1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 #include "llvm/Transforms/Utils/SSAUpdater.h" 49 using namespace llvm; 50 51 #define DEBUG_TYPE "lcssa" 52 53 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 54 55 #ifdef EXPENSIVE_CHECKS 56 static bool VerifyLoopLCSSA = true; 57 #else 58 static bool VerifyLoopLCSSA = false; 59 #endif 60 static cl::opt<bool, true> 61 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 62 cl::Hidden, 63 cl::desc("Verify loop lcssa form (time consuming)")); 64 65 /// Return true if the specified block is in the list. 66 static bool isExitBlock(BasicBlock *BB, 67 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 68 return is_contained(ExitBlocks, BB); 69 } 70 71 /// For every instruction from the worklist, check to see if it has any uses 72 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 73 /// rewrite the uses. 74 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 75 DominatorTree &DT, LoopInfo &LI) { 76 SmallVector<Use *, 16> UsesToRewrite; 77 SmallSetVector<PHINode *, 16> PHIsToRemove; 78 PredIteratorCache PredCache; 79 bool Changed = false; 80 81 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 82 // instructions within the same loops, computing the exit blocks is 83 // expensive, and we're not mutating the loop structure. 84 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 85 86 while (!Worklist.empty()) { 87 UsesToRewrite.clear(); 88 89 Instruction *I = Worklist.pop_back_val(); 90 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 91 BasicBlock *InstBB = I->getParent(); 92 Loop *L = LI.getLoopFor(InstBB); 93 assert(L && "Instruction belongs to a BB that's not part of a loop"); 94 if (!LoopExitBlocks.count(L)) 95 L->getExitBlocks(LoopExitBlocks[L]); 96 assert(LoopExitBlocks.count(L)); 97 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 98 99 if (ExitBlocks.empty()) 100 continue; 101 102 for (Use &U : I->uses()) { 103 Instruction *User = cast<Instruction>(U.getUser()); 104 BasicBlock *UserBB = User->getParent(); 105 if (auto *PN = dyn_cast<PHINode>(User)) 106 UserBB = PN->getIncomingBlock(U); 107 108 if (InstBB != UserBB && !L->contains(UserBB)) 109 UsesToRewrite.push_back(&U); 110 } 111 112 // If there are no uses outside the loop, exit with no change. 113 if (UsesToRewrite.empty()) 114 continue; 115 116 ++NumLCSSA; // We are applying the transformation 117 118 // Invoke instructions are special in that their result value is not 119 // available along their unwind edge. The code below tests to see whether 120 // DomBB dominates the value, so adjust DomBB to the normal destination 121 // block, which is effectively where the value is first usable. 122 BasicBlock *DomBB = InstBB; 123 if (auto *Inv = dyn_cast<InvokeInst>(I)) 124 DomBB = Inv->getNormalDest(); 125 126 DomTreeNode *DomNode = DT.getNode(DomBB); 127 128 SmallVector<PHINode *, 16> AddedPHIs; 129 SmallVector<PHINode *, 8> PostProcessPHIs; 130 131 SmallVector<PHINode *, 4> InsertedPHIs; 132 SSAUpdater SSAUpdate(&InsertedPHIs); 133 SSAUpdate.Initialize(I->getType(), I->getName()); 134 135 // Insert the LCSSA phi's into all of the exit blocks dominated by the 136 // value, and add them to the Phi's map. 137 for (BasicBlock *ExitBB : ExitBlocks) { 138 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 139 continue; 140 141 // If we already inserted something for this BB, don't reprocess it. 142 if (SSAUpdate.HasValueForBlock(ExitBB)) 143 continue; 144 145 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 146 I->getName() + ".lcssa", &ExitBB->front()); 147 // Get the debug location from the original instruction. 148 PN->setDebugLoc(I->getDebugLoc()); 149 // Add inputs from inside the loop for this PHI. 150 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 151 PN->addIncoming(I, Pred); 152 153 // If the exit block has a predecessor not within the loop, arrange for 154 // the incoming value use corresponding to that predecessor to be 155 // rewritten in terms of a different LCSSA PHI. 156 if (!L->contains(Pred)) 157 UsesToRewrite.push_back( 158 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 159 PN->getNumIncomingValues() - 1))); 160 } 161 162 AddedPHIs.push_back(PN); 163 164 // Remember that this phi makes the value alive in this block. 165 SSAUpdate.AddAvailableValue(ExitBB, PN); 166 167 // LoopSimplify might fail to simplify some loops (e.g. when indirect 168 // branches are involved). In such situations, it might happen that an 169 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 170 // create PHIs in such an exit block, we are also inserting PHIs into L2's 171 // header. This could break LCSSA form for L2 because these inserted PHIs 172 // can also have uses outside of L2. Remember all PHIs in such situation 173 // as to revisit than later on. FIXME: Remove this if indirectbr support 174 // into LoopSimplify gets improved. 175 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 176 if (!L->contains(OtherLoop)) 177 PostProcessPHIs.push_back(PN); 178 } 179 180 // Rewrite all uses outside the loop in terms of the new PHIs we just 181 // inserted. 