xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision a3345300b6f576b3210284abaef2db108642763c)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "lcssa"
57 
58 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
59 
60 #ifdef EXPENSIVE_CHECKS
61 static bool VerifyLoopLCSSA = true;
62 #else
63 static bool VerifyLoopLCSSA = false;
64 #endif
65 static cl::opt<bool, true>
66     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
67                         cl::Hidden,
68                         cl::desc("Verify loop lcssa form (time consuming)"));
69 
70 /// Return true if the specified block is in the list.
71 static bool isExitBlock(BasicBlock *BB,
72                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
73   return is_contained(ExitBlocks, BB);
74 }
75 
76 /// For every instruction from the worklist, check to see if it has any uses
77 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
78 /// rewrite the uses.
79 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
80                                     const DominatorTree &DT, const LoopInfo &LI,
81                                     ScalarEvolution *SE, IRBuilderBase &Builder,
82                                     SmallVectorImpl<PHINode *> *PHIsToRemove) {
83   SmallVector<Use *, 16> UsesToRewrite;
84   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
85   PredIteratorCache PredCache;
86   bool Changed = false;
87 
88   IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
89 
90   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
91   // instructions within the same loops, computing the exit blocks is
92   // expensive, and we're not mutating the loop structure.
93   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
94 
95   while (!Worklist.empty()) {
96     UsesToRewrite.clear();
97 
98     Instruction *I = Worklist.pop_back_val();
99     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
100     BasicBlock *InstBB = I->getParent();
101     Loop *L = LI.getLoopFor(InstBB);
102     assert(L && "Instruction belongs to a BB that's not part of a loop");
103     if (!LoopExitBlocks.count(L))
104       L->getExitBlocks(LoopExitBlocks[L]);
105     assert(LoopExitBlocks.count(L));
106     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
107 
108     if (ExitBlocks.empty())
109       continue;
110 
111     for (Use &U : I->uses()) {
112       Instruction *User = cast<Instruction>(U.getUser());
113       BasicBlock *UserBB = User->getParent();
114 
115       // For practical purposes, we consider that the use in a PHI
116       // occurs in the respective predecessor block. For more info,
117       // see the `phi` doc in LangRef and the LCSSA doc.
118       if (auto *PN = dyn_cast<PHINode>(User))
119         UserBB = PN->getIncomingBlock(U);
120 
121       if (InstBB != UserBB && !L->contains(UserBB))
122         UsesToRewrite.push_back(&U);
123     }
124 
125     // If there are no uses outside the loop, exit with no change.
126     if (UsesToRewrite.empty())
127       continue;
128 
129     ++NumLCSSA; // We are applying the transformation
130 
131     // Invoke instructions are special in that their result value is not
132     // available along their unwind edge. The code below tests to see whether
133     // DomBB dominates the value, so adjust DomBB to the normal destination
134     // block, which is effectively where the value is first usable.
135     BasicBlock *DomBB = InstBB;
136     if (auto *Inv = dyn_cast<InvokeInst>(I))
137       DomBB = Inv->getNormalDest();
138 
139     const DomTreeNode *DomNode = DT.getNode(DomBB);
140 
141     SmallVector<PHINode *, 16> AddedPHIs;
142     SmallVector<PHINode *, 8> PostProcessPHIs;
143 
144     SmallVector<PHINode *, 4> InsertedPHIs;
145     SSAUpdater SSAUpdate(&InsertedPHIs);
146     SSAUpdate.Initialize(I->getType(), I->getName());
147 
148     // Force re-computation of I, as some users now need to use the new PHI
149     // node.
150     if (SE)
151       SE->forgetValue(I);
152 
153     // Insert the LCSSA phi's into all of the exit blocks dominated by the
154     // value, and add them to the Phi's map.
155     for (BasicBlock *ExitBB : ExitBlocks) {
156       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
157         continue;
158 
159       // If we already inserted something for this BB, don't reprocess it.
160       if (SSAUpdate.HasValueForBlock(ExitBB))
161         continue;
162       Builder.SetInsertPoint(&ExitBB->front());
163       PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
164                                       I->getName() + ".lcssa");
165       // Get the debug location from the original instruction.
