xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision ac3f8028da6881ff180381fd2a5033a0560dc1cf)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Transforms/Utils.h"
47 #include "llvm/Transforms/Utils/LoopUtils.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "lcssa"
52 
53 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
54 
55 #ifdef EXPENSIVE_CHECKS
56 static bool VerifyLoopLCSSA = true;
57 #else
58 static bool VerifyLoopLCSSA = false;
59 #endif
60 static cl::opt<bool, true>
61     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
62                         cl::Hidden,
63                         cl::desc("Verify loop lcssa form (time consuming)"));
64 
65 /// Return true if the specified block is in the list.
66 static bool isExitBlock(BasicBlock *BB,
67                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
68   return is_contained(ExitBlocks, BB);
69 }
70 
71 /// For every instruction from the worklist, check to see if it has any uses
72 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
73 /// rewrite the uses.
74 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
75                                     DominatorTree &DT, LoopInfo &LI) {
76   SmallVector<Use *, 16> UsesToRewrite;
77   SmallSetVector<PHINode *, 16> PHIsToRemove;
78   PredIteratorCache PredCache;
79   bool Changed = false;
80 
81   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
82   // instructions within the same loops, computing the exit blocks is
83   // expensive, and we're not mutating the loop structure.
84   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
85 
86   while (!Worklist.empty()) {
87     UsesToRewrite.clear();
88 
89     Instruction *I = Worklist.pop_back_val();
90     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
91     BasicBlock *InstBB = I->getParent();
92     Loop *L = LI.getLoopFor(InstBB);
93     assert(L && "Instruction belongs to a BB that's not part of a loop");
94     if (!LoopExitBlocks.count(L))
95       L->getExitBlocks(LoopExitBlocks[L]);
96     assert(LoopExitBlocks.count(L));
97     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
98 
99     if (ExitBlocks.empty())
100       continue;
101 
102     for (Use &U : I->uses()) {
103       Instruction *User = cast<Instruction>(U.getUser());
104       BasicBlock *UserBB = User->getParent();
105       if (auto *PN = dyn_cast<PHINode>(User))
106         UserBB = PN->getIncomingBlock(U);
107 
108       if (InstBB != UserBB && !L->contains(UserBB))
109         UsesToRewrite.push_back(&U);
110     }
111 
112     // If there are no uses outside the loop, exit with no change.
113     if (UsesToRewrite.empty())
114       continue;
115 
116     ++NumLCSSA; // We are applying the transformation
117 
118     // Invoke instructions are special in that their result value is not
119     // available along their unwind edge. The code below tests to see whether
120     // DomBB dominates the value, so adjust DomBB to the normal destination
121     // block, which is effectively where the value is first usable.
122     BasicBlock *DomBB = InstBB;
123     if (auto *Inv = dyn_cast<InvokeInst>(I))
124       DomBB = Inv->getNormalDest();
125 
126     DomTreeNode *DomNode = DT.getNode(DomBB);
127 
128     SmallVector<PHINode *, 16> AddedPHIs;
129     SmallVector<PHINode *, 8> PostProcessPHIs;
130 
131     SmallVector<PHINode *, 4> InsertedPHIs;
132     SSAUpdater SSAUpdate(&InsertedPHIs);
133     SSAUpdate.Initialize(I->getType(), I->getName());
134 
135     // Insert the LCSSA phi's into all of the exit blocks dominated by the
136     // value, and add them to the Phi's map.
137     for (BasicBlock *ExitBB : ExitBlocks) {
138       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
139         continue;
140 
141       // If we already inserted something for this BB, don't reprocess it.
142       if (SSAUpdate.HasValueForBlock(ExitBB))
143         continue;
144 
145       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
146                                     I->getName() + ".lcssa", &ExitBB->front());
147       // Get the debug location from the original instruction.
148       PN->setDebugLoc(I->getDebugLoc());
149       // Add inputs from inside the loop for this PHI.
150       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
151         PN->addIncoming(I, Pred);
152 
153         // If the exit block has a predecessor not within the loop, arrange for
154         // the incoming value use corresponding to that predecessor to be
155         // rewritten in terms of a different LCSSA PHI.
156         if (!L->contains(Pred))
157           UsesToRewrite.push_back(
158               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
159                   PN->getNumIncomingValues() - 1)));
160       }
161 
162       AddedPHIs.push_back(PN);
163 
164       // Remember that this phi makes the value alive in this block.
165       SSAUpdate.AddAvailableValue(ExitBB, PN);
166 
167       // LoopSimplify might fail to simplify some loops (e.g. when indirect
168       // branches are involved). In such situations, it might happen that an
169       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
170       // create PHIs in such an exit block, we are also inserting PHIs into L2's
171       // header. This could break LCSSA form for L2 because these inserted PHIs
172       // can also have uses outside of L2. Remember all PHIs in such situation
173       // as to revisit than later on. FIXME: Remove this if indirectbr support
174       // into LoopSimplify gets improved.
