xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 63f970ee2484d39782cb9686fdeca00d55e866ca)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/PredIteratorCache.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "lcssa"
51 
52 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
53 
54 /// Return true if the specified block is in the list.
55 static bool isExitBlock(BasicBlock *BB,
56                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
57   return find(ExitBlocks, BB) != ExitBlocks.end();
58 }
59 
60 /// For every instruction from the worklist, check to see if it has any uses
61 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
62 /// rewrite the uses.
63 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
64                                     DominatorTree &DT, LoopInfo &LI) {
65   SmallVector<Use *, 16> UsesToRewrite;
66   SmallVector<BasicBlock *, 8> ExitBlocks;
67   SmallSetVector<PHINode *, 16> PHIsToRemove;
68   PredIteratorCache PredCache;
69   bool Changed = false;
70 
71   while (!Worklist.empty()) {
72     UsesToRewrite.clear();
73     ExitBlocks.clear();
74 
75     Instruction *I = Worklist.pop_back_val();
76     BasicBlock *InstBB = I->getParent();
77     Loop *L = LI.getLoopFor(InstBB);
78     L->getExitBlocks(ExitBlocks);
79 
80     if (ExitBlocks.empty())
81       continue;
82 
83     // Tokens cannot be used in PHI nodes, so we skip over them.
84     // We can run into tokens which are live out of a loop with catchswitch
85     // instructions in Windows EH if the catchswitch has one catchpad which
86     // is inside the loop and another which is not.
87     if (I->getType()->isTokenTy())
88       continue;
89 
90     for (Use &U : I->uses()) {
91       Instruction *User = cast<Instruction>(U.getUser());
92       BasicBlock *UserBB = User->getParent();
93       if (PHINode *PN = dyn_cast<PHINode>(User))
94         UserBB = PN->getIncomingBlock(U);
95 
96       if (InstBB != UserBB && !L->contains(UserBB))
97         UsesToRewrite.push_back(&U);
98     }
99 
100     // If there are no uses outside the loop, exit with no change.
101     if (UsesToRewrite.empty())
102       continue;
103 
104     ++NumLCSSA; // We are applying the transformation
105 
106     // Invoke instructions are special in that their result value is not
107     // available along their unwind edge. The code below tests to see whether
108     // DomBB dominates the value, so adjust DomBB to the normal destination
109     // block, which is effectively where the value is first usable.
110     BasicBlock *DomBB = InstBB;
111     if (InvokeInst *Inv = dyn_cast<InvokeInst>(I))
112       DomBB = Inv->getNormalDest();
113 
114     DomTreeNode *DomNode = DT.getNode(DomBB);
115 
116     SmallVector<PHINode *, 16> AddedPHIs;
117     SmallVector<PHINode *, 8> PostProcessPHIs;
118 
119     SmallVector<PHINode *, 4> InsertedPHIs;
120     SSAUpdater SSAUpdate(&InsertedPHIs);
121     SSAUpdate.Initialize(I->getType(), I->getName());
122 
123     // Insert the LCSSA phi's into all of the exit blocks dominated by the
124     // value, and add them to the Phi's map.
125     for (BasicBlock *ExitBB : ExitBlocks) {
126       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
127         continue;
128 
129       // If we already inserted something for this BB, don't reprocess it.
130       if (SSAUpdate.HasValueForBlock(ExitBB))
131         continue;
132 
133       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
134                                     I->getName() + ".lcssa", &ExitBB->front());
135 
136       // Add inputs from inside the loop for this PHI.
137       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
138         PN->addIncoming(I, Pred);
139 
140         // If the exit block has a predecessor not within the loop, arrange for
141         // the incoming value use corresponding to that predecessor to be
142         // rewritten in terms of a different LCSSA PHI.
143         if (!L->contains(Pred))
144           UsesToRewrite.push_back(
145               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
146                   PN->getNumIncomingValues() - 1)));
147       }
148 
149       AddedPHIs.push_back(PN);
150 
151       // Remember that this phi makes the value alive in this block.
