1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/LoopPass.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/PredIteratorCache.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Transforms/Utils/LoopUtils.h" 43 #include "llvm/Transforms/Utils/SSAUpdater.h" 44 using namespace llvm; 45 46 #define DEBUG_TYPE "lcssa" 47 48 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 49 50 /// Return true if the specified block is in the list. 51 static bool isExitBlock(BasicBlock *BB, 52 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 53 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 54 if (ExitBlocks[i] == BB) 55 return true; 56 return false; 57 } 58 59 /// Given an instruction in the loop, check to see if it has any uses that are 60 /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the 61 /// uses. 62 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT, 63 const SmallVectorImpl<BasicBlock *> &ExitBlocks, 64 PredIteratorCache &PredCache, LoopInfo *LI) { 65 SmallVector<Use *, 16> UsesToRewrite; 66 67 BasicBlock *InstBB = Inst.getParent(); 68 69 for (Use &U : Inst.uses()) { 70 Instruction *User = cast<Instruction>(U.getUser()); 71 BasicBlock *UserBB = User->getParent(); 72 if (PHINode *PN = dyn_cast<PHINode>(User)) 73 UserBB = PN->getIncomingBlock(U); 74 75 if (InstBB != UserBB && !L.contains(UserBB)) 76 UsesToRewrite.push_back(&U); 77 } 78 79 // If there are no uses outside the loop, exit with no change. 80 if (UsesToRewrite.empty()) 81 return false; 82 83 ++NumLCSSA; // We are applying the transformation 84 85 // Invoke instructions are special in that their result value is not available 86 // along their unwind edge. The code below tests to see whether DomBB 87 // dominates 88 // the value, so adjust DomBB to the normal destination block, which is 89 // effectively where the value is first usable. 90 BasicBlock *DomBB = Inst.getParent(); 91 if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst)) 92 DomBB = Inv->getNormalDest(); 93 94 DomTreeNode *DomNode = DT.getNode(DomBB); 95 96 SmallVector<PHINode *, 16> AddedPHIs; 97 SmallVector<PHINode *, 8> PostProcessPHIs; 98 99 SSAUpdater SSAUpdate; 100 SSAUpdate.Initialize(Inst.getType(), Inst.getName()); 101 102 // Insert the LCSSA phi's into all of the exit blocks dominated by the 103 // value, and add them to the Phi's map. 104 for (SmallVectorImpl<BasicBlock *>::const_iterator BBI = ExitBlocks.begin(), 105 BBE = ExitBlocks.end(); 106 BBI != BBE; ++BBI) { 107 BasicBlock *ExitBB = *BBI; 108 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 109 continue; 110 111 // If we already inserted something for this BB, don't reprocess it. 112 if (SSAUpdate.HasValueForBlock(ExitBB)) 113 continue; 114 115 PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB), 116 Inst.getName() + ".lcssa", ExitBB->begin()); 117 118 // Add inputs from inside the loop for this PHI. 119 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 120 PN->addIncoming(&Inst, Pred); 121 122 // If the exit block has a predecessor not within the loop, arrange for 123 // the incoming value use corresponding to that predecessor to be 124 // rewritten in terms of a different LCSSA PHI. 125 if (!L.contains(Pred)) 126 UsesToRewrite.push_back( 127 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 128 PN->getNumIncomingValues() - 1))); 129 } 130 131 AddedPHIs.push_back(PN); 132 133 // Remember that this phi makes the value alive in this block. 134 SSAUpdate.AddAvailableValue(ExitBB, PN); 135 136 // LoopSimplify might fail to simplify some loops (e.g. when indirect 137 // branches are involved). In such situations, it might happen that an exit 138 // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create 139 // PHIs in such an exit block, we are also inserting PHIs into L2's header. 140 // This could break LCSSA form for L2 because these inserted PHIs can also 141 // have uses outside of L2. Remember all PHIs in such situation as to 142 // revisit than later on. FIXME: Remove this if indirectbr support into 143 // LoopSimplify gets improved. 144 if (auto *OtherLoop = LI->getLoopFor(ExitBB)) 145 if (!L.contains(OtherLoop)) 146 PostProcessPHIs.push_back(PN); 147 } 148 149 // Rewrite all uses outside the loop in terms of the new PHIs we just 150 // inserted. 151 for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) { 152 // If this use is in an exit block, rewrite to use the newly inserted PHI. 153 // This is required for correctness because SSAUpdate doesn't handle uses in 154 // the same block. It assumes the PHI we inserted is at the end of the 155 // block. 156 Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser()); 157 BasicBlock *UserBB = User->getParent(); 158 if (PHINode *PN = dyn_cast<PHINode>(User)) 159 UserBB = PN->getIncomingBlock(*UsesToRewrite[i]); 160 161 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 162 // Tell the VHs that the uses changed. This updates SCEV's caches. 163 if (UsesToRewrite[i]->get()->hasValueHandle()) 164 ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin()); 165 UsesToRewrite[i]->set(UserBB->begin()); 166 continue; 167 } 168 169 // Otherwise, do full PHI insertion. 