182 for (Use *UseToRewrite : UsesToRewrite) { 183 // If this use is in an exit block, rewrite to use the newly inserted PHI. 184 // This is required for correctness because SSAUpdate doesn't handle uses 185 // in the same block. It assumes the PHI we inserted is at the end of the 186 // block. 187 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 188 BasicBlock *UserBB = User->getParent(); 189 if (auto *PN = dyn_cast<PHINode>(User)) 190 UserBB = PN->getIncomingBlock(*UseToRewrite); 191 192 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 193 // Tell the VHs that the uses changed. This updates SCEV's caches. 194 if (UseToRewrite->get()->hasValueHandle()) 195 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 196 UseToRewrite->set(&UserBB->front()); 197 continue; 198 } 199 200 // Otherwise, do full PHI insertion. 201 SSAUpdate.RewriteUse(*UseToRewrite); 202 } 203 204 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 205 // to post-process them to keep LCSSA form. 206 for (PHINode *InsertedPN : InsertedPHIs) { 207 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 208 if (!L->contains(OtherLoop)) 209 PostProcessPHIs.push_back(InsertedPN); 210 } 211 212 // Post process PHI instructions that were inserted into another disjoint 213 // loop and update their exits properly. 214 for (auto *PostProcessPN : PostProcessPHIs) 215 if (!PostProcessPN->use_empty()) 216 Worklist.push_back(PostProcessPN); 217 218 // Keep track of PHI nodes that we want to remove because they did not have 219 // any uses rewritten. If the new PHI is used, store it so that we can 220 // try to propagate dbg.value intrinsics to it. 221 SmallVector<PHINode *, 2> NeedDbgValues; 222 for (PHINode *PN : AddedPHIs) 223 if (PN->use_empty()) 224 PHIsToRemove.insert(PN); 225 else 226 NeedDbgValues.push_back(PN); 227 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 228 Changed = true; 229 } 230 // Remove PHI nodes that did not have any uses rewritten. We need to redo the 231 // use_empty() check here, because even if the PHI node wasn't used when added 232 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is 233 // not guaranteed to handle trees/cycles of PHI nodes that only are used by 234 // each other. Such situations has only been noticed when the input IR 235 // contains unreachable code, and leaving some extra redundant PHI nodes in 236 // such situations is considered a minor problem. 237 for (PHINode *PN : PHIsToRemove) 238 if (PN->use_empty()) 239 PN->eraseFromParent(); 240 return Changed; 241 } 242 243 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 244 static void computeBlocksDominatingExits( 245 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 246 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 247 SmallVector<BasicBlock *, 8> BBWorklist; 248 249 // We start from the exit blocks, as every block trivially dominates itself 250 // (not strictly). 251 for (BasicBlock *BB : ExitBlocks) 252 BBWorklist.push_back(BB); 253 254 while (!BBWorklist.empty()) { 255 BasicBlock *BB = BBWorklist.pop_back_val(); 256 257 // Check if this is a loop header. If this is the case, we're done. 258 if (L.getHeader() == BB) 259 continue; 260 261 // Otherwise, add its immediate predecessor in the dominator tree to the 262 // worklist, unless we visited it already. 263 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 264 265 // Exit blocks can have an immediate dominator not beloinging to the 266 // loop. For an exit block to be immediately dominated by another block 267 // outside the loop, it implies not all paths from that dominator, to the 268 // exit block, go through the loop. 269 // Example: 270 // 271 // |---- A 272 // | | 273 // | B<-- 274 // | | | 275 // |---> C -- 276 // | 277 // D 278 // 279 // C is the exit block of the loop and it's immediately dominated by A, 280 // which doesn't belong to the loop. 281 if (!L.contains(IDomBB)) 282 continue; 283 284 if (BlocksDominatingExits.insert(IDomBB)) 285 BBWorklist.push_back(IDomBB); 286 } 287 } 288 289 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 290 ScalarEvolution *SE) { 291 bool Changed = false; 292 293 SmallVector<BasicBlock *, 8> ExitBlocks; 294 L.getExitBlocks(ExitBlocks); 295 if (ExitBlocks.empty()) 296 return false; 297 298 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 299 300 // We want to avoid use-scanning leveraging dominance informations. 301 // If a block doesn't dominate any of the loop exits, the none of the values 302 // defined in the loop can be used outside. 303 // We compute the set of blocks fullfilling the conditions in advance 304 // walking the dominator tree upwards until we hit a loop header. 