1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "lcssa" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Constants.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Function.h" 35 #include "llvm/Instructions.h" 36 #include "llvm/Analysis/Dominators.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/Support/PredIteratorCache.h" 43 using namespace llvm; 44 45 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 46 47 namespace { 48 struct LCSSA : public LoopPass { 49 static char ID; // Pass identification, replacement for typeid 50 LCSSA() : LoopPass(ID) {} 51 52 // Cached analysis information for the current function. 53 DominatorTree *DT; 54 std::vector<BasicBlock*> LoopBlocks; 55 PredIteratorCache PredCache; 56 Loop *L; 57 58 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 59 60 /// This transformation requires natural loop information & requires that 61 /// loop preheaders be inserted into the CFG. It maintains both of these, 62 /// as well as the CFG. It also requires dominator information. 63 /// 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 AU.setPreservesCFG(); 66 67 AU.addRequired<DominatorTree>(); 68 AU.addPreserved<DominatorTree>(); 69 AU.addPreserved<DominanceFrontier>(); 70 AU.addRequired<LoopInfo>(); 71 AU.addPreserved<LoopInfo>(); 72 AU.addPreservedID(LoopSimplifyID); 73 AU.addPreserved<ScalarEvolution>(); 74 } 75 private: 76 bool ProcessInstruction(Instruction *Inst, 77 const SmallVectorImpl<BasicBlock*> &ExitBlocks); 78 79 /// verifyAnalysis() - Verify loop nest. 80 virtual void verifyAnalysis() const { 81 // Check the special guarantees that LCSSA makes. 82 assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!"); 83 } 84 85 /// inLoop - returns true if the given block is within the current loop 86 bool inLoop(BasicBlock *B) const { 87 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 88 } 89 }; 90 } 91 92 char LCSSA::ID = 0; 93 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 94 95 Pass *llvm::createLCSSAPass() { return new LCSSA(); } 96 char &llvm::LCSSAID = LCSSA::ID; 97 98 99 /// BlockDominatesAnExit - Return true if the specified block dominates at least 100 /// one of the blocks in the specified list. 101 static bool BlockDominatesAnExit(BasicBlock *BB, 102 const SmallVectorImpl<BasicBlock*> &ExitBlocks, 103 DominatorTree *DT) { 104 DomTreeNode *DomNode = DT->getNode(BB); 105 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 106 if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i]))) 107 return true; 108 109 return false; 110 } 111 112 113 /// runOnFunction - Process all loops in the function, inner-most out. 114 bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) { 115 L = TheLoop; 116 117 DT = &getAnalysis<DominatorTree>(); 118 119 // Get the set of exiting blocks. 120 SmallVector<BasicBlock*, 8> ExitBlocks; 121 L->getExitBlocks(ExitBlocks); 122 123 if (ExitBlocks.empty()) 124 return false; 125 126 // Speed up queries by creating a sorted vector of blocks. 127 LoopBlocks.clear(); 128 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 129 array_pod_sort(LoopBlocks.begin(), LoopBlocks.end()); 130 131 // Look at all the instructions in the loop, checking to see if they have uses 132 // outside the loop. If so, rewrite those uses. 133 bool MadeChange = false; 134 135 for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end(); 136 BBI != E; ++BBI) { 137 BasicBlock *BB = *BBI; 138 139 // For large loops, avoid use-scanning by using dominance information: In 140 // particular, if a block does not dominate any of the loop exits, then none 141 // of the values defined in the block could be used outside the loop. 142 if (!BlockDominatesAnExit(BB, ExitBlocks, DT)) 143 continue; 144 145 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 146 I != E; ++I) { 147 // Reject two common cases fast: instructions with no uses (like stores) 148 // and instructions with one use that is in the same block as this. 149 if (I->use_empty() || 150 (I->hasOneUse() && I->use_back()->getParent() == BB && 151 !isa<PHINode>(I->use_back()))) 152 continue; 