xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision a9b06a2c14f9a38ba16165f0343faaa9ae713fec)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "lcssa"
57 
58 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
59 
60 #ifdef EXPENSIVE_CHECKS
61 static bool VerifyLoopLCSSA = true;
62 #else
63 static bool VerifyLoopLCSSA = false;
64 #endif
65 static cl::opt<bool, true>
66     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
67                         cl::Hidden,
68                         cl::desc("Verify loop lcssa form (time consuming)"));
69 
70 /// Return true if the specified block is in the list.
71 static bool isExitBlock(BasicBlock *BB,
72                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
73   return is_contained(ExitBlocks, BB);
74 }
75 
76 /// For every instruction from the worklist, check to see if it has any uses
77 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
78 /// rewrite the uses.
79 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
80                                     const DominatorTree &DT, const LoopInfo &LI,
81                                     ScalarEvolution *SE,
82                                     IRBuilderBase &Builder) {
83   SmallVector<Use *, 16> UsesToRewrite;
84   SmallSetVector<PHINode *, 16> PHIsToRemove;
85   PredIteratorCache PredCache;
86   bool Changed = false;
87 
88   IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
89 
90   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
91   // instructions within the same loops, computing the exit blocks is
92   // expensive, and we're not mutating the loop structure.
93   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
94 
95   while (!Worklist.empty()) {
96     UsesToRewrite.clear();
97 
98     Instruction *I = Worklist.pop_back_val();
99     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
100     BasicBlock *InstBB = I->getParent();
101     Loop *L = LI.getLoopFor(InstBB);
102     assert(L && "Instruction belongs to a BB that's not part of a loop");
103     if (!LoopExitBlocks.count(L))
104       L->getExitBlocks(LoopExitBlocks[L]);
105     assert(LoopExitBlocks.count(L));
106     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
107 
108     if (ExitBlocks.empty())
109       continue;
110 
111     for (Use &U : I->uses()) {
112       Instruction *User = cast<Instruction>(U.getUser());
113       BasicBlock *UserBB = User->getParent();
114       if (auto *PN = dyn_cast<PHINode>(User))
115         UserBB = PN->getIncomingBlock(U);
116 
117       if (InstBB != UserBB && !L->contains(UserBB))
118         UsesToRewrite.push_back(&U);
119     }
120 
121     // If there are no uses outside the loop, exit with no change.
122     if (UsesToRewrite.empty())
123       continue;
124 
125     ++NumLCSSA; // We are applying the transformation
126 
127     // Invoke instructions are special in that their result value is not
128     // available along their unwind edge. The code below tests to see whether
129     // DomBB dominates the value, so adjust DomBB to the normal destination
130     // block, which is effectively where the value is first usable.
131     BasicBlock *DomBB = InstBB;
132     if (auto *Inv = dyn_cast<InvokeInst>(I))
133       DomBB = Inv->getNormalDest();
134 
135     const DomTreeNode *DomNode = DT.getNode(DomBB);
136 
137     SmallVector<PHINode *, 16> AddedPHIs;
138     SmallVector<PHINode *, 8> PostProcessPHIs;
139 
140     SmallVector<PHINode *, 4> InsertedPHIs;
141     SSAUpdater SSAUpdate(&InsertedPHIs);
142     SSAUpdate.Initialize(I->getType(), I->getName());
143 
144     // Force re-computation of I, as some users now need to use the new PHI
145     // node.
146     if (SE)
147       SE->forgetValue(I);
148 
149     // Insert the LCSSA phi's into all of the exit blocks dominated by the
150     // value, and add them to the Phi's map.
151     for (BasicBlock *ExitBB : ExitBlocks) {
152       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
153         continue;
154 
155       // If we already inserted something for this BB, don't reprocess it.
156       if (SSAUpdate.HasValueForBlock(ExitBB))
157         continue;
158       Builder.SetInsertPoint(&ExitBB->front());
159       PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
160                                       I->getName() + ".lcssa");
161       // Get the debug location from the original instruction.
162       PN->setDebugLoc(I->getDebugLoc());
163       // Add inputs from inside the loop for this PHI.
