1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "lcssa" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Constants.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Function.h" 35 #include "llvm/Instructions.h" 36 #include "llvm/Analysis/Dominators.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Transforms/Utils/SSAUpdater.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/Support/PredIteratorCache.h" 43 using namespace llvm; 44 45 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 46 47 namespace { 48 struct LCSSA : public LoopPass { 49 static char ID; // Pass identification, replacement for typeid 50 LCSSA() : LoopPass(ID) { 51 initializeLCSSAPass(*PassRegistry::getPassRegistry()); 52 } 53 54 // Cached analysis information for the current function. 55 DominatorTree *DT; 56 std::vector<BasicBlock*> LoopBlocks; 57 PredIteratorCache PredCache; 58 Loop *L; 59 60 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 61 62 /// This transformation requires natural loop information & requires that 63 /// loop preheaders be inserted into the CFG. It maintains both of these, 64 /// as well as the CFG. It also requires dominator information. 65 /// 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 AU.setPreservesCFG(); 68 69 AU.addRequired<DominatorTree>(); 70 AU.addPreserved<DominatorTree>(); 71 AU.addPreserved<DominanceFrontier>(); 72 AU.addRequired<LoopInfo>(); 73 AU.addPreserved<LoopInfo>(); 74 AU.addPreservedID(LoopSimplifyID); 75 AU.addPreserved<ScalarEvolution>(); 76 } 77 private: 78 bool ProcessInstruction(Instruction *Inst, 79 const SmallVectorImpl<BasicBlock*> &ExitBlocks); 80 81 /// verifyAnalysis() - Verify loop nest. 82 virtual void verifyAnalysis() const { 83 // Check the special guarantees that LCSSA makes. 84 assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!"); 85 } 86 87 /// inLoop - returns true if the given block is within the current loop 88 bool inLoop(BasicBlock *B) const { 89 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 90 } 91 }; 92 } 93 94 char LCSSA::ID = 0; 95 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 96 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 97 INITIALIZE_PASS_DEPENDENCY(DominanceFrontier) 98 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 99 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 100 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 101 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 102 103 Pass *llvm::createLCSSAPass() { return new LCSSA(); } 104 char &llvm::LCSSAID = LCSSA::ID; 105 106 107 /// BlockDominatesAnExit - Return true if the specified block dominates at least 108 /// one of the blocks in the specified list. 109 static bool BlockDominatesAnExit(BasicBlock *BB, 110 const SmallVectorImpl<BasicBlock*> &ExitBlocks, 111 DominatorTree *DT) { 112 DomTreeNode *DomNode = DT->getNode(BB); 113 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 114 if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i]))) 115 return true; 116 117 return false; 118 } 119 120 121 /// runOnFunction - Process all loops in the function, inner-most out. 122 bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) { 123 L = TheLoop; 124 125 DT = &getAnalysis<DominatorTree>(); 126 127 // Get the set of exiting blocks. 128 SmallVector<BasicBlock*, 8> ExitBlocks; 129 L->getExitBlocks(ExitBlocks); 130 131 if (ExitBlocks.empty()) 132 return false; 133 134 // Speed up queries by creating a sorted vector of blocks. 135 LoopBlocks.clear(); 136 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 137 array_pod_sort(LoopBlocks.begin(), LoopBlocks.end()); 138 139 // Look at all the instructions in the loop, checking to see if they have uses 140 // outside the loop. If so, rewrite those uses. 141 bool MadeChange = false; 142 143 for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end(); 144 BBI != E; ++BBI) { 145 BasicBlock *BB = *BBI; 146 147 // For large loops, avoid use-scanning by using dominance information: In 148 // particular, if a block does not dominate any of the loop exits, then none 149 // of the values defined in the block could be used outside the loop. 150 if (!BlockDominatesAnExit(BB, ExitBlocks, DT)) 151 continue; 152 153 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 154 I != E; ++I) { 155 // Reject two common cases fast: instructions