1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/PredIteratorCache.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/SSAUpdater.h" 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lcssa" 51 52 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 53 54 /// Return true if the specified block is in the list. 55 static bool isExitBlock(BasicBlock *BB, 56 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 57 return find(ExitBlocks, BB) != ExitBlocks.end(); 58 } 59 60 /// For every instruction from the worklist, check to see if it has any uses 61 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 62 /// rewrite the uses. 63 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 64 DominatorTree &DT, LoopInfo &LI) { 65 SmallVector<Use *, 16> UsesToRewrite; 66 SmallVector<BasicBlock *, 8> ExitBlocks; 67 PredIteratorCache PredCache; 68 bool Changed = false; 69 70 while (!Worklist.empty()) { 71 UsesToRewrite.clear(); 72 ExitBlocks.clear(); 73 74 Instruction *I = Worklist.pop_back_val(); 75 BasicBlock *InstBB = I->getParent(); 76 Loop *L = LI.getLoopFor(InstBB); 77 L->getExitBlocks(ExitBlocks); 78 79 if (ExitBlocks.empty()) 80 continue; 81 82 // Tokens cannot be used in PHI nodes, so we skip over them. 83 // We can run into tokens which are live out of a loop with catchswitch 84 // instructions in Windows EH if the catchswitch has one catchpad which 85 // is inside the loop and another which is not. 86 if (I->getType()->isTokenTy()) 87 continue; 88 89 for (Use &U : I->uses()) { 90 Instruction *User = cast<Instruction>(U.getUser()); 91 BasicBlock *UserBB = User->getParent(); 92 if (PHINode *PN = dyn_cast<PHINode>(User)) 93 UserBB = PN->getIncomingBlock(U); 94 95 if (InstBB != UserBB && !L->contains(UserBB)) 96 UsesToRewrite.push_back(&U); 97 } 98 99 // If there are no uses outside the loop, exit with no change. 100 if (UsesToRewrite.empty()) 101 continue; 102 103 ++NumLCSSA; // We are applying the transformation 104 105 // Invoke instructions are special in that their result value is not 106 // available along their unwind edge. The code below tests to see whether 107 // DomBB dominates the value, so adjust DomBB to the normal destination 108 // block, which is effectively where the value is first usable. 109 BasicBlock *DomBB = InstBB; 110 if (InvokeInst *Inv = dyn_cast<InvokeInst>(I)) 111 DomBB = Inv->getNormalDest(); 112 113 DomTreeNode *DomNode = DT.getNode(DomBB); 114 115 SmallVector<PHINode *, 16> AddedPHIs; 116 SmallVector<PHINode *, 8> PostProcessPHIs; 117 118 SmallVector<PHINode *, 4> InsertedPHIs; 119 SSAUpdater SSAUpdate(&InsertedPHIs); 120 SSAUpdate.Initialize(I->getType(), I->getName()); 121 122 // Insert the LCSSA phi's into all of the exit blocks dominated by the 123 // value, and add them to the Phi's map. 124 for (BasicBlock *ExitBB : ExitBlocks) { 125 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 126 continue; 127 128 // If we already inserted something for this BB, don't reprocess it. 129 if (SSAUpdate.HasValueForBlock(ExitBB)) 130 continue; 131 132 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 133 I->getName() + ".lcssa", &ExitBB->front()); 134 135 // Add inputs from inside the loop for this PHI. 136 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 137 PN->addIncoming(I, Pred); 138 139 // If the exit block has a predecessor not within the loop, arrange for 140 // the incoming value use corresponding to that predecessor to be 141 // rewritten in terms of a different LCSSA PHI. 142 if (!L->contains(Pred)) 143 UsesToRewrite.push_back( 144 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 145 PN->getNumIncomingValues() - 1))); 146 } 147 148 AddedPHIs.push_back(PN); 149 150 // Remember that this phi makes the value alive in this block. 151 SSAUpdate.AddAvailableValue(ExitBB, PN); 152 153 // LoopSimplify might fail to simplify some loops (e.g. when indirect 154 // branches are involved). In such situations, it might happen that an 155 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 156 // create PHIs in such an exit block, we are also inserting PHIs into L2's 157 // header. This could break LCSSA form for L2 because these inserted PHIs 158 // can also have uses outside of L2. Remember all PHIs in such situation 159 // as to revisit than later on. FIXME: Remove this if indirectbr support 160 // into LoopSimplify gets improved. 161 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 162 if (!L->contains(OtherLoop)) 163 PostProcessPHIs.push_back(PN); 164 } 165 166 // Rewrite all uses outside the loop in terms of the new PHIs we just 167 // inserted. 168 for (Use *UseToRewrite : UsesToRewrite) { 169 // If this use is in an exit block, rewrite to use the newly inserted PHI. 170 // This is required for correctness because SSAUpdate doesn't handle uses 171 // in the same block. It assumes the PHI we inserted is at the end of the 172 // block. 173 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 174 BasicBlock *UserBB = User->getParent(); 175 if (PHINode *PN = dyn_cast<PHINode>(User)) 176 UserBB = PN->getIncomingBlock(*UseToRewrite); 177 178 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 179 // Tell the VHs that the uses changed. This updates SCEV's caches. 180 if (UseToRewrite->get()->hasValueHandle()) 181 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 182 UseToRewrite->set(&UserBB->front()); 183 continue; 184 } 185 186 // Otherwise, do full PHI insertion. 187 SSAUpdate.RewriteUse(*UseToRewrite); 188 189 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 190 // to post-process them to keep LCSSA form. 191 for (PHINode *InsertedPN : InsertedPHIs) { 192 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 193 if (!L->contains(OtherLoop)) 194 PostProcessPHIs.push_back(InsertedPN); 195 } 196 } 197 198 // Post process PHI instructions that were inserted into another disjoint 199 // loop and update their exits properly. 