166       PN->setDebugLoc(I->getDebugLoc());
167 
168       // Add inputs from inside the loop for this PHI. This is valid
169       // because `I` dominates `ExitBB` (checked above).  This implies
170       // that every incoming block/edge is dominated by `I` as well,
171       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
172       // blocks without violating the SSA dominance property.
173       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
174         PN->addIncoming(I, Pred);
175 
176         // If the exit block has a predecessor not within the loop, arrange for
177         // the incoming value use corresponding to that predecessor to be
178         // rewritten in terms of a different LCSSA PHI.
179         if (!L->contains(Pred))
180           UsesToRewrite.push_back(
181               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
182                   PN->getNumIncomingValues() - 1)));
183       }
184 
185       AddedPHIs.push_back(PN);
186 
187       // Remember that this phi makes the value alive in this block.
188       SSAUpdate.AddAvailableValue(ExitBB, PN);
189 
190       // LoopSimplify might fail to simplify some loops (e.g. when indirect
191       // branches are involved). In such situations, it might happen that an
192       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
193       // create PHIs in such an exit block, we are also inserting PHIs into L2's
194       // header. This could break LCSSA form for L2 because these inserted PHIs
195       // can also have uses outside of L2. Remember all PHIs in such situation
196       // as to revisit than later on. FIXME: Remove this if indirectbr support
197       // into LoopSimplify gets improved.
198       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
199         if (!L->contains(OtherLoop))
200           PostProcessPHIs.push_back(PN);
201     }
202 
203     // Rewrite all uses outside the loop in terms of the new PHIs we just
204     // inserted.
205     for (Use *UseToRewrite : UsesToRewrite) {
206       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
207       BasicBlock *UserBB = User->getParent();
208 
209       // For practical purposes, we consider that the use in a PHI
210       // occurs in the respective predecessor block. For more info,
211       // see the `phi` doc in LangRef and the LCSSA doc.
212       if (auto *PN = dyn_cast<PHINode>(User))
213         UserBB = PN->getIncomingBlock(*UseToRewrite);
214 
215       // If this use is in an exit block, rewrite to use the newly inserted PHI.
216       // This is required for correctness because SSAUpdate doesn't handle uses
217       // in the same block.  It assumes the PHI we inserted is at the end of the
218       // block.
219       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
220         UseToRewrite->set(&UserBB->front());
221         continue;
222       }
223 
224       // If we added a single PHI, it must dominate all uses and we can directly
225       // rename it.
226       if (AddedPHIs.size() == 1) {
227         UseToRewrite->set(AddedPHIs[0]);
228         continue;
229       }
230 
231       // Otherwise, do full PHI insertion.
232       SSAUpdate.RewriteUse(*UseToRewrite);
233     }
234 
235     SmallVector<DbgValueInst *, 4> DbgValues;
236     llvm::findDbgValues(DbgValues, I);
237 
238     // Update pre-existing debug value uses that reside outside the loop.
239     auto &Ctx = I->getContext();
240     for (auto DVI : DbgValues) {
241       BasicBlock *UserBB = DVI->getParent();
242       if (InstBB == UserBB || L->contains(UserBB))
243         continue;
244       // We currently only handle debug values residing in blocks that were
245       // traversed while rewriting the uses. If we inserted just a single PHI,
246       // we will handle all relevant debug values.
247       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
248                                        : SSAUpdate.FindValueForBlock(UserBB);
249       if (V)
250         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
251     }
252 
253     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
254     // to post-process them to keep LCSSA form.
255     for (PHINode *InsertedPN : InsertedPHIs) {
256       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
257         if (!L->contains(OtherLoop))
258           PostProcessPHIs.push_back(InsertedPN);
259     }
260 
261     // Post process PHI instructions that were inserted into another disjoint
262     // loop and update their exits properly.
263     for (auto *PostProcessPN : PostProcessPHIs)
264       if (!PostProcessPN->use_empty())
265         Worklist.push_back(PostProcessPN);
266 
267     // Keep track of PHI nodes that we want to remove because they did not have
268     // any uses rewritten. If the new PHI is used, store it so that we can
269     // try to propagate dbg.value intrinsics to it.
270     SmallVector<PHINode *, 2> NeedDbgValues;
271     for (PHINode *PN : AddedPHIs)
272       if (PN->use_empty())
273         LocalPHIsToRemove.insert(PN);
274       else
275         NeedDbgValues.push_back(PN);
276     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
277     Changed = true;
278   }
279 
280   // Remove PHI nodes that did not have any uses rewritten or add them to
281   // PHIsToRemove, so the caller can remove them after some additional cleanup.
