xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision bb754826c932aec0b202c254a2c0fc68ff82e362)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Support/CFG.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/PredIteratorCache.h"
44 #include <algorithm>
45 #include <map>
46 using namespace llvm;
47 
48 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
49 
50 namespace {
51   struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
52     static char ID; // Pass identification, replacement for typeid
53     LCSSA() : LoopPass(&ID) {}
54 
55     // Cached analysis information for the current function.
56     LoopInfo *LI;
57     DominatorTree *DT;
58     std::vector<BasicBlock*> LoopBlocks;
59     PredIteratorCache PredCache;
60 
61     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
62 
63     void ProcessInstruction(Instruction* Instr,
64                             const SmallVector<BasicBlock*, 8>& exitBlocks);
65 
66     /// This transformation requires natural loop information & requires that
67     /// loop preheaders be inserted into the CFG.  It maintains both of these,
68     /// as well as the CFG.  It also requires dominator information.
69     ///
70     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71       AU.setPreservesCFG();
72       AU.addRequiredID(LoopSimplifyID);
73       AU.addPreservedID(LoopSimplifyID);
74       AU.addRequired<LoopInfo>();
75       AU.addPreserved<LoopInfo>();
76       AU.addRequired<DominatorTree>();
77       AU.addPreserved<ScalarEvolution>();
78       AU.addPreserved<DominatorTree>();
79 
80       // Request DominanceFrontier now, even though LCSSA does
81       // not use it. This allows Pass Manager to schedule Dominance
82       // Frontier early enough such that one LPPassManager can handle
83       // multiple loop transformation passes.
84       AU.addRequired<DominanceFrontier>();
85       AU.addPreserved<DominanceFrontier>();
86     }
87   private:
88     void getLoopValuesUsedOutsideLoop(Loop *L,
89                                       SetVector<Instruction*> &AffectedValues);
90 
91     Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
92                             DenseMap<DomTreeNode*, Value*> &Phis);
93 
94     /// inLoop - returns true if the given block is within the current loop
95     bool inLoop(BasicBlock* B) {
96       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
97     }
98   };
99 }
100 
101 char LCSSA::ID = 0;
102 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
103 
104 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
105 const PassInfo *const llvm::LCSSAID = &X;
106 
107 /// runOnFunction - Process all loops in the function, inner-most out.
108 bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
109   PredCache.clear();
110 
111   LI = &LPM.getAnalysis<LoopInfo>();
112   DT = &getAnalysis<DominatorTree>();
113 
114   // Speed up queries by creating a sorted list of blocks
115   LoopBlocks.clear();
116   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
117   std::sort(LoopBlocks.begin(), LoopBlocks.end());
118 
119   SetVector<Instruction*> AffectedValues;
120   getLoopValuesUsedOutsideLoop(L, AffectedValues);
121 
122   // If no values are affected, we can save a lot of work, since we know that
123   // nothing will be changed.
124   if (AffectedValues.empty())
125     return false;
126 
127   SmallVector<BasicBlock*, 8> exitBlocks;
128   L->getExitBlocks(exitBlocks);
129 
130   // Iterate over all affected values for this loop and insert Phi nodes
131   // for them in the appropriate exit blocks
132 
133   for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
134        E = AffectedValues.end(); I != E; ++I)
135     ProcessInstruction(*I, exitBlocks);
136 
137   assert(L->isLCSSAForm());
138 
139   return true;
140 }
141 
142 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
143 /// eliminate all out-of-loop uses.
144 void LCSSA::ProcessInstruction(Instruction *Instr,
145                                const SmallVector<BasicBlock*, 8>& exitBlocks) {
146   ++NumLCSSA; // We are applying the transformation
147 
148   // Keep track of the blocks that have the value available already.
149   DenseMap<DomTreeNode*, Value*> Phis;
150 
151   DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
152 
153   // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
154   // add them to the Phi's map.