305 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 306 307 SmallVector<Instruction *, 8> Worklist; 308 309 // Look at all the instructions in the loop, checking to see if they have uses 310 // outside the loop. If so, put them into the worklist to rewrite those uses. 311 for (BasicBlock *BB : BlocksDominatingExits) { 312 for (Instruction &I : *BB) { 313 // Reject two common cases fast: instructions with no uses (like stores) 314 // and instructions with one use that is in the same block as this. 315 if (I.use_empty() || 316 (I.hasOneUse() && I.user_back()->getParent() == BB && 317 !isa<PHINode>(I.user_back()))) 318 continue; 319 320 // Tokens cannot be used in PHI nodes, so we skip over them. 321 // We can run into tokens which are live out of a loop with catchswitch 322 // instructions in Windows EH if the catchswitch has one catchpad which 323 // is inside the loop and another which is not. 324 if (I.getType()->isTokenTy()) 325 continue; 326 327 Worklist.push_back(&I); 328 } 329 } 330 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 331 332 // If we modified the code, remove any caches about the loop from SCEV to 333 // avoid dangling entries. 334 // FIXME: This is a big hammer, can we clear the cache more selectively? 335 if (SE && Changed) 336 SE->forgetLoop(&L); 337 338 assert(L.isLCSSAForm(DT)); 339 340 return Changed; 341 } 342 343 /// Process a loop nest depth first. 344 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 345 ScalarEvolution *SE) { 346 bool Changed = false; 347 348 // Recurse depth-first through inner loops. 349 for (Loop *SubLoop : L.getSubLoops()) 350 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 351 352 Changed |= formLCSSA(L, DT, LI, SE); 353 return Changed; 354 } 355 356 /// Process all loops in the function, inner-most out. 357 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 358 ScalarEvolution *SE) { 359 bool Changed = false; 360 for (auto &L : *LI) 361 Changed |= formLCSSARecursively(*L, DT, LI, SE); 362 return Changed; 363 } 364 365 namespace { 366 struct LCSSAWrapperPass : public FunctionPass { 367 static char ID; // Pass identification, replacement for typeid 368 LCSSAWrapperPass() : FunctionPass(ID) { 369 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 370 } 371 372 // Cached analysis information for the current function. 373 DominatorTree *DT; 374 LoopInfo *LI; 375 ScalarEvolution *SE; 376 377 bool runOnFunction(Function &F) override; 378 void verifyAnalysis() const override { 379 // This check is very expensive. On the loop intensive compiles it may cause 380 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 381 // always does limited form of the LCSSA verification. Similar reasoning 382 // was used for the LoopInfo verifier. 383 if (VerifyLoopLCSSA) { 384 assert(all_of(*LI, 385 [&](Loop *L) { 386 return L->isRecursivelyLCSSAForm(*DT, *LI); 387 }) && 388 "LCSSA form is broken!"); 389 } 390 }; 391 392 /// This transformation requires natural loop information & requires that 393 /// loop preheaders be inserted into the CFG. It maintains both of these, 394 /// as well as the CFG. It also requires dominator information. 395 void getAnalysisUsage(AnalysisUsage &AU) const override { 396 AU.setPreservesCFG(); 397 398 AU.addRequired<DominatorTreeWrapperPass>(); 399 AU.addRequired<LoopInfoWrapperPass>(); 400 AU.addPreservedID(LoopSimplifyID); 401 AU.addPreserved<AAResultsWrapperPass>(); 402 AU.addPreserved<BasicAAWrapperPass>(); 403 AU.addPreserved<GlobalsAAWrapperPass>(); 404 AU.addPreserved<ScalarEvolutionWrapperPass>(); 405 AU.addPreserved<SCEVAAWrapperPass>(); 406 407 // This is needed to perform LCSSA verification inside LPPassManager 408 AU.addRequired<LCSSAVerificationPass>(); 409 AU.addPreserved<LCSSAVerificationPass>(); 410 } 411 }; 412 } 413 414 char LCSSAWrapperPass::ID = 0; 415 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 416 false, false) 417 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 418 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 419 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 420 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 421 false, false) 422 423 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 424 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 425 426 /// Transform \p F into loop-closed SSA form. 427 bool LCSSAWrapperPass::runOnFunction(Function &F) { 428 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 429 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 430 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 431 SE = SEWP ? &SEWP->getSE() : nullptr; 432 433 return formLCSSAOnAllLoops(LI, *DT, SE); 434 } 435 436 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 437 auto &LI = AM.getResult<LoopAnalysis>(F); 438 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 439 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 440 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 441 return PreservedAnalyses::all(); 442 443 PreservedAnalyses PA; 444 PA.preserveSet<CFGAnalyses>(); 445 PA.preserve<BasicAA>(); 446 PA.preserve<GlobalsAA>(); 447 PA.preserve<SCEVAA>(); 448 PA.preserve<ScalarEvolutionAnalysis>(); 449 return PA; 450 } 451