1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "lcssa" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Constants.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Function.h" 35 #include "llvm/Instructions.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Analysis/Dominators.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Support/CFG.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/PredIteratorCache.h" 44 #include <algorithm> 45 #include <map> 46 using namespace llvm; 47 48 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 49 50 namespace { 51 struct VISIBILITY_HIDDEN LCSSA : public LoopPass { 52 static char ID; // Pass identification, replacement for typeid 53 LCSSA() : LoopPass(&ID) {} 54 55 // Cached analysis information for the current function. 56 LoopInfo *LI; 57 DominatorTree *DT; 58 std::vector<BasicBlock*> LoopBlocks; 59 PredIteratorCache PredCache; 60 61 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 62 63 void ProcessInstruction(Instruction* Instr, 64 const SmallVector<BasicBlock*, 8>& exitBlocks); 65 66 /// This transformation requires natural loop information & requires that 67 /// loop preheaders be inserted into the CFG. It maintains both of these, 68 /// as well as the CFG. It also requires dominator information. 69 /// 70 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 71 AU.setPreservesCFG(); 72 AU.addRequiredID(LoopSimplifyID); 73 AU.addPreservedID(LoopSimplifyID); 74 AU.addRequired<LoopInfo>(); 75 AU.addPreserved<LoopInfo>(); 76 AU.addRequired<DominatorTree>(); 77 AU.addPreserved<ScalarEvolution>(); 78 AU.addPreserved<DominatorTree>(); 79 80 // Request DominanceFrontier now, even though LCSSA does 81 // not use it. This allows Pass Manager to schedule Dominance 82 // Frontier early enough such that one LPPassManager can handle 83 // multiple loop transformation passes. 84 AU.addRequired<DominanceFrontier>(); 85 AU.addPreserved<DominanceFrontier>(); 86 } 87 private: 88 void getLoopValuesUsedOutsideLoop(Loop *L, 89 SetVector<Instruction*> &AffectedValues); 90 91 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 92 DenseMap<DomTreeNode*, Value*> &Phis); 93 94 /// inLoop - returns true if the given block is within the current loop 95 bool inLoop(BasicBlock* B) { 96 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 97 } 98 }; 99 } 100 101 char LCSSA::ID = 0; 102 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 103 104 Pass *llvm::createLCSSAPass() { return new LCSSA(); } 105 const PassInfo *const llvm::LCSSAID = &X; 106 107 /// runOnFunction - Process all loops in the function, inner-most out. 108 bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) { 109 PredCache.clear(); 110 111 LI = &LPM.getAnalysis<LoopInfo>(); 112 DT = &getAnalysis<DominatorTree>(); 113 114 // Speed up queries by creating a sorted list of blocks 115 LoopBlocks.clear(); 116 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 117 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 118 119 SetVector<Instruction*> AffectedValues; 120 getLoopValuesUsedOutsideLoop(L, AffectedValues); 121 122 // If no values are affected, we can save a lot of work, since we know that 123 // nothing will be changed. 124 if (AffectedValues.empty()) 125 return false; 126 127 SmallVector<BasicBlock*, 8> exitBlocks; 128 L->getExitBlocks(exitBlocks); 129 130 // Iterate over all affected values for this loop and insert Phi nodes 131 // for them in the appropriate exit blocks 132 133 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 134 E = AffectedValues.end(); I != E; ++I) 135 ProcessInstruction(*I, exitBlocks); 136 137 assert(L->isLCSSAForm()); 138 139 return true; 140 } 141 142 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 143 /// eliminate all out-of-loop uses. 144 void LCSSA::ProcessInstruction(Instruction *Instr, 145 const SmallVector<BasicBlock*, 8>& exitBlocks) { 146 ++NumLCSSA; // We are applying the transformation 147 148 // Keep track of the blocks that have the value available already. 149 DenseMap<DomTreeNode*, Value*> Phis; 150 151 DomTreeNode *InstrNode = DT->getNode(Instr->getParent()); 152 153 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 154 // add them to the Phi's map. 155 for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(), 156 BBE = exitBlocks.end(); BBI != BBE; ++BBI) { 157 BasicBlock *BB = *BBI; 158 DomTreeNode *ExitBBNode = DT->getNode(BB); 159 Value *&Phi = Phis[ExitBBNode]; 160 if (!Phi && DT->dominates(InstrNode, ExitBBNode)) { 161 PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa", 162 BB->begin()); 163 PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); 164 165 // Remember that this phi makes the value alive in this block. 