164       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
165         PN->addIncoming(I, Pred);
166 
167         // If the exit block has a predecessor not within the loop, arrange for
168         // the incoming value use corresponding to that predecessor to be
169         // rewritten in terms of a different LCSSA PHI.
170         if (!L->contains(Pred))
171           UsesToRewrite.push_back(
172               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
173                   PN->getNumIncomingValues() - 1)));
174       }
175 
176       AddedPHIs.push_back(PN);
177 
178       // Remember that this phi makes the value alive in this block.
179       SSAUpdate.AddAvailableValue(ExitBB, PN);
180 
181       // LoopSimplify might fail to simplify some loops (e.g. when indirect
182       // branches are involved). In such situations, it might happen that an
183       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
184       // create PHIs in such an exit block, we are also inserting PHIs into L2's
185       // header. This could break LCSSA form for L2 because these inserted PHIs
186       // can also have uses outside of L2. Remember all PHIs in such situation
187       // as to revisit than later on. FIXME: Remove this if indirectbr support
188       // into LoopSimplify gets improved.
189       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
190         if (!L->contains(OtherLoop))
191           PostProcessPHIs.push_back(PN);
192     }
193 
194     // Rewrite all uses outside the loop in terms of the new PHIs we just
195     // inserted.
196     for (Use *UseToRewrite : UsesToRewrite) {
197       // If this use is in an exit block, rewrite to use the newly inserted PHI.
198       // This is required for correctness because SSAUpdate doesn't handle uses
199       // in the same block.  It assumes the PHI we inserted is at the end of the
200       // block.
201       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
202       BasicBlock *UserBB = User->getParent();
203       if (auto *PN = dyn_cast<PHINode>(User))
204         UserBB = PN->getIncomingBlock(*UseToRewrite);
205 
206       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
207         UseToRewrite->set(&UserBB->front());
208         continue;
209       }
210 
211       // If we added a single PHI, it must dominate all uses and we can directly
212       // rename it.
213       if (AddedPHIs.size() == 1) {
214         UseToRewrite->set(AddedPHIs[0]);
215         continue;
216       }
217 
218       // Otherwise, do full PHI insertion.
219       SSAUpdate.RewriteUse(*UseToRewrite);
220     }
221 
222     SmallVector<DbgValueInst *, 4> DbgValues;
223     llvm::findDbgValues(DbgValues, I);
224 
225     // Update pre-existing debug value uses that reside outside the loop.
226     auto &Ctx = I->getContext();
227     for (auto DVI : DbgValues) {
228       BasicBlock *UserBB = DVI->getParent();
229       if (InstBB == UserBB || L->contains(UserBB))
230         continue;
231       // We currently only handle debug values residing in blocks that were
232       // traversed while rewriting the uses. If we inserted just a single PHI,
233       // we will handle all relevant debug values.
234       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
235                                        : SSAUpdate.FindValueForBlock(UserBB);
236       if (V)
237         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
238     }
239 
240     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
241     // to post-process them to keep LCSSA form.
242     for (PHINode *InsertedPN : InsertedPHIs) {
243       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
244         if (!L->contains(OtherLoop))
245           PostProcessPHIs.push_back(InsertedPN);
246     }
247 
248     // Post process PHI instructions that were inserted into another disjoint
249     // loop and update their exits properly.
250     for (auto *PostProcessPN : PostProcessPHIs)
251       if (!PostProcessPN->use_empty())
252         Worklist.push_back(PostProcessPN);
253 
254     // Keep track of PHI nodes that we want to remove because they did not have
255     // any uses rewritten. If the new PHI is used, store it so that we can
256     // try to propagate dbg.value intrinsics to it.
257     SmallVector<PHINode *, 2> NeedDbgValues;
258     for (PHINode *PN : AddedPHIs)
259       if (PN->use_empty())
260         PHIsToRemove.insert(PN);
261       else
262         NeedDbgValues.push_back(PN);
263     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
264     Changed = true;
265   }
266   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
267   // use_empty() check here, because even if the PHI node wasn't used when added
268   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
269   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
270   // each other. Such situations has only been noticed when the input IR
271   // contains unreachable code, and leaving some extra redundant PHI nodes in
272   // such situations is considered a minor problem.