153 154 MadeChange |= ProcessInstruction(I, ExitBlocks); 155 } 156 } 157 158 assert(L->isLCSSAForm(*DT)); 159 PredCache.clear(); 160 161 return MadeChange; 162 } 163 164 /// isExitBlock - Return true if the specified block is in the list. 165 static bool isExitBlock(BasicBlock *BB, 166 const SmallVectorImpl<BasicBlock*> &ExitBlocks) { 167 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 168 if (ExitBlocks[i] == BB) 169 return true; 170 return false; 171 } 172 173 /// ProcessInstruction - Given an instruction in the loop, check to see if it 174 /// has any uses that are outside the current loop. If so, insert LCSSA PHI 175 /// nodes and rewrite the uses. 176 bool LCSSA::ProcessInstruction(Instruction *Inst, 177 const SmallVectorImpl<BasicBlock*> &ExitBlocks) { 178 SmallVector<Use*, 16> UsesToRewrite; 179 180 BasicBlock *InstBB = Inst->getParent(); 181 182 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 183 UI != E; ++UI) { 184 User *U = *UI; 185 BasicBlock *UserBB = cast<Instruction>(U)->getParent(); 186 if (PHINode *PN = dyn_cast<PHINode>(U)) 187 UserBB = PN->getIncomingBlock(UI); 188 189 if (InstBB != UserBB && !inLoop(UserBB)) 190 UsesToRewrite.push_back(&UI.getUse()); 191 } 192 193 // If there are no uses outside the loop, exit with no change. 194 if (UsesToRewrite.empty()) return false; 195 196 ++NumLCSSA; // We are applying the transformation 197 198 // Invoke instructions are special in that their result value is not available 199 // along their unwind edge. The code below tests to see whether DomBB dominates 200 // the value, so adjust DomBB to the normal destination block, which is 201 // effectively where the value is first usable. 202 BasicBlock *DomBB = Inst->getParent(); 203 if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst)) 204 DomBB = Inv->getNormalDest(); 205 206 DomTreeNode *DomNode = DT->getNode(DomBB); 207 208 SSAUpdater SSAUpdate; 209 SSAUpdate.Initialize(Inst); 210 211 // Insert the LCSSA phi's into all of the exit blocks dominated by the 212 // value, and add them to the Phi's map. 213 for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(), 214 BBE = ExitBlocks.end(); BBI != BBE; ++BBI) { 215 BasicBlock *ExitBB = *BBI; 216 if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue; 217 218 // If we already inserted something for this BB, don't reprocess it. 219 if (SSAUpdate.HasValueForBlock(ExitBB)) continue; 220 221 PHINode *PN = PHINode::Create(Inst->getType(), Inst->getName()+".lcssa", 222 ExitBB->begin()); 223 PN->reserveOperandSpace(PredCache.GetNumPreds(ExitBB)); 224 225 // Add inputs from inside the loop for this PHI. 226 for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) { 227 PN->addIncoming(Inst, *PI); 228 229 // If the exit block has a predecessor not within the loop, arrange for 230 // the incoming value use corresponding to that predecessor to be 231 // rewritten in terms of a different LCSSA PHI. 232 if (!inLoop(*PI)) 233 UsesToRewrite.push_back( 234 &PN->getOperandUse( 235 PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1))); 236 } 237 238 // Remember that this phi makes the value alive in this block. 239 SSAUpdate.AddAvailableValue(ExitBB, PN); 240 } 241 242 // Rewrite all uses outside the loop in terms of the new PHIs we just 243 // inserted. 244 for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) { 245 // If this use is in an exit block, rewrite to use the newly inserted PHI. 246 // This is required for correctness because SSAUpdate doesn't handle uses in 247 // the same block. It assumes the PHI we inserted is at the end of the 248 // block. 249 Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser()); 250 BasicBlock *UserBB = User->getParent(); 251 if (PHINode *PN = dyn_cast<PHINode>(User)) 252 UserBB = PN->getIncomingBlock(*UsesToRewrite[i]); 253 254 if (isa<PHINode>(UserBB->begin()) && 255 isExitBlock(UserBB, ExitBlocks)) { 256 UsesToRewrite[i]->set(UserBB->begin()); 257 continue; 258 } 259 260 // Otherwise, do full PHI insertion. 261 SSAUpdate.RewriteUse(*UsesToRewrite[i]); 262 } 263 264 return true; 265 } 266 267