282   // We need to redo the use_empty() check here, because even if the PHI node
283   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
284   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
285   // nodes that only are used by each other. Such situations has only been
286   // noticed when the input IR contains unreachable code, and leaving some extra
287   // redundant PHI nodes in such situations is considered a minor problem.
288   if (PHIsToRemove) {
289     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
290   } else {
291     for (PHINode *PN : LocalPHIsToRemove)
292       if (PN->use_empty())
293         PN->eraseFromParent();
294   }
295   return Changed;
296 }
297 
298 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
299 static void computeBlocksDominatingExits(
300     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
301     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
302   SmallVector<BasicBlock *, 8> BBWorklist;
303 
304   // We start from the exit blocks, as every block trivially dominates itself
305   // (not strictly).
306   for (BasicBlock *BB : ExitBlocks)
307     BBWorklist.push_back(BB);
308 
309   while (!BBWorklist.empty()) {
310     BasicBlock *BB = BBWorklist.pop_back_val();
311 
312     // Check if this is a loop header. If this is the case, we're done.
313     if (L.getHeader() == BB)
314       continue;
315 
316     // Otherwise, add its immediate predecessor in the dominator tree to the
317     // worklist, unless we visited it already.
318     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
319 
320     // Exit blocks can have an immediate dominator not beloinging to the
321     // loop. For an exit block to be immediately dominated by another block
322     // outside the loop, it implies not all paths from that dominator, to the
323     // exit block, go through the loop.
324     // Example:
325     //
326     // |---- A
327     // |     |
328     // |     B<--
329     // |     |  |
330     // |---> C --
331     //       |
332     //       D
333     //
334     // C is the exit block of the loop and it's immediately dominated by A,
335     // which doesn't belong to the loop.
336     if (!L.contains(IDomBB))
337       continue;
338 
339     if (BlocksDominatingExits.insert(IDomBB))
340       BBWorklist.push_back(IDomBB);
341   }
342 }
343 
344 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
345                      ScalarEvolution *SE) {
346   bool Changed = false;
347 
348 #ifdef EXPENSIVE_CHECKS
349   // Verify all sub-loops are in LCSSA form already.
350   for (Loop *SubLoop: L)
351     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
352 #endif
353 
354   SmallVector<BasicBlock *, 8> ExitBlocks;
355   L.getExitBlocks(ExitBlocks);
356   if (ExitBlocks.empty())
357     return false;
358 
359   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
360 
361   // We want to avoid use-scanning leveraging dominance informations.
362   // If a block doesn't dominate any of the loop exits, the none of the values
363   // defined in the loop can be used outside.
364   // We compute the set of blocks fullfilling the conditions in advance
365   // walking the dominator tree upwards until we hit a loop header.
366   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
367 
368   SmallVector<Instruction *, 8> Worklist;
369 
370   // Look at all the instructions in the loop, checking to see if they have uses
371   // outside the loop.  If so, put them into the worklist to rewrite those uses.
372   for (BasicBlock *BB : BlocksDominatingExits) {
373     // Skip blocks that are part of any sub-loops, they must be in LCSSA
374     // already.
375     if (LI->getLoopFor(BB) != &L)
376       continue;
377     for (Instruction &I : *BB) {
378       // Reject two common cases fast: instructions with no uses (like stores)
379       // and instructions with one use that is in the same block as this.
380       if (I.use_empty() ||
381           (I.hasOneUse() && I.user_back()->getParent() == BB &&
382            !isa<PHINode>(I.user_back())))
383         continue;
384 
385       // Tokens cannot be used in PHI nodes, so we skip over them.
386       // We can run into tokens which are live out of a loop with catchswitch
387       // instructions in Windows EH if the catchswitch has one catchpad which
388       // is inside the loop and another which is not.
389       if (I.getType()->isTokenTy())
390         continue;
391 
392       Worklist.push_back(&I);
393     }
394   }
395 
396   IRBuilder<> Builder(L.getHeader()->getContext());
397   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
398 
399   // If we modified the code, remove any caches about the loop from SCEV to
400   // avoid dangling entries.
