1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/PredIteratorCache.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include "llvm/Transforms/Utils/SSAUpdater.h" 47 using namespace llvm; 48 49 #define DEBUG_TYPE "lcssa" 50 51 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 52 53 /// Return true if the specified block is in the list. 54 static bool isExitBlock(BasicBlock *BB, 55 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 56 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 57 if (ExitBlocks[i] == BB) 58 return true; 59 return false; 60 } 61 62 /// Given an instruction in the loop, check to see if it has any uses that are 63 /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the 64 /// uses. 65 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT, 66 const SmallVectorImpl<BasicBlock *> &ExitBlocks, 67 PredIteratorCache &PredCache, LoopInfo *LI) { 68 SmallVector<Use *, 16> UsesToRewrite; 69 70 // Tokens cannot be used in PHI nodes, so we skip over them. 71 // We can run into tokens which are live out of a loop with catchswitch 72 // instructions in Windows EH if the catchswitch has one catchpad which 73 // is inside the loop and another which is not. 74 if (Inst.getType()->isTokenTy()) 75 return false; 76 77 BasicBlock *InstBB = Inst.getParent(); 78 79 for (Use &U : Inst.uses()) { 80 Instruction *User = cast<Instruction>(U.getUser()); 81 BasicBlock *UserBB = User->getParent(); 82 if (PHINode *PN = dyn_cast<PHINode>(User)) 83 UserBB = PN->getIncomingBlock(U); 84 85 if (InstBB != UserBB && !L.contains(UserBB)) 86 UsesToRewrite.push_back(&U); 87 } 88 89 // If there are no uses outside the loop, exit with no change. 90 if (UsesToRewrite.empty()) 91 return false; 92 93 ++NumLCSSA; // We are applying the transformation 94 95 // Invoke instructions are special in that their result value is not available 96 // along their unwind edge. The code below tests to see whether DomBB 97 // dominates the value, so adjust DomBB to the normal destination block, 98 // which is effectively where the value is first usable. 99 BasicBlock *DomBB = Inst.getParent(); 100 if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst)) 101 DomBB = Inv->getNormalDest(); 102 103 DomTreeNode *DomNode = DT.getNode(DomBB); 104 105 SmallVector<PHINode *, 16> AddedPHIs; 106 SmallVector<PHINode *, 8> PostProcessPHIs; 107 108 SSAUpdater SSAUpdate; 109 SSAUpdate.Initialize(Inst.getType(), Inst.getName()); 110 111 // Insert the LCSSA phi's into all of the exit blocks dominated by the 112 // value, and add them to the Phi's map. 113 for (BasicBlock *ExitBB : ExitBlocks) { 114 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 115 continue; 116 117 // If we already inserted something for this BB, don't reprocess it. 118 if (SSAUpdate.HasValueForBlock(ExitBB)) 119 continue; 120 121 PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB), 122 Inst.getName() + ".lcssa", &ExitBB->front()); 123 124 // Add inputs from inside the loop for this PHI. 125 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 126 PN->addIncoming(&Inst, Pred); 127 128 // If the exit block has a predecessor not within the loop, arrange for 129 // the incoming value use corresponding to that predecessor to be 130 // rewritten in terms of a different LCSSA PHI. 131 if (!L.contains(Pred)) 132 UsesToRewrite.push_back( 133 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 134 PN->getNumIncomingValues() - 1))); 135 } 136 137 AddedPHIs.push_back(PN); 138 139 // Remember that this phi makes the value alive in this block. 140 SSAUpdate.AddAvailableValue(ExitBB, PN); 141 142 // LoopSimplify might fail to simplify some loops (e.g. when indirect 143 // branches are involved). In such situations, it might happen that an exit 144 // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create 145 // PHIs in such an exit block, we are also inserting PHIs into L2's header. 146 // This could break LCSSA form for L2 because these inserted PHIs can also 147 // have uses outside of L2. Remember all PHIs in such situation as to 148 // revisit than later on. FIXME: Remove this if indirectbr support into 149 // LoopSimplify gets improved. 150 if (auto *OtherLoop = LI->getLoopFor(ExitBB)) 151 if (!L.contains(OtherLoop)) 152 PostProcessPHIs.push_back(PN); 153 } 154 155 // Rewrite all uses outside the loop in terms of the new PHIs we just 156 // inserted. 157 for (Use *UseToRewrite : UsesToRewrite) { 158 // If this use is in an exit block, rewrite to use the newly inserted PHI. 159 // This is required for correctness because SSAUpdate doesn't handle uses in 160 // the same block. It assumes the PHI we inserted is at the end of the 161 // block. 162 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 163 BasicBlock *UserBB = User->getParent(); 164 if (PHINode *PN = dyn_cast<PHINode>(User)) 165 UserBB = PN->getIncomingBlock(*UseToRewrite); 166 167 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 168 // Tell the VHs that the uses changed. This updates SCEV's caches. 169 if (UseToRewrite->get()->hasValueHandle()) 170 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 171 UseToRewrite->set(&UserBB->front()); 172 continue; 173 } 174 175 // Otherwise, do full PHI insertion. 