175       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
176         if (!L->contains(OtherLoop))
177           PostProcessPHIs.push_back(PN);
178     }
179 
180     // Rewrite all uses outside the loop in terms of the new PHIs we just
181     // inserted.
182     for (Use *UseToRewrite : UsesToRewrite) {
183       // If this use is in an exit block, rewrite to use the newly inserted PHI.
184       // This is required for correctness because SSAUpdate doesn't handle uses
185       // in the same block.  It assumes the PHI we inserted is at the end of the
186       // block.
187       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
188       BasicBlock *UserBB = User->getParent();
189       if (auto *PN = dyn_cast<PHINode>(User))
190         UserBB = PN->getIncomingBlock(*UseToRewrite);
191 
192       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
193         // Tell the VHs that the uses changed. This updates SCEV's caches.
194         if (UseToRewrite->get()->hasValueHandle())
195           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
196         UseToRewrite->set(&UserBB->front());
197         continue;
198       }
199 
200       // Otherwise, do full PHI insertion.
201       SSAUpdate.RewriteUse(*UseToRewrite);
202     }
203 
204     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
205     // to post-process them to keep LCSSA form.
206     for (PHINode *InsertedPN : InsertedPHIs) {
207       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
208         if (!L->contains(OtherLoop))
209           PostProcessPHIs.push_back(InsertedPN);
210     }
211 
212     // Post process PHI instructions that were inserted into another disjoint
213     // loop and update their exits properly.
214     for (auto *PostProcessPN : PostProcessPHIs)
215       if (!PostProcessPN->use_empty())
216         Worklist.push_back(PostProcessPN);
217 
218     // Keep track of PHI nodes that we want to remove because they did not have
219     // any uses rewritten. If the new PHI is used, store it so that we can
220     // try to propagate dbg.value intrinsics to it.
221     SmallVector<PHINode *, 2> NeedDbgValues;
222     for (PHINode *PN : AddedPHIs)
223       if (PN->use_empty())
224         PHIsToRemove.insert(PN);
225       else
226         NeedDbgValues.push_back(PN);
227     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
228     Changed = true;
229   }
230   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
231   // use_empty() check here, because even if the PHI node wasn't used when added
232   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
233   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
234   // each other. Such situations has only been noticed when the input IR
235   // contains unreachable code, and leaving some extra redundant PHI nodes in
236   // such situations is considered a minor problem.
237   for (PHINode *PN : PHIsToRemove)
238     if (PN->use_empty())
239       PN->eraseFromParent();
240   return Changed;
241 }
242 
243 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
244 static void computeBlocksDominatingExits(
245     Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
246     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
247   SmallVector<BasicBlock *, 8> BBWorklist;
248 
249   // We start from the exit blocks, as every block trivially dominates itself
250   // (not strictly).
251   for (BasicBlock *BB : ExitBlocks)
252     BBWorklist.push_back(BB);
253 
254   while (!BBWorklist.empty()) {
255     BasicBlock *BB = BBWorklist.pop_back_val();
256 
257     // Check if this is a loop header. If this is the case, we're done.
258     if (L.getHeader() == BB)
259       continue;
260 
261     // Otherwise, add its immediate predecessor in the dominator tree to the
262     // worklist, unless we visited it already.
263     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
264 
265     // Exit blocks can have an immediate dominator not beloinging to the
266     // loop. For an exit block to be immediately dominated by another block
267     // outside the loop, it implies not all paths from that dominator, to the
268     // exit block, go through the loop.
269     // Example:
270     //
271     // |---- A
272     // |     |
273     // |     B<--
274     // |     |  |
275     // |---> C --
276     //       |
277     //       D
278     //
279     // C is the exit block of the loop and it's immediately dominated by A,
280     // which doesn't belong to the loop.
281     if (!L.contains(IDomBB))
282       continue;
283 
284     if (BlocksDominatingExits.insert(IDomBB))
285       BBWorklist.push_back(IDomBB);
286   }
287 }
288 
289 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
290                      ScalarEvolution *SE) {
291   bool Changed = false;
292 
293   SmallVector<BasicBlock *, 8> ExitBlocks;
294   L.getExitBlocks(ExitBlocks);
295   if (ExitBlocks.empty())
296     return false;
297 
298   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
299 
300   // We want to avoid use-scanning leveraging dominance informations.
301   // If a block doesn't dominate any of the loop exits, the none of the values
302   // defined in the loop can be used outside.
303   // We compute the set of blocks fullfilling the conditions in advance
304   // walking the dominator tree upwards until we hit a loop header.
305   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
306 
307   SmallVector<Instruction *, 8> Worklist;
308 
309   // Look at all the instructions in the loop, checking to see if they have uses
310   // outside the loop.  If so, put them into the worklist to rewrite those uses.
311   for (BasicBlock *BB : BlocksDominatingExits) {
312     for (Instruction &I : *BB) {
313       // Reject two common cases fast: instructions with no uses (like stores)
314       // and instructions with one use that is in the same block as this.
315       if (I.use_empty() ||
316           (I.hasOneUse() && I.user_back()->getParent() == BB &&
317            !isa<PHINode>(I.user_back())))
318         continue;
319 
320       // Tokens cannot be used in PHI nodes, so we skip over them.
321       // We can run into tokens which are live out of a loop with catchswitch
322       // instructions in Windows EH if the catchswitch has one catchpad which
323       // is inside the loop and another which is not.
324       if (I.getType()->isTokenTy())
325         continue;
326 
327       Worklist.push_back(&I);
328     }
329   }
330   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
331 
332   // If we modified the code, remove any caches about the loop from SCEV to
333   // avoid dangling entries.
334   // FIXME: This is a big hammer, can we clear the cache more selectively?
335   if (SE && Changed)
336     SE->forgetLoop(&L);
337 
338   assert(L.isLCSSAForm(DT));
339 
340   return Changed;
341 }
342 
343 /// Process a loop nest depth first.
344 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
345                                 ScalarEvolution *SE) {
346   bool Changed = false;
347 
348   // Recurse depth-first through inner loops.
349   for (Loop *SubLoop : L.getSubLoops())
350     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
351 
352   Changed |= formLCSSA(L, DT, LI, SE);
353   return Changed;
354 }
355 
356 /// Process all loops in the function, inner-most out.
357 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
358                                 ScalarEvolution *SE) {
359   bool Changed = false;
360   for (auto &L : *LI)
361     Changed |= formLCSSARecursively(*L, DT, LI, SE);
362   return Changed;
363 }
364 
365 namespace {
366 struct LCSSAWrapperPass : public FunctionPass {
367   static char ID; // Pass identification, replacement for typeid
368   LCSSAWrapperPass() : FunctionPass(ID) {
369     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
370   }
371 
372   // Cached analysis information for the current function.
373   DominatorTree *DT;
374   LoopInfo *LI;
375   ScalarEvolution *SE;
376 
377   bool runOnFunction(Function &F) override;
378   void verifyAnalysis() const override {
379     // This check is very expensive. On the loop intensive compiles it may cause
380     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
381     // always does limited form of the LCSSA verification. Similar reasoning
382     // was used for the LoopInfo verifier.
383     if (VerifyLoopLCSSA) {
384       assert(all_of(*LI,
385                     [&](Loop *L) {
386                       return L->isRecursivelyLCSSAForm(*DT, *LI);
387                     }) &&
388              "LCSSA form is broken!");
389     }
390   };
391 
392   /// This transformation requires natural loop information & requires that
393   /// loop preheaders be inserted into the CFG.  It maintains both of these,
394   /// as well as the CFG.  It also requires dominator information.
395   void getAnalysisUsage(AnalysisUsage &AU) const override {
396     AU.setPreservesCFG();
397 
398     AU.addRequired<DominatorTreeWrapperPass>();
399     AU.addRequired<LoopInfoWrapperPass>();
400     AU.addPreservedID(LoopSimplifyID);
401     AU.addPreserved<AAResultsWrapperPass>();
402     AU.addPreserved<BasicAAWrapperPass>();
403     AU.addPreserved<GlobalsAAWrapperPass>();
404     AU.addPreserved<ScalarEvolutionWrapperPass>();
405     AU.addPreserved<SCEVAAWrapperPass>();
406 
407     // This is needed to perform LCSSA verification inside LPPassManager
408     AU.addRequired<LCSSAVerificationPass>();
409     AU.addPreserved<LCSSAVerificationPass>();
410   }
411 };
412 }
413 
414 char LCSSAWrapperPass::ID = 0;
415 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
416                       false, false)
417 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
418 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
419 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
420 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
421                     false, false)
422 
423 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
424 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
425 
426 /// Transform \p F into loop-closed SSA form.
427 bool LCSSAWrapperPass::runOnFunction(Function &F) {
428   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
429   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
430   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
431   SE = SEWP ? &SEWP->getSE() : nullptr;
432 
433   return formLCSSAOnAllLoops(LI, *DT, SE);
434 }
435 
436 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
437   auto &LI = AM.getResult<LoopAnalysis>(F);
438   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
439   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
440   if (!formLCSSAOnAllLoops(&LI, DT, SE))
441     return PreservedAnalyses::all();
442 
443   PreservedAnalyses PA;
444   PA.preserveSet<CFGAnalyses>();
445   PA.preserve<BasicAA>();
446   PA.preserve<GlobalsAA>();
447   PA.preserve<SCEVAA>();
448   PA.preserve<ScalarEvolutionAnalysis>();
449   return PA;
450 }
451