273   for (PHINode *PN : PHIsToRemove)
274     if (PN->use_empty())
275       PN->eraseFromParent();
276   return Changed;
277 }
278 
279 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
280 static void computeBlocksDominatingExits(
281     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
282     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
283   SmallVector<BasicBlock *, 8> BBWorklist;
284 
285   // We start from the exit blocks, as every block trivially dominates itself
286   // (not strictly).
287   for (BasicBlock *BB : ExitBlocks)
288     BBWorklist.push_back(BB);
289 
290   while (!BBWorklist.empty()) {
291     BasicBlock *BB = BBWorklist.pop_back_val();
292 
293     // Check if this is a loop header. If this is the case, we're done.
294     if (L.getHeader() == BB)
295       continue;
296 
297     // Otherwise, add its immediate predecessor in the dominator tree to the
298     // worklist, unless we visited it already.
299     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
300 
301     // Exit blocks can have an immediate dominator not beloinging to the
302     // loop. For an exit block to be immediately dominated by another block
303     // outside the loop, it implies not all paths from that dominator, to the
304     // exit block, go through the loop.
305     // Example:
306     //
307     // |---- A
308     // |     |
309     // |     B<--
310     // |     |  |
311     // |---> C --
312     //       |
313     //       D
314     //
315     // C is the exit block of the loop and it's immediately dominated by A,
316     // which doesn't belong to the loop.
317     if (!L.contains(IDomBB))
318       continue;
319 
320     if (BlocksDominatingExits.insert(IDomBB))
321       BBWorklist.push_back(IDomBB);
322   }
323 }
324 
325 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
326                      ScalarEvolution *SE) {
327   bool Changed = false;
328 
329 #ifdef EXPENSIVE_CHECKS
330   // Verify all sub-loops are in LCSSA form already.
331   for (Loop *SubLoop: L)
332     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
333 #endif
334 
335   SmallVector<BasicBlock *, 8> ExitBlocks;
336   L.getExitBlocks(ExitBlocks);
337   if (ExitBlocks.empty())
338     return false;
339 
340   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
341 
342   // We want to avoid use-scanning leveraging dominance informations.
343   // If a block doesn't dominate any of the loop exits, the none of the values
344   // defined in the loop can be used outside.
345   // We compute the set of blocks fullfilling the conditions in advance
346   // walking the dominator tree upwards until we hit a loop header.
347   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
348 
349   SmallVector<Instruction *, 8> Worklist;
350 
351   // Look at all the instructions in the loop, checking to see if they have uses
352   // outside the loop.  If so, put them into the worklist to rewrite those uses.
353   for (BasicBlock *BB : BlocksDominatingExits) {
354     // Skip blocks that are part of any sub-loops, they must be in LCSSA
355     // already.
356     if (LI->getLoopFor(BB) != &L)
357       continue;
358     for (Instruction &I : *BB) {
359       // Reject two common cases fast: instructions with no uses (like stores)
360       // and instructions with one use that is in the same block as this.
361       if (I.use_empty() ||
362           (I.hasOneUse() && I.user_back()->getParent() == BB &&
363            !isa<PHINode>(I.user_back())))
364         continue;
365 
366       // Tokens cannot be used in PHI nodes, so we skip over them.
367       // We can run into tokens which are live out of a loop with catchswitch
368       // instructions in Windows EH if the catchswitch has one catchpad which
369       // is inside the loop and another which is not.
370       if (I.getType()->isTokenTy())
371         continue;
372 
373       Worklist.push_back(&I);
374     }
375   }
376 
377   IRBuilder<> Builder(L.getHeader()->getContext());
378   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
379 
380   // If we modified the code, remove any caches about the loop from SCEV to
381   // avoid dangling entries.
382   // FIXME: This is a big hammer, can we clear the cache more selectively?
383   if (SE && Changed)
384     SE->forgetLoop(&L);
385 
386   assert(L.isLCSSAForm(DT));
387 
388   return Changed;
389 }
390 
391 /// Process a loop nest depth first.