with no uses (like stores) 156 // and instructions with one use that is in the same block as this. 157 if (I->use_empty() || 158 (I->hasOneUse() && I->use_back()->getParent() == BB && 159 !isa<PHINode>(I->use_back()))) 160 continue; 161 162 MadeChange |= ProcessInstruction(I, ExitBlocks); 163 } 164 } 165 166 assert(L->isLCSSAForm(*DT)); 167 PredCache.clear(); 168 169 return MadeChange; 170 } 171 172 /// isExitBlock - Return true if the specified block is in the list. 173 static bool isExitBlock(BasicBlock *BB, 174 const SmallVectorImpl<BasicBlock*> &ExitBlocks) { 175 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 176 if (ExitBlocks[i] == BB) 177 return true; 178 return false; 179 } 180 181 /// ProcessInstruction - Given an instruction in the loop, check to see if it 182 /// has any uses that are outside the current loop. If so, insert LCSSA PHI 183 /// nodes and rewrite the uses. 184 bool LCSSA::ProcessInstruction(Instruction *Inst, 185 const SmallVectorImpl<BasicBlock*> &ExitBlocks) { 186 SmallVector<Use*, 16> UsesToRewrite; 187 188 BasicBlock *InstBB = Inst->getParent(); 189 190 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); 191 UI != E; ++UI) { 192 User *U = *UI; 193 BasicBlock *UserBB = cast<Instruction>(U)->getParent(); 194 if (PHINode *PN = dyn_cast<PHINode>(U)) 195 UserBB = PN->getIncomingBlock(UI); 196 197 if (InstBB != UserBB && !inLoop(UserBB)) 198 UsesToRewrite.push_back(&UI.getUse()); 199 } 200 201 // If there are no uses outside the loop, exit with no change. 202 if (UsesToRewrite.empty()) return false; 203 204 ++NumLCSSA; // We are applying the transformation 205 206 // Invoke instructions are special in that their result value is not available 207 // along their unwind edge. The code below tests to see whether DomBB dominates 208 // the value, so adjust DomBB to the normal destination block, which is 209 // effectively where the value is first usable. 210 BasicBlock *DomBB = Inst->getParent(); 211 if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst)) 212 DomBB = Inv->getNormalDest(); 213 214 DomTreeNode *DomNode = DT->getNode(DomBB); 215 216 SSAUpdater SSAUpdate; 217 SSAUpdate.Initialize(Inst->getType(), Inst->getName()); 218 219 // Insert the LCSSA phi's into all of the exit blocks dominated by the 220 // value, and add them to the Phi's map. 221 for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(), 222 BBE = ExitBlocks.end(); BBI != BBE; ++BBI) { 223 BasicBlock *ExitBB = *BBI; 224 if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue; 225 226 // If we already inserted something for this BB, don't reprocess it. 227 if (SSAUpdate.HasValueForBlock(ExitBB)) continue; 228 229 PHINode *PN = PHINode::Create(Inst->getType(), Inst->getName()+".lcssa", 230 ExitBB->begin()); 231 PN->reserveOperandSpace(PredCache.GetNumPreds(ExitBB)); 232 233 // Add inputs from inside the loop for this PHI. 234 for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) { 235 PN->addIncoming(Inst, *PI); 236 237 // If the exit block has a predecessor not within the loop, arrange for 238 // the incoming value use corresponding to that predecessor to be 239 // rewritten in terms of a different LCSSA PHI. 240 if (!inLoop(*PI)) 241 UsesToRewrite.push_back( 242 &PN->getOperandUse( 243 PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1))); 244 } 245 246 // Remember that this phi makes the value alive in this block. 247 SSAUpdate.AddAvailableValue(ExitBB, PN); 248 } 249 250 // Rewrite all uses outside the loop in terms of the new PHIs we just 251 // inserted. 252 for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) { 253 // If this use is in an exit block, rewrite to use the newly inserted PHI. 254 // This is required for correctness because SSAUpdate doesn't handle uses in 255 // the same block. It assumes the PHI we inserted is at the end of the 256 // block. 257 Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser()); 258 BasicBlock *UserBB = User->getParent(); 259 if (PHINode *PN = dyn_cast<PHINode>(User)) 260 UserBB = PN->getIncomingBlock(*UsesToRewrite[i]); 261 262 if (isa<PHINode>(UserBB->begin()) && 263 isExitBlock(UserBB, ExitBlocks)) { 264 UsesToRewrite[i]->set(UserBB->begin()); 265 continue; 266 } 267 268 // Otherwise, do full PHI insertion. 269 SSAUpdate.RewriteUse(*UsesToRewrite[i]); 270 } 271 272 return true; 273 } 274 275