200 for (auto *PostProcessPN : PostProcessPHIs) { 201 if (PostProcessPN->use_empty()) 202 continue; 203 204 // Reprocess each PHI instruction. 205 Worklist.push_back(PostProcessPN); 206 } 207 208 // Remove PHI nodes that did not have any uses rewritten. 209 for (PHINode *PN : AddedPHIs) 210 if (PN->use_empty()) 211 PN->eraseFromParent(); 212 213 Changed = true; 214 } 215 return Changed; 216 } 217 218 /// Return true if the specified block dominates at least 219 /// one of the blocks in the specified list. 220 static bool 221 blockDominatesAnExit(BasicBlock *BB, 222 DominatorTree &DT, 223 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 224 DomTreeNode *DomNode = DT.getNode(BB); 225 return llvm::any_of(ExitBlocks, [&](BasicBlock * EB) { 226 return DT.dominates(DomNode, DT.getNode(EB)); 227 }); 228 } 229 230 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 231 ScalarEvolution *SE) { 232 bool Changed = false; 233 234 // Get the set of exiting blocks. 235 SmallVector<BasicBlock *, 8> ExitBlocks; 236 L.getExitBlocks(ExitBlocks); 237 238 if (ExitBlocks.empty()) 239 return false; 240 241 SmallVector<Instruction *, 8> Worklist; 242 243 // Look at all the instructions in the loop, checking to see if they have uses 244 // outside the loop. If so, put them into the worklist to rewrite those uses. 245 for (BasicBlock *BB : L.blocks()) { 246 // For large loops, avoid use-scanning by using dominance information: In 247 // particular, if a block does not dominate any of the loop exits, then none 248 // of the values defined in the block could be used outside the loop. 249 if (!blockDominatesAnExit(BB, DT, ExitBlocks)) 250 continue; 251 252 for (Instruction &I : *BB) { 253 // Reject two common cases fast: instructions with no uses (like stores) 254 // and instructions with one use that is in the same block as this. 255 if (I.use_empty() || 256 (I.hasOneUse() && I.user_back()->getParent() == BB && 257 !isa<PHINode>(I.user_back()))) 258 continue; 259 260 Worklist.push_back(&I); 261 } 262 } 263 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 264 265 // If we modified the code, remove any caches about the loop from SCEV to 266 // avoid dangling entries. 267 // FIXME: This is a big hammer, can we clear the cache more selectively? 268 if (SE && Changed) 269 SE->forgetLoop(&L); 270 271 assert(L.isLCSSAForm(DT)); 272 273 return Changed; 274 } 275 276 /// Process a loop nest depth first. 277 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 278 ScalarEvolution *SE) { 279 bool Changed = false; 280 281 // Recurse depth-first through inner loops. 282 for (Loop *SubLoop : L.getSubLoops()) 283 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 284 285 Changed |= formLCSSA(L, DT, LI, SE); 286 return Changed; 287 } 288 289 /// Process all loops in the function, inner-most out. 290 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 291 ScalarEvolution *SE) { 292 bool Changed = false; 293 for (auto &L : *LI) 294 Changed |= formLCSSARecursively(*L, DT, LI, SE); 295 return Changed; 296 } 297 298 namespace { 299 struct LCSSAWrapperPass : public FunctionPass { 300 static char ID; // Pass identification, replacement for typeid 301 LCSSAWrapperPass() : FunctionPass(ID) { 302 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 303 } 304 305 // Cached analysis information for the current function. 306 DominatorTree *DT; 307 LoopInfo *LI; 308 ScalarEvolution *SE; 309 310 bool runOnFunction(Function &F) override; 311 312 /// This transformation requires natural loop information & requires that 313 /// loop preheaders be inserted into the CFG. It maintains both of these, 314 /// as well as the CFG. It also requires dominator information. 315 void getAnalysisUsage(AnalysisUsage &AU) const override { 316 AU.setPreservesCFG(); 317 318 AU.addRequired<DominatorTreeWrapperPass>(); 319 AU.addRequired<LoopInfoWrapperPass>(); 320 AU.addPreservedID(LoopSimplifyID); 321 AU.addPreserved<AAResultsWrapperPass>(); 322 AU.addPreserved<BasicAAWrapperPass>(); 323 AU.addPreserved<GlobalsAAWrapperPass>(); 324 AU.addPreserved<ScalarEvolutionWrapperPass>(); 325 AU.addPreserved<SCEVAAWrapperPass>(); 326 } 327 }; 328 } 329 330 char LCSSAWrapperPass::ID = 0; 331 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 332 false, false) 333 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 334 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 335 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 336 false, false) 337 338 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 339 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 340 341 /// Transform \p F into loop-closed SSA form. 342 bool LCSSAWrapperPass::runOnFunction(Function &F) { 343 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 344 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 345 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 346 SE = SEWP ? &SEWP->getSE() : nullptr; 347 348 return formLCSSAOnAllLoops(LI, *DT, SE); 349 } 350 351 PreservedAnalyses LCSSAPass::run(Function &F, AnalysisManager<Function> &AM) { 352 auto &LI = AM.getResult<LoopAnalysis>(F); 353 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 354 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 355 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 356 return PreservedAnalyses::all(); 357 358 // FIXME: This should also 'preserve the CFG'. 359 PreservedAnalyses PA; 360 PA.preserve<BasicAA>(); 361 PA.preserve<GlobalsAA>(); 362 PA.preserve<SCEVAA>(); 363 PA.preserve<ScalarEvolutionAnalysis>(); 364 return PA; 365 } 366