392 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
393                                 const LoopInfo *LI, ScalarEvolution *SE) {
394   bool Changed = false;
395 
396   // Recurse depth-first through inner loops.
397   for (Loop *SubLoop : L.getSubLoops())
398     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
399 
400   Changed |= formLCSSA(L, DT, LI, SE);
401   return Changed;
402 }
403 
404 /// Process all loops in the function, inner-most out.
405 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
406                                 ScalarEvolution *SE) {
407   bool Changed = false;
408   for (auto &L : *LI)
409     Changed |= formLCSSARecursively(*L, DT, LI, SE);
410   return Changed;
411 }
412 
413 namespace {
414 struct LCSSAWrapperPass : public FunctionPass {
415   static char ID; // Pass identification, replacement for typeid
416   LCSSAWrapperPass() : FunctionPass(ID) {
417     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
418   }
419 
420   // Cached analysis information for the current function.
421   DominatorTree *DT;
422   LoopInfo *LI;
423   ScalarEvolution *SE;
424 
425   bool runOnFunction(Function &F) override;
426   void verifyAnalysis() const override {
427     // This check is very expensive. On the loop intensive compiles it may cause
428     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
429     // always does limited form of the LCSSA verification. Similar reasoning
430     // was used for the LoopInfo verifier.
431     if (VerifyLoopLCSSA) {
432       assert(all_of(*LI,
433                     [&](Loop *L) {
434                       return L->isRecursivelyLCSSAForm(*DT, *LI);
435                     }) &&
436              "LCSSA form is broken!");
437     }
438   };
439 
440   /// This transformation requires natural loop information & requires that
441   /// loop preheaders be inserted into the CFG.  It maintains both of these,
442   /// as well as the CFG.  It also requires dominator information.
443   void getAnalysisUsage(AnalysisUsage &AU) const override {
444     AU.setPreservesCFG();
445 
446     AU.addRequired<DominatorTreeWrapperPass>();
447     AU.addRequired<LoopInfoWrapperPass>();
448     AU.addPreservedID(LoopSimplifyID);
449     AU.addPreserved<AAResultsWrapperPass>();
450     AU.addPreserved<BasicAAWrapperPass>();
451     AU.addPreserved<GlobalsAAWrapperPass>();
452     AU.addPreserved<ScalarEvolutionWrapperPass>();
453     AU.addPreserved<SCEVAAWrapperPass>();
454     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
455     AU.addPreserved<MemorySSAWrapperPass>();
456 
457     // This is needed to perform LCSSA verification inside LPPassManager
458     AU.addRequired<LCSSAVerificationPass>();
459     AU.addPreserved<LCSSAVerificationPass>();
460   }
461 };
462 }
463 
464 char LCSSAWrapperPass::ID = 0;
465 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
466                       false, false)
467 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
468 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
469 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
470 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
471                     false, false)
472 
473 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
474 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
475 
476 /// Transform \p F into loop-closed SSA form.
477 bool LCSSAWrapperPass::runOnFunction(Function &F) {
478   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
479   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
480   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
481   SE = SEWP ? &SEWP->getSE() : nullptr;
482 
483   return formLCSSAOnAllLoops(LI, *DT, SE);
484 }
485 
486 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
487   auto &LI = AM.getResult<LoopAnalysis>(F);
488   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
489   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
490   if (!formLCSSAOnAllLoops(&LI, DT, SE))
491     return PreservedAnalyses::all();
492 
493   PreservedAnalyses PA;
494   PA.preserveSet<CFGAnalyses>();
495   PA.preserve<BasicAA>();
496   PA.preserve<GlobalsAA>();
497   PA.preserve<SCEVAA>();
498   PA.preserve<ScalarEvolutionAnalysis>();
499   // BPI maps terminators to probabilities, since we don't modify the CFG, no
500   // updates are needed to preserve it.
501   PA.preserve<BranchProbabilityAnalysis>();
502   PA.preserve<MemorySSAAnalysis>();
503   return PA;
504 }
505