152       SSAUpdate.AddAvailableValue(ExitBB, PN);
153 
154       // LoopSimplify might fail to simplify some loops (e.g. when indirect
155       // branches are involved). In such situations, it might happen that an
156       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
157       // create PHIs in such an exit block, we are also inserting PHIs into L2's
158       // header. This could break LCSSA form for L2 because these inserted PHIs
159       // can also have uses outside of L2. Remember all PHIs in such situation
160       // as to revisit than later on. FIXME: Remove this if indirectbr support
161       // into LoopSimplify gets improved.
162       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
163         if (!L->contains(OtherLoop))
164           PostProcessPHIs.push_back(PN);
165     }
166 
167     // Rewrite all uses outside the loop in terms of the new PHIs we just
168     // inserted.
169     for (Use *UseToRewrite : UsesToRewrite) {
170       // If this use is in an exit block, rewrite to use the newly inserted PHI.
171       // This is required for correctness because SSAUpdate doesn't handle uses
172       // in the same block.  It assumes the PHI we inserted is at the end of the
173       // block.
174       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
175       BasicBlock *UserBB = User->getParent();
176       if (PHINode *PN = dyn_cast<PHINode>(User))
177         UserBB = PN->getIncomingBlock(*UseToRewrite);
178 
179       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
180         // Tell the VHs that the uses changed. This updates SCEV's caches.
181         if (UseToRewrite->get()->hasValueHandle())
182           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
183         UseToRewrite->set(&UserBB->front());
184         continue;
185       }
186 
187       // Otherwise, do full PHI insertion.
188       SSAUpdate.RewriteUse(*UseToRewrite);
189     }
190 
191     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
192     // to post-process them to keep LCSSA form.
193     for (PHINode *InsertedPN : InsertedPHIs) {
194       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
195         if (!L->contains(OtherLoop))
196           PostProcessPHIs.push_back(InsertedPN);
197     }
198 
199     // Post process PHI instructions that were inserted into another disjoint
200     // loop and update their exits properly.
201     for (auto *PostProcessPN : PostProcessPHIs) {
202       if (PostProcessPN->use_empty())
203         continue;
204 
205       // Reprocess each PHI instruction.
206       Worklist.push_back(PostProcessPN);
207     }
208 
209     // Keep track of PHI nodes that we want to remove because they did not have
210     // any uses rewritten.
211     for (PHINode *PN : AddedPHIs)
212       if (PN->use_empty())
213         PHIsToRemove.insert(PN);
214 
215     Changed = true;
216   }
217   // Remove PHI nodes that did not have any uses rewritten.
218   for (PHINode *PN : PHIsToRemove) {
219     assert (PN->use_empty() && "Trying to remove a phi with uses.");
220     PN->eraseFromParent();
221   }
222   return Changed;
223 }
224 
225 /// Return true if the specified block dominates at least
226 /// one of the blocks in the specified list.
227 static bool
228 blockDominatesAnExit(BasicBlock *BB,
229                      DominatorTree &DT,
230                      const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
231   DomTreeNode *DomNode = DT.getNode(BB);
232   return llvm::any_of(ExitBlocks, [&](BasicBlock * EB) {
233     return DT.dominates(DomNode, DT.getNode(EB));
234   });
235 }
236 
237 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
238                      ScalarEvolution *SE) {
239   bool Changed = false;
240 
241   // Get the set of exiting blocks.
242   SmallVector<BasicBlock *, 8> ExitBlocks;
243   L.getExitBlocks(ExitBlocks);
244 
245   if (ExitBlocks.empty())
246     return false;
247 
248   SmallVector<Instruction *, 8> Worklist;
249 
250   // Look at all the instructions in the loop, checking to see if they have uses
251   // outside the loop.  If so, put them into the worklist to rewrite those uses.
252   for (BasicBlock *BB : L.blocks()) {
253     // For large loops, avoid use-scanning by using dominance information:  In
254     // particular, if a block does not dominate any of the loop exits, then none
255     // of the values defined in the block could be used outside the loop.