166 Phi = PN; 167 168 // Add inputs from inside the loop for this PHI. 169 for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI) 170 PN->addIncoming(Instr, *PI); 171 } 172 } 173 174 175 // Record all uses of Instr outside the loop. We need to rewrite these. The 176 // LCSSA phis won't be included because they use the value in the loop. 177 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 178 UI != E;) { 179 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 180 if (PHINode *P = dyn_cast<PHINode>(*UI)) { 181 UserBB = P->getIncomingBlock(UI); 182 } 183 184 // If the user is in the loop, don't rewrite it! 185 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 186 ++UI; 187 continue; 188 } 189 190 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 191 // inserting PHI nodes into join points where needed. 192 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 193 194 // Preincrement the iterator to avoid invalidating it when we change the 195 // value. 196 Use &U = UI.getUse(); 197 ++UI; 198 U.set(Val); 199 } 200 } 201 202 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 203 /// are used by instructions outside of it. 204 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 205 SetVector<Instruction*> &AffectedValues) { 206 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 207 // by using dominance information. In particular, if a block does not 208 // dominate any of the loop exits, then none of the values defined in the 209 // block could be used outside the loop. 210 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 211 BB != E; ++BB) { 212 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 213 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 214 ++UI) { 215 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 216 if (PHINode* p = dyn_cast<PHINode>(*UI)) { 217 UserBB = p->getIncomingBlock(UI); 218 } 219 220 if (*BB != UserBB && !inLoop(UserBB)) { 221 AffectedValues.insert(I); 222 break; 223 } 224 } 225 } 226 } 227 228 /// GetValueForBlock - Get the value to use within the specified basic block. 229 /// available values are in Phis. 230 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 231 DenseMap<DomTreeNode*, Value*> &Phis) { 232 // If there is no dominator info for this BB, it is unreachable. 233 if (BB == 0) 234 return UndefValue::get(OrigInst->getType()); 235 236 // If we have already computed this value, return the previously computed val. 237 if (Phis.count(BB)) return Phis[BB]; 238 239 DomTreeNode *IDom = BB->getIDom(); 240 241 // Otherwise, there are two cases: we either have to insert a PHI node or we 242 // don't. We need to insert a PHI node if this block is not dominated by one 243 // of the exit nodes from the loop (the loop could have multiple exits, and 244 // though the value defined *inside* the loop dominated all its uses, each 245 // exit by itself may not dominate all the uses). 246 // 247 // The simplest way to check for this condition is by checking to see if the 248 // idom is in the loop. If so, we *know* that none of the exit blocks 249 // dominate this block. Note that we *know* that the block defining the 250 // original instruction is in the idom chain, because if it weren't, then the 251 // original value didn't dominate this use. 252 if (!inLoop(IDom->getBlock())) { 253 // Idom is not in the loop, we must still be "below" the exit block and must 254 // be fully dominated by the value live in the idom. 255 Value* val = GetValueForBlock(IDom, OrigInst, Phis); 256 Phis.insert(std::make_pair(BB, val)); 257 return val; 258 } 259 260 BasicBlock *BBN = BB->getBlock(); 261 262 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 263 // now, then get values to fill in the incoming values for the PHI. 264 PHINode *PN = PHINode::Create(OrigInst->getType(), 265 OrigInst->getName() + ".lcssa", BBN->begin()); 266 PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); 267 Phis.insert(std::make_pair(BB, PN)); 268 269 // Fill in the incoming values for the block. 270 for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI) 271 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 272 return PN; 273 } 274 275