176 SSAUpdate.RewriteUse(*UseToRewrite); 177 } 178 179 // Post process PHI instructions that were inserted into another disjoint loop 180 // and update their exits properly. 181 for (auto *I : PostProcessPHIs) { 182 if (I->use_empty()) 183 continue; 184 185 BasicBlock *PHIBB = I->getParent(); 186 Loop *OtherLoop = LI->getLoopFor(PHIBB); 187 SmallVector<BasicBlock *, 8> EBs; 188 OtherLoop->getExitBlocks(EBs); 189 if (EBs.empty()) 190 continue; 191 192 // Recurse and re-process each PHI instruction. FIXME: we should really 193 // convert this entire thing to a worklist approach where we process a 194 // vector of instructions... 195 processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI); 196 } 197 198 // Remove PHI nodes that did not have any uses rewritten. 199 for (PHINode *PN : AddedPHIs) 200 if (PN->use_empty()) 201 PN->eraseFromParent(); 202 203 return true; 204 } 205 206 /// Return true if the specified block dominates at least 207 /// one of the blocks in the specified list. 208 static bool 209 blockDominatesAnExit(BasicBlock *BB, 210 DominatorTree &DT, 211 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 212 DomTreeNode *DomNode = DT.getNode(BB); 213 for (BasicBlock *ExitBB : ExitBlocks) 214 if (DT.dominates(DomNode, DT.getNode(ExitBB))) 215 return true; 216 217 return false; 218 } 219 220 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 221 ScalarEvolution *SE) { 222 bool Changed = false; 223 224 // Get the set of exiting blocks. 225 SmallVector<BasicBlock *, 8> ExitBlocks; 226 L.getExitBlocks(ExitBlocks); 227 228 if (ExitBlocks.empty()) 229 return false; 230 231 PredIteratorCache PredCache; 232 233 // Look at all the instructions in the loop, checking to see if they have uses 234 // outside the loop. If so, rewrite those uses. 235 for (BasicBlock *BB : L.blocks()) { 236 // For large loops, avoid use-scanning by using dominance information: In 237 // particular, if a block does not dominate any of the loop exits, then none 238 // of the values defined in the block could be used outside the loop. 239 if (!blockDominatesAnExit(BB, DT, ExitBlocks)) 240 continue; 241 242 for (Instruction &I : *BB) { 243 // Reject two common cases fast: instructions with no uses (like stores) 244 // and instructions with one use that is in the same block as this. 245 if (I.use_empty() || 246 (I.hasOneUse() && I.user_back()->getParent() == BB && 247 !isa<PHINode>(I.user_back()))) 248 continue; 249 250 Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI); 251 } 252 } 253 254 // If we modified the code, remove any caches about the loop from SCEV to 255 // avoid dangling entries. 256 // FIXME: This is a big hammer, can we clear the cache more selectively? 257 if (SE && Changed) 258 SE->forgetLoop(&L); 259 260 assert(L.isLCSSAForm(DT)); 261 262 return Changed; 263 } 264 265 /// Process a loop nest depth first. 266 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 267 ScalarEvolution *SE) { 268 bool Changed = false; 269 270 // Recurse depth-first through inner loops. 271 for (Loop *SubLoop : L.getSubLoops()) 272 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 273 274 Changed |= formLCSSA(L, DT, LI, SE); 275 return Changed; 276 } 277 278 namespace { 279 struct LCSSA : public FunctionPass { 280 static char ID; // Pass identification, replacement for typeid 281 LCSSA() : FunctionPass(ID) { 282 initializeLCSSAPass(*PassRegistry::getPassRegistry()); 283 } 284 285 // Cached analysis information for the current function. 286 DominatorTree *DT; 287 LoopInfo *LI; 288 ScalarEvolution *SE; 289 290 bool runOnFunction(Function &F) override; 291 292 /// This transformation requires natural loop information & requires that 293 /// loop preheaders be inserted into the CFG. It maintains both of these, 294 /// as well as the CFG. It also requires dominator information. 295 void getAnalysisUsage(AnalysisUsage &AU) const override { 296 AU.setPreservesCFG(); 297 298 AU.addRequired<DominatorTreeWrapperPass>(); 299 AU.addRequired<LoopInfoWrapperPass>(); 300 AU.addPreservedID(LoopSimplifyID); 301 AU.addPreserved<AAResultsWrapperPass>(); 302 AU.addPreserved<BasicAAWrapperPass>(); 303 AU.addPreserved<GlobalsAAWrapperPass>(); 304 AU.addPreserved<ScalarEvolutionWrapperPass>(); 305 AU.addPreserved<SCEVAAWrapperPass>(); 306 } 307 }; 308 } 309 310 char LCSSA::ID = 0; 311 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 312 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 313 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 314 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 315 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 316 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 317 318 Pass *llvm::createLCSSAPass() { return new LCSSA(); } 319 char &llvm::LCSSAID = LCSSA::ID; 320 321 322 /// Process all loops in the function, inner-most out. 323 bool LCSSA::runOnFunction(Function &F) { 324 bool Changed = false; 325 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 326 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 327 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 328 SE = SEWP ? &SEWP->getSE() : nullptr; 329 330 // Simplify each loop nest in the function. 331 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 332 Changed |= formLCSSARecursively(**I, *DT, LI, SE); 333 334 return Changed; 335 } 336 337