xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 7eaf50ecac19b04294b8feec38f248d298d9d6ea)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Support/CFG.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/PredIteratorCache.h"
44 #include <algorithm>
45 #include <map>
46 using namespace llvm;
47 
48 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
49 
50 namespace {
51   struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
52     static char ID; // Pass identification, replacement for typeid
53     LCSSA() : LoopPass(&ID) {}
54 
55     // Cached analysis information for the current function.
56     LoopInfo *LI;
57     DominatorTree *DT;
58     std::vector<BasicBlock*> LoopBlocks;
59     PredIteratorCache PredCache;
60 
61     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
62 
63     void ProcessInstruction(Instruction* Instr,
64                             const SmallVector<BasicBlock*, 8>& exitBlocks);
65 
66     /// This transformation requires natural loop information & requires that
67     /// loop preheaders be inserted into the CFG.  It maintains both of these,
68     /// as well as the CFG.  It also requires dominator information.
69     ///
70     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71       AU.setPreservesCFG();
72       AU.addRequiredID(LoopSimplifyID);
73       AU.addPreservedID(LoopSimplifyID);
74       AU.addRequired<LoopInfo>();
75       AU.addPreserved<LoopInfo>();
76       AU.addRequired<DominatorTree>();
77       AU.addPreserved<ScalarEvolution>();
78       AU.addPreserved<DominatorTree>();
79 
80       // Request DominanceFrontier now, even though LCSSA does
81       // not use it. This allows Pass Manager to schedule Dominance
82       // Frontier early enough such that one LPPassManager can handle
83       // multiple loop transformation passes.
84       AU.addRequired<DominanceFrontier>();
85       AU.addPreserved<DominanceFrontier>();
86     }
87   private:
88     void getLoopValuesUsedOutsideLoop(Loop *L,
89                                       SetVector<Instruction*> &AffectedValues,
90                                  const SmallVector<BasicBlock*, 8>& exitBlocks);
91 
92     Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
93                             DenseMap<DomTreeNode*, Value*> &Phis);
94 
95     /// inLoop - returns true if the given block is within the current loop
96     bool inLoop(BasicBlock* B) {
97       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
98     }
99   };
100 }
101 
102 char LCSSA::ID = 0;
103 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
104 
105 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
106 const PassInfo *const llvm::LCSSAID = &X;
107 
108 /// runOnFunction - Process all loops in the function, inner-most out.
109 bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
110   PredCache.clear();
111 
112   LI = &LPM.getAnalysis<LoopInfo>();
113   DT = &getAnalysis<DominatorTree>();
114 
115   // Speed up queries by creating a sorted list of blocks
116   LoopBlocks.clear();
117   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
118   std::sort(LoopBlocks.begin(), LoopBlocks.end());
119 
120   SmallVector<BasicBlock*, 8> exitBlocks;
121   L->getExitBlocks(exitBlocks);
122 
123   SetVector<Instruction*> AffectedValues;
124   getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
125 
126   // If no values are affected, we can save a lot of work, since we know that
127   // nothing will be changed.
128   if (AffectedValues.empty())
129     return false;
130 
131   // Iterate over all affected values for this loop and insert Phi nodes
132   // for them in the appropriate exit blocks
133 
134   for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
135        E = AffectedValues.end(); I != E; ++I)
136     ProcessInstruction(*I, exitBlocks);
137 
138   assert(L->isLCSSAForm());
139 
140   return true;
141 }
142 
143 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
144 /// eliminate all out-of-loop uses.
145 void LCSSA::ProcessInstruction(Instruction *Instr,
146                                const SmallVector<BasicBlock*, 8>& exitBlocks) {
147   ++NumLCSSA; // We are applying the transformation
148 
149   // Keep track of the blocks that have the value available already.
150   DenseMap<DomTreeNode*, Value*> Phis;
151 
152   BasicBlock *DomBB = Instr->getParent();
153 
154   // Invoke instructions are special in that their result value is not available
155   // along their unwind edge. The code below tests to see whether DomBB dominates
156   // the value, so adjust DomBB to the normal destination block, which is
157   // effectively where the value is first usable.
158   if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr))
159     DomBB = Inv->getNormalDest();
160 
161   DomTreeNode *DomNode = DT->getNode(DomBB);
162 
163   // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
164   // add them to the Phi's map.
