_back(PN);
135 
136     // Remember that this phi makes the value alive in this block.
137     SSAUpdate.AddAvailableValue(ExitBB, PN);
138 
139     // LoopSimplify might fail to simplify some loops (e.g. when indirect
140     // branches are involved). In such situations, it might happen that an exit
141     // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create
142     // PHIs in such an exit block, we are also inserting PHIs into L2's header.
143     // This could break LCSSA form for L2 because these inserted PHIs can also
144     // have uses outside of L2. Remember all PHIs in such situation as to
145     // revisit than later on. FIXME: Remove this if indirectbr support into
146     // LoopSimplify gets improved.
147     if (auto *OtherLoop = LI->getLoopFor(ExitBB))
148       if (!L.contains(OtherLoop))
149         PostProcessPHIs.push_back(PN);
150   }
151 
152   // Rewrite all uses outside the loop in terms of the new PHIs we just
153   // inserted.
154   for (Use *UseToRewrite : UsesToRewrite) {
155     // If this use is in an exit block, rewrite to use the newly inserted PHI.
156     // This is required for correctness because SSAUpdate doesn't handle uses in
157     // the same block.  It assumes the PHI we inserted is at the end of the
158     // block.
159     Instruction *User = cast<Instruction>(UseToRewrite->getUser());
160     BasicBlock *UserBB = User->getParent();
161     if (PHINode *PN = dyn_cast<PHINode>(User))
162       UserBB = PN->getIncomingBlock(*UseToRewrite);
163 
164     if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
165       // Tell the VHs that the uses changed. This updates SCEV's caches.
166       if (UseToRewrite->get()->hasValueHandle())
167         ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
168       UseToRewrite->set(&UserBB->front());
169       continue;
170     }
171 
172     // Otherwise, do full PHI insertion.
173     SSAUpdate.RewriteUse(*UseToRewrite);
174   }
175 
176   // Post process PHI instructions that were inserted into another disjoint loop
177   // and update their exits properly.
178   for (auto *I : PostProcessPHIs) {
179     if (I->use_empty())
180       continue;
181 
182     BasicBlock *PHIBB = I->getParent();
183     Loop *OtherLoop = LI->getLoopFor(PHIBB);
184     SmallVector<BasicBlock *, 8> EBs;
185     OtherLoop->getExitBlocks(EBs);
186     if (EBs.empty())
187       continue;
188 
189     // Recurse and re-process each PHI instruction. FIXME: we should really
190     // convert this entire thing to a worklist approach where we process a
191     // vector of instructions...
192     processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI);
193   }
194 
195   // Remove PHI nodes that did not have any uses rewritten.
196   for (PHINode *PN : AddedPHIs)
197     if (PN->use_empty())
198       PN->eraseFromParent();
199 
200   return true;
201 }
202 
203 /// Return true if the specified block dominates at least
204 /// one of the blocks in the specified list.
205 static bool
206 blockDominatesAnExit(BasicBlock *BB,
207                      DominatorTree &DT,
208                      const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
209   DomTreeNode *DomNode = DT.getNode(BB);
210   return llvm::any_of(ExitBlocks, [&](BasicBlock * EB) {
211     return DT.dominates(DomNode, DT.getNode(EB));
212   });
213 }
214 
215 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
216                      ScalarEvolution *SE) {
217   bool Changed = false;
218 
219   // Get the set of exiting blocks.
220   SmallVector<BasicBlock *, 8> ExitBlocks;
221   L.getExitBlocks(ExitBlocks);
222 
223   if (ExitBlocks.empty())
224     return false;
225 
226   PredIteratorCache PredCache;
227 
228   // Look at all the instructions in the loop, checking to see if they have uses
229   // outside the loop.  If so, rewrite those uses.
230   for (BasicBlock *BB : L.blocks()) {
231     // For large loops, avoid use-scanning by using dominance information:  In
232     // particular, if a block does not dominate any of the loop exits, then none
233     // of the values defined in the block could be used outside the loop.
234     if (!blockDominatesAnExit(BB, DT, ExitBlocks))
235       continue;
236 
237     for (Instruction &I : *BB) {
238       // Reject two common cases fast: instructions with no uses (like stores)
239       // and instructions with one use that is in the same block as this.
240       if (I.use_empty() ||
241           (I.hasOneUse() && I.user_back()->getParent() == BB &&
242            !isa<PHINode>(I.user_back())))
243         continue;
244 
245       Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI);
246     }
247   }
248 
249   // If we modified the code, remove any caches about the loop from SCEV to
250   // avoid dangling entries.
251   // FIXME: This is a big hammer, can we clear the cache more selectively?
252   if (SE && Changed)
253     SE->forgetLoop(&L);
254 
255   assert(L.isLCSSAForm(DT));
256 
257   return Changed;
258 }
259 
260 /// Process a loop nest depth first.
261 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
262                                 ScalarEvolution *SE) {
263   bool Changed = false;
264 
265   // Recurse depth-first through inner loops.
266   for (Loop *SubLoop : L.getSubLoops())
267     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
268 
269   Changed |= formLCSSA(L, DT, LI, SE);
270   return Changed;
271 }
272 
273 namespace {
274 struct LCSSA : public FunctionPass {
275   static char ID; // Pass identification, replacement for typeid
276   LCSSA() : FunctionPass(ID) {
277     initializeLCSSAPass(*PassRegistry::getPassRegistry());
278   }
279 
280   // Cached analysis information for the current function.
281   DominatorTree *DT;
282   LoopInfo *LI;
283   ScalarEvolution *SE;
284 
285   bool runOnFunction(Function &F) override;
286 
287   /// This transformation requires natural loop information & requires that
288   /// loop preheaders be inserted into the CFG.  It maintains both of these,
289   /// as well as the CFG.  It also requires dominator information.
290   void getAnalysisUsage(AnalysisUsage &AU) const override {
291     AU.setPreservesCFG();
292 
293     AU.addRequired<DominatorTreeWrapperPass>();
294     AU.addRequired<LoopInfoWrapperPass>();
295     AU.addPreservedID(LoopSimplifyID);
296     AU.addPreserved<AAResultsWrapperPass>();
297     AU.addPreserved<BasicAAWrapperPass>();
298     AU.addPreserved<GlobalsAAWrapperPass>();
299     AU.addPreserved<ScalarEvolutionWrapperPass>();
300     AU.addPreserved<SCEVAAWrapperPass>();
301   }
302 };
303 }
304 
305 char LCSSA::ID = 0;
306 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
307 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
308 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
309 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
310 
311 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
312 char &llvm::LCSSAID = LCSSA::ID;
313 
314 
315 /// Process all loops in the function, inner-most out.
316 bool LCSSA::runOnFunction(Function &F) {
317   bool Changed = false;
318   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
319   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
320   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
321   SE = SEWP ? &SEWP->getSE() : nullptr;
322 
323   // Simplify each loop nest in the function.
324   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
325     Changed |= formLCSSARecursively(**I, *DT, LI, SE);
326 
327   return Changed;
328 }
329 
330