155   for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
156       BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
157     BasicBlock *BB = *BBI;
158     DomTreeNode *ExitBBNode = DT->getNode(BB);
159     Value *&Phi = Phis[ExitBBNode];
160     if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
161       PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
162                                     BB->begin());
163       PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
164 
165       // Remember that this phi makes the value alive in this block.
166       Phi = PN;
167 
168       // Add inputs from inside the loop for this PHI.
169       for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
170         PN->addIncoming(Instr, *PI);
171     }
172   }
173 
174 
175   // Record all uses of Instr outside the loop.  We need to rewrite these.  The
176   // LCSSA phis won't be included because they use the value in the loop.
177   for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
178        UI != E;) {
179     BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
180     if (PHINode *P = dyn_cast<PHINode>(*UI)) {
181       UserBB = P->getIncomingBlock(UI);
182     }
183 
184     // If the user is in the loop, don't rewrite it!
185     if (UserBB == Instr->getParent() || inLoop(UserBB)) {
186       ++UI;
187       continue;
188     }
189 
190     // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
191     // inserting PHI nodes into join points where needed.
192     Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
193 
194     // Preincrement the iterator to avoid invalidating it when we change the
195     // value.
196     Use &U = UI.getUse();
197     ++UI;
198     U.set(Val);
199   }
200 }
201 
202 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
203 /// are used by instructions outside of it.
204 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
205                                       SetVector<Instruction*> &AffectedValues) {
206   // FIXME: For large loops, we may be able to avoid a lot of use-scanning
207   // by using dominance information.  In particular, if a block does not
208   // dominate any of the loop exits, then none of the values defined in the
209   // block could be used outside the loop.
210   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
211        BB != E; ++BB) {
212     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
213       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
214            ++UI) {
215         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
216         if (PHINode* p = dyn_cast<PHINode>(*UI)) {
217           UserBB = p->getIncomingBlock(UI);
218         }
219 
220         if (*BB != UserBB && !inLoop(UserBB)) {
221           AffectedValues.insert(I);
222           break;
223         }
224       }
225   }
226 }
227 
228 /// GetValueForBlock - Get the value to use within the specified basic block.
229 /// available values are in Phis.
230 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
231                                DenseMap<DomTreeNode*, Value*> &Phis) {
232   // If there is no dominator info for this BB, it is unreachable.
233   if (BB == 0)
234     return UndefValue::get(OrigInst->getType());
235 
236   // If we have already computed this value, return the previously computed val.
237   if (Phis.count(BB)) return Phis[BB];
238 
239   DomTreeNode *IDom = BB->getIDom();
240 
241   // Otherwise, there are two cases: we either have to insert a PHI node or we
242   // don't.  We need to insert a PHI node if this block is not dominated by one
243   // of the exit nodes from the loop (the loop could have multiple exits, and
244   // though the value defined *inside* the loop dominated all its uses, each
245   // exit by itself may not dominate all the uses).
246   //
247   // The simplest way to check for this condition is by checking to see if the
248   // idom is in the loop.  If so, we *know* that none of the exit blocks
249   // dominate this block.  Note that we *know* that the block defining the
250   // original instruction is in the idom chain, because if it weren't, then the
251   // original value didn't dominate this use.
252   if (!inLoop(IDom->getBlock())) {
253     // Idom is not in the loop, we must still be "below" the exit block and must
254     // be fully dominated by the value live in the idom.
255     Value* val = GetValueForBlock(IDom, OrigInst, Phis);
256     Phis.insert(std::make_pair(BB, val));
257     return val;
258   }
259 
260   BasicBlock *BBN = BB->getBlock();
261 
262   // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
263   // now, then get values to fill in the incoming values for the PHI.
264   PHINode *PN = PHINode::Create(OrigInst->getType(),
265                                 OrigInst->getName() + ".lcssa", BBN->begin());
266   PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
267   Phis.insert(std::make_pair(BB, PN));
268 
269   // Fill in the incoming values for the block.
270   for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
271     PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
272   return PN;
273 }
274 
275