xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 596e4ab97a1637d2c7781aed20e3d62bcf07ef5d)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include "llvm/Transforms/Utils/SSAUpdater.h"
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "lcssa"
54 
55 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
56 
57 #ifdef EXPENSIVE_CHECKS
58 static bool VerifyLoopLCSSA = true;
59 #else
60 static bool VerifyLoopLCSSA = false;
61 #endif
62 static cl::opt<bool, true>
63     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
64                         cl::Hidden,
65                         cl::desc("Verify loop lcssa form (time consuming)"));
66 
67 /// Return true if the specified block is in the list.
68 static bool isExitBlock(BasicBlock *BB,
69                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
70   return is_contained(ExitBlocks, BB);
71 }
72 
73 /// For every instruction from the worklist, check to see if it has any uses
74 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
75 /// rewrite the uses.
76 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
77                                     DominatorTree &DT, LoopInfo &LI,
78                                     ScalarEvolution *SE) {
79   SmallVector<Use *, 16> UsesToRewrite;
80   SmallSetVector<PHINode *, 16> PHIsToRemove;
81   PredIteratorCache PredCache;
82   bool Changed = false;
83 
84   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
85   // instructions within the same loops, computing the exit blocks is
86   // expensive, and we're not mutating the loop structure.
87   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
88 
89   while (!Worklist.empty()) {
90     UsesToRewrