xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision ac794d46bfb6670d3a3f7421f6e7c2ed806d5ea1)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/Analysis/Dominators.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/SSAUpdater.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/Support/PredIteratorCache.h"
44 using namespace llvm;
45 
46 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
47 
48 namespace {
49   struct LCSSA : public LoopPass {
50     static char ID; // Pass identification, replacement for typeid
51     LCSSA() : LoopPass(ID) {
52       initializeLCSSAPass(*PassRegistry::getPassRegistry());
53     }
54 
55     // Cached analysis information for the current function.
56     DominatorTree *DT;
57     std::vector<BasicBlock*> LoopBlocks;
58     PredIteratorCache PredCache;
59     Loop *L;
60 
61     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
62 
63     /// This transformation requires natural loop information & requires that
64     /// loop preheaders be inserted into the CFG.  It maintains both of these,
65     /// as well as the CFG.  It also requires dominator information.
66     ///
67     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68       AU.setPreservesCFG();
69 
70       AU.addRequired<DominatorTree>();
71       AU.addRequired<LoopInfo>();
72       AU.addPreservedID(LoopSimplifyID);
73       AU.addPreserved<ScalarEvolution>();
74     }
75   private:
76     bool ProcessInstruction(Instruction *Inst,
77                             const SmallVectorImpl<BasicBlock*> &ExitBlocks);
78 
79     /// verifyAnalysis() - Verify loop nest.
80     virtual void verifyAnalysis() const {
81       // Check the special guarantees that LCSSA makes.
82       assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!");
83     }
84 
85     /// inLoop - returns true if the given block is within the current loop
86     bool inLoop(BasicBlock *B) const {
87       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
88     }
89   };
90 }
91 
92 char LCSSA::ID = 0;
93 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
94 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
95 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
96 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
97 
98 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
99 char &llvm::LCSSAID = LCSSA::ID;
100 
101 
102 /// BlockDominatesAnExit - Return true if the specified block dominates at least
103 /// one of the blocks in the specified list.
104 static bool BlockDominatesAnExit(BasicBlock *BB,
105                                  const SmallVectorImpl<BasicBlock*> &ExitBlocks,
106                                  DominatorTree *DT) {
107   DomTreeNode *DomNode = DT->getNode(BB);
108   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
109     if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
110       return true;
111 
112   return false;
113 }
114 
115 
116 /// runOnFunction - Process all loops in the function, inner-most out.
117 bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
118   L = TheLoop;
119 
120   DT = &getAnalysis<DominatorTree>();
121 
122   // Get the set of exiting blocks.
123   SmallVector<BasicBlock*, 8> ExitBlocks;
124   L->getExitBlocks(ExitBlocks);
125 
126   if (ExitBlocks.empty())
127     return false;
128 
129   // Speed up queries by creating a sorted vector of blocks.
130   LoopBlocks.clear();
131   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
132   array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
133 
134   // Look at all the instructions in the loop, checking to see if they have uses
135   // outside the loop.  If so, rewrite those uses.
136   bool MadeChange = false;
137 
138   for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
139        BBI != E; ++BBI) {
140     BasicBlock *BB = *BBI;
141 
142     // For large loops, avoid use-scanning by using dominance information:  In
143     // particular, if a block does not dominate any of the loop exits, then none
144     // of the values defined in the block could be used outside the loop.
145     if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
146       continue;
147 
148     for (BasicBlock::iterator I = BB->begin(), E = BB->end();
149          I != E; ++I) {
150       // Reject two common cases fast: instructions with no uses (like stores)
151       // and instructions with one use that is in the same block as this.
152       if (I->use_empty() ||
153           (I->hasOneUse() && I->use_back()->getParent() == BB &&
154            !isa<PHINode>(I->use_back())))
155         continue;
156 
157       MadeChange |= ProcessInstruction(I, ExitBlocks);
158     }
159   }
160 
161   assert(L->isLCSSAForm(*DT));
162   PredCache.clear();
163 
164   return MadeChange;
165 }
166 
167 /// isExitBlock - Return true if the specified block is in the list.