401   // FIXME: This is a big hammer, can we clear the cache more selectively?
402   if (SE && Changed)
403     SE->forgetLoop(&L);
404 
405   assert(L.isLCSSAForm(DT));
406 
407   return Changed;
408 }
409 
410 /// Process a loop nest depth first.
411 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
412                                 const LoopInfo *LI, ScalarEvolution *SE) {
413   bool Changed = false;
414 
415   // Recurse depth-first through inner loops.
416   for (Loop *SubLoop : L.getSubLoops())
417     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
418 
419   Changed |= formLCSSA(L, DT, LI, SE);
420   return Changed;
421 }
422 
423 /// Process all loops in the function, inner-most out.
424 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
425                                 ScalarEvolution *SE) {
426   bool Changed = false;
427   for (auto &L : *LI)
428     Changed |= formLCSSARecursively(*L, DT, LI, SE);
429   return Changed;
430 }
431 
432 namespace {
433 struct LCSSAWrapperPass : public FunctionPass {
434   static char ID; // Pass identification, replacement for typeid
435   LCSSAWrapperPass() : FunctionPass(ID) {
436     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
437   }
438 
439   // Cached analysis information for the current function.
440   DominatorTree *DT;
441   LoopInfo *LI;
442   ScalarEvolution *SE;
443 
444   bool runOnFunction(Function &F) override;
445   void verifyAnalysis() const override {
446     // This check is very expensive. On the loop intensive compiles it may cause
447     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
448     // always does limited form of the LCSSA verification. Similar reasoning
449     // was used for the LoopInfo verifier.
450     if (VerifyLoopLCSSA) {
451       assert(all_of(*LI,
452                     [&](Loop *L) {
453                       return L->isRecursivelyLCSSAForm(*DT, *LI);
454                     }) &&
455              "LCSSA form is broken!");
456     }
457   };
458 
459   /// This transformation requires natural loop information & requires that
460   /// loop preheaders be inserted into the CFG.  It maintains both of these,
461   /// as well as the CFG.  It also requires dominator information.
462   void getAnalysisUsage(AnalysisUsage &AU) const override {
463     AU.setPreservesCFG();
464 
465     AU.addRequired<DominatorTreeWrapperPass>();
466     AU.addRequired<LoopInfoWrapperPass>();
467     AU.addPreservedID(LoopSimplifyID);
468     AU.addPreserved<AAResultsWrapperPass>();
469     AU.addPreserved<BasicAAWrapperPass>();
470     AU.addPreserved<GlobalsAAWrapperPass>();
471     AU.addPreserved<ScalarEvolutionWrapperPass>();
472     AU.addPreserved<SCEVAAWrapperPass>();
473     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
474     AU.addPreserved<MemorySSAWrapperPass>();
475 
476     // This is needed to perform LCSSA verification inside LPPassManager
477     AU.addRequired<LCSSAVerificationPass>();
478     AU.addPreserved<LCSSAVerificationPass>();
479   }
480 };
481 }
482 
483 char LCSSAWrapperPass::ID = 0;
484 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
485                       false, false)
486 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
487 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
488 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
489 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
490                     false, false)
491 
492 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
493 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
494 
495 /// Transform \p F into loop-closed SSA form.
496 bool LCSSAWrapperPass::runOnFunction(Function &F) {
497   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
498   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
499   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
500   SE = SEWP ? &SEWP->getSE() : nullptr;
501 
502   return formLCSSAOnAllLoops(LI, *DT, SE);
503 }
504 
505 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
506   auto &LI = AM.getResult<LoopAnalysis>(F);
507   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
508   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
509   if (!formLCSSAOnAllLoops(&LI, DT, SE))
510     return PreservedAnalyses::all();
511 
512   PreservedAnalyses PA;
513   PA.preserveSet<CFGAnalyses>();
514   PA.preserve<BasicAA>();
515   PA.preserve<GlobalsAA>();
516   PA.preserve<SCEVAA>();
517   PA.preserve<ScalarEvolutionAnalysis>();
518   // BPI maps terminators to probabilities, since we don't modify the CFG, no
519   // updates are needed to preserve it.
520   PA.preserve<BranchProbabilityAnalysis>();
521   PA.preserve<MemorySSAAnalysis>();
522   return PA;
523 }
524