256     if (!blockDominatesAnExit(BB, DT, ExitBlocks))
257       continue;
258 
259     for (Instruction &I : *BB) {
260       // Reject two common cases fast: instructions with no uses (like stores)
261       // and instructions with one use that is in the same block as this.
262       if (I.use_empty() ||
263           (I.hasOneUse() && I.user_back()->getParent() == BB &&
264            !isa<PHINode>(I.user_back())))
265         continue;
266 
267       Worklist.push_back(&I);
268     }
269   }
270   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
271 
272   // If we modified the code, remove any caches about the loop from SCEV to
273   // avoid dangling entries.
274   // FIXME: This is a big hammer, can we clear the cache more selectively?
275   if (SE && Changed)
276     SE->forgetLoop(&L);
277 
278   assert(L.isLCSSAForm(DT));
279 
280   return Changed;
281 }
282 
283 /// Process a loop nest depth first.
284 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
285                                 ScalarEvolution *SE) {
286   bool Changed = false;
287 
288   // Recurse depth-first through inner loops.
289   for (Loop *SubLoop : L.getSubLoops())
290     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
291 
292   Changed |= formLCSSA(L, DT, LI, SE);
293   return Changed;
294 }
295 
296 /// Process all loops in the function, inner-most out.
297 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
298                                 ScalarEvolution *SE) {
299   bool Changed = false;
300   for (auto &L : *LI)
301     Changed |= formLCSSARecursively(*L, DT, LI, SE);
302   return Changed;
303 }
304 
305 namespace {
306 struct LCSSAWrapperPass : public FunctionPass {
307   static char ID; // Pass identification, replacement for typeid
308   LCSSAWrapperPass() : FunctionPass(ID) {
309     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
310   }
311 
312   // Cached analysis information for the current function.
313   DominatorTree *DT;
314   LoopInfo *LI;
315   ScalarEvolution *SE;
316 
317   bool runOnFunction(Function &F) override;
318   void verifyAnalysis() const override {
319     assert(
320         all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); }) &&
321         "LCSSA form is broken!");
322   };
323 
324   /// This transformation requires natural loop information & requires that
325   /// loop preheaders be inserted into the CFG.  It maintains both of these,
326   /// as well as the CFG.  It also requires dominator information.
327   void getAnalysisUsage(AnalysisUsage &AU) const override {
328     AU.setPreservesCFG();
329 
330     AU.addRequired<DominatorTreeWrapperPass>();
331     AU.addRequired<LoopInfoWrapperPass>();
332     AU.addPreservedID(LoopSimplifyID);
333     AU.addPreserved<AAResultsWrapperPass>();
334     AU.addPreserved<BasicAAWrapperPass>();
335     AU.addPreserved<GlobalsAAWrapperPass>();
336     AU.addPreserved<ScalarEvolutionWrapperPass>();
337     AU.addPreserved<SCEVAAWrapperPass>();
338   }
339 };
340 }
341 
342 char LCSSAWrapperPass::ID = 0;
343 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
344                       false, false)
345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
346 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
347 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
348                     false, false)
349 
350 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
351 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
352 
353 /// Transform \p F into loop-closed SSA form.
354 bool LCSSAWrapperPass::runOnFunction(Function &F) {
355   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
356   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
357   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
358   SE = SEWP ? &SEWP->getSE() : nullptr;
359 
360   return formLCSSAOnAllLoops(LI, *DT, SE);
361 }
362 
363 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
364   auto &LI = AM.getResult<LoopAnalysis>(F);
365   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
366   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
367   if (!formLCSSAOnAllLoops(&LI, DT, SE))
368     return PreservedAnalyses::all();
369 
370   // FIXME: This should also 'preserve the CFG'.
371   PreservedAnalyses PA;
372   PA.preserve<BasicAA>();
373   PA.preserve<GlobalsAA>();
374   PA.preserve<SCEVAA>();
375   PA.preserve<ScalarEvolutionAnalysis>();
376   return PA;
377 }
378