168 static bool isExitBlock(BasicBlock *BB,
169                         const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
170   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
171     if (ExitBlocks[i] == BB)
172       return true;
173   return false;
174 }
175 
176 /// ProcessInstruction - Given an instruction in the loop, check to see if it
177 /// has any uses that are outside the current loop.  If so, insert LCSSA PHI
178 /// nodes and rewrite the uses.
179 bool LCSSA::ProcessInstruction(Instruction *Inst,
180                                const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
181   SmallVector<Use*, 16> UsesToRewrite;
182 
183   BasicBlock *InstBB = Inst->getParent();
184 
185   for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
186        UI != E; ++UI) {
187     User *U = *UI;
188     BasicBlock *UserBB = cast<Instruction>(U)->getParent();
189     if (PHINode *PN = dyn_cast<PHINode>(U))
190       UserBB = PN->getIncomingBlock(UI);
191 
192     if (InstBB != UserBB && !inLoop(UserBB))
193       UsesToRewrite.push_back(&UI.getUse());
194   }
195 
196   // If there are no uses outside the loop, exit with no change.
197   if (UsesToRewrite.empty()) return false;
198 
199   ++NumLCSSA; // We are applying the transformation
200 
201   // Invoke instructions are special in that their result value is not available
202   // along their unwind edge. The code below tests to see whether DomBB dominates
203   // the value, so adjust DomBB to the normal destination block, which is
204   // effectively where the value is first usable.
205   BasicBlock *DomBB = Inst->getParent();
206   if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
207     DomBB = Inv->getNormalDest();
208 
209   DomTreeNode *DomNode = DT->getNode(DomBB);
210 
211   SmallVector<PHINode*, 16> AddedPHIs;
212 
213   SSAUpdater SSAUpdate;
214   SSAUpdate.Initialize(Inst->getType(), Inst->getName());
215 
216   // Insert the LCSSA phi's into all of the exit blocks dominated by the
217   // value, and add them to the Phi's map.
218   for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
219       BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
220     BasicBlock *ExitBB = *BBI;
221     if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
222 
223     // If we already inserted something for this BB, don't reprocess it.
224     if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
225 
226     PHINode *PN = PHINode::Create(Inst->getType(),
227                                   PredCache.GetNumPreds(ExitBB),
228                                   Inst->getName()+".lcssa",
229                                   ExitBB->begin());
230     PN->setDebugLoc(GetFirstDebugLocInBasicBlock(ExitBB));
231 
232     // Add inputs from inside the loop for this PHI.
233     for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
234       PN->addIncoming(Inst, *PI);
235 
236       // If the exit block has a predecessor not within the loop, arrange for
237       // the incoming value use corresponding to that predecessor to be
238       // rewritten in terms of a different LCSSA PHI.
239       if (!inLoop(*PI))
240         UsesToRewrite.push_back(
241           &PN->getOperandUse(
242             PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1)));
243     }
244 
245     AddedPHIs.push_back(PN);
246 
247     // Remember that this phi makes the value alive in this block.
248     SSAUpdate.AddAvailableValue(ExitBB, PN);
249   }
250 
251   // Rewrite all uses outside the loop in terms of the new PHIs we just
252   // inserted.
253   for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
254     // If this use is in an exit block, rewrite to use the newly inserted PHI.
255     // This is required for correctness because SSAUpdate doesn't handle uses in
256     // the same block.  It assumes the PHI we inserted is at the end of the
257     // block.
258     Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
259     BasicBlock *UserBB = User->getParent();
260     if (PHINode *PN = dyn_cast<PHINode>(User))
261       UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
262 
263     if (isa<PHINode>(UserBB->begin()) &&
264         isExitBlock(UserBB, ExitBlocks)) {
265       UsesToRewrite[i]->set(UserBB->begin());
266       continue;
267     }
268 
269     // Otherwise, do full PHI insertion.
270     SSAUpdate.RewriteUse(*UsesToRewrite[i]);
271   }
272 
273   // Remove PHI nodes that did not have any uses rewritten.
274   for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
275     if (AddedPHIs[i]->use_empty())
276       AddedPHIs[i]->eraseFromParent();
277   }
278 
279   return true;
280 }
281 
282