170 SSAUpdate.RewriteUse(*UsesToRewrite[i]); 171 } 172 173 // Post process PHI instructions that were inserted into another disjoint loop 174 // and update their exits properly. 175 for (auto *I : PostProcessPHIs) { 176 if (I->use_empty()) 177 continue; 178 179 BasicBlock *PHIBB = I->getParent(); 180 Loop *OtherLoop = LI->getLoopFor(PHIBB); 181 SmallVector<BasicBlock *, 8> EBs; 182 OtherLoop->getExitBlocks(EBs); 183 if (EBs.empty()) 184 continue; 185 186 // Recurse and re-process each PHI instruction. FIXME: we should really 187 // convert this entire thing to a worklist approach where we process a 188 // vector of instructions... 189 processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI); 190 } 191 192 // Remove PHI nodes that did not have any uses rewritten. 193 for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) { 194 if (AddedPHIs[i]->use_empty()) 195 AddedPHIs[i]->eraseFromParent(); 196 } 197 198 return true; 199 } 200 201 /// Return true if the specified block dominates at least 202 /// one of the blocks in the specified list. 203 static bool 204 blockDominatesAnExit(BasicBlock *BB, 205 DominatorTree &DT, 206 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 207 DomTreeNode *DomNode = DT.getNode(BB); 208 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 209 if (DT.dominates(DomNode, DT.getNode(ExitBlocks[i]))) 210 return true; 211 212 return false; 213 } 214 215 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 216 ScalarEvolution *SE) { 217 bool Changed = false; 218 219 // Get the set of exiting blocks. 220 SmallVector<BasicBlock *, 8> ExitBlocks; 221 L.getExitBlocks(ExitBlocks); 222 223 if (ExitBlocks.empty()) 224 return false; 225 226 PredIteratorCache PredCache; 227 228 // Look at all the instructions in the loop, checking to see if they have uses 229 // outside the loop. If so, rewrite those uses. 230 for (Loop::block_iterator BBI = L.block_begin(), BBE = L.block_end(); 231 BBI != BBE; ++BBI) { 232 BasicBlock *BB = *BBI; 233 234 // For large loops, avoid use-scanning by using dominance information: In 235 // particular, if a block does not dominate any of the loop exits, then none 236 // of the values defined in the block could be used outside the loop. 237 if (!blockDominatesAnExit(BB, DT, ExitBlocks)) 238 continue; 239 240 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 241 // Reject two common cases fast: instructions with no uses (like stores) 242 // and instructions with one use that is in the same block as this. 243 if (I->use_empty() || 244 (I->hasOneUse() && I->user_back()->getParent() == BB && 245 !isa<PHINode>(I->user_back()))) 246 continue; 247 248 Changed |= processInstruction(L, *I, DT, ExitBlocks, PredCache, LI); 249 } 250 } 251 252 // If we modified the code, remove any caches about the loop from SCEV to 253 // avoid dangling entries. 254 // FIXME: This is a big hammer, can we clear the cache more selectively? 255 if (SE && Changed) 256 SE->forgetLoop(&L); 257 258 assert(L.isLCSSAForm(DT)); 259 260 return Changed; 261 } 262 263 /// Process a loop nest depth first. 264 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 265 ScalarEvolution *SE) { 266 bool Changed = false; 267 268 // Recurse depth-first through inner loops. 269 for (Loop::iterator I = L.begin(), E = L.end(); I != E; ++I) 270 Changed |= formLCSSARecursively(**I, DT, LI, SE); 271 272 Changed |= formLCSSA(L, DT, LI, SE); 273 return Changed; 274 } 275 276 namespace { 277 struct LCSSA : public FunctionPass { 278 static char ID; // Pass identification, replacement for typeid 279 LCSSA() : FunctionPass(ID) { 280 initializeLCSSAPass(*PassRegistry::getPassRegistry()); 281 } 282 283 // Cached analysis information for the current function. 284 DominatorTree *DT; 285 LoopInfo *LI; 286 ScalarEvolution *SE; 287 288 bool runOnFunction(Function &F) override; 289 290 /// This transformation requires natural loop information & requires that 291 /// loop preheaders be inserted into the CFG. It maintains both of these, 292 /// as well as the CFG. It also requires dominator information. 293 void getAnalysisUsage(AnalysisUsage &AU) const override { 294 AU.setPreservesCFG(); 295 296 AU.addRequired<DominatorTreeWrapperPass>(); 297 AU.addRequired<LoopInfoWrapperPass>(); 298 AU.addPreservedID(LoopSimplifyID); 299 AU.addPreserved<AliasAnalysis>(); 300 AU.addPreserved<ScalarEvolution>(); 301 } 302 }; 303 } // namespace 304 305 char LCSSA::ID = 0; 306 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 307 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 308 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 309 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 310 311 Pass *llvm::createLCSSAPass() { return new LCSSA(); } 312 char &llvm::LCSSAID = LCSSA::ID; 313 314 315 /// Process all loops in the function, inner-most out. 316 bool LCSSA::runOnFunction(Function &F) { 317 bool Changed = false; 318 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 319 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 320 SE = getAnalysisIfAvailable<ScalarEvolution>(); 321 322 // Simplify each loop nest in the function. 323 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 324 Changed |= formLCSSARecursively(**I, *DT, LI, SE); 325 326 return Changed; 327 } 328 329