165   for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
166       BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
167     BasicBlock *BB = *BBI;
168     DomTreeNode *ExitBBNode = DT->getNode(BB);
169     Value *&Phi = Phis[ExitBBNode];
170     if (!Phi && DT->dominates(DomNode, ExitBBNode)) {
171       PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
172                                     BB->begin());
173       PN->reserveOperandSpace(PredCache.GetNumPreds(BB));
174 
175       // Remember that this phi makes the value alive in this block.
176       Phi = PN;
177 
178       // Add inputs from inside the loop for this PHI.
179       for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
180         PN->addIncoming(Instr, *PI);
181     }
182   }
183 
184 
185   // Record all uses of Instr outside the loop.  We need to rewrite these.  The
186   // LCSSA phis won't be included because they use the value in the loop.
187   for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
188        UI != E;) {
189     BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
190     if (PHINode *P = dyn_cast<PHINode>(*UI)) {
191       UserBB = P->getIncomingBlock(UI);
192     }
193 
194     // If the user is in the loop, don't rewrite it!
195     if (UserBB == Instr->getParent() || inLoop(UserBB)) {
196       ++UI;
197       continue;
198     }
199 
200     // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
201     // inserting PHI nodes into join points where needed.
202     Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
203 
204     // Preincrement the iterator to avoid invalidating it when we change the
205     // value.
206     Use &U = UI.getUse();
207     ++UI;
208     U.set(Val);
209   }
210 }
211 
212 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
213 /// are used by instructions outside of it.
214 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
215                                       SetVector<Instruction*> &AffectedValues,
216                                 const SmallVector<BasicBlock*, 8>& exitBlocks) {
217   // FIXME: For large loops, we may be able to avoid a lot of use-scanning
218   // by using dominance information.  In particular, if a block does not
219   // dominate any of the loop exits, then none of the values defined in the
220   // block could be used outside the loop.
221   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
222        BB != BE; ++BB) {
223     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
224       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
225            ++UI) {
226         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
227         if (PHINode* p = dyn_cast<PHINode>(*UI)) {
228           UserBB = p->getIncomingBlock(UI);
229         }
230 
231         if (*BB != UserBB && !inLoop(UserBB)) {
232           AffectedValues.insert(I);
233           break;
234         }
235       }
236   }
237 }
238 
239 /// GetValueForBlock - Get the value to use within the specified basic block.
240 /// available values are in Phis.
241 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
242                                DenseMap<DomTreeNode*, Value*> &Phis) {
243   // If there is no dominator info for this BB, it is unreachable.
244   if (BB == 0)
245     return UndefValue::get(OrigInst->getType());
246 
247   // If we have already computed this value, return the previously computed val.
248   if (Phis.count(BB)) return Phis[BB];
249 
250   DomTreeNode *IDom = BB->getIDom();
251 
252   // Otherwise, there are two cases: we either have to insert a PHI node or we
253   // don't.  We need to insert a PHI node if this block is not dominated by one
254   // of the exit nodes from the loop (the loop could have multiple exits, and
255   // though the value defined *inside* the loop dominated all its uses, each
256   // exit by itself may not dominate all the uses).
257   //
258   // The simplest way to check for this condition is by checking to see if the
259   // idom is in the loop.  If so, we *know* that none of the exit blocks
260   // dominate this block.  Note that we *know* that the block defining the
261   // original instruction is in the idom chain, because if it weren't, then the
262   // original value didn't dominate this use.
263   if (!inLoop(IDom->getBlock())) {
264     // Idom is not in the loop, we must still be "below" the exit block and must
265     // be fully dominated by the value live in the idom.
266     Value* val = GetValueForBlock(IDom, OrigInst, Phis);
267     Phis.insert(std::make_pair(BB, val));
268     return val;
269   }
270 
271   BasicBlock *BBN = BB->getBlock();
272 
273   // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
274   // now, then get values to fill in the incoming values for the PHI.
275   PHINode *PN = PHINode::Create(OrigInst->getType(),
276                                 OrigInst->getName() + ".lcssa", BBN->begin());
277   PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
278   Phis.insert(std::make_pair(BB, PN));
279 
280   // Fill in the incoming values for the block.
281   for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
282     PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
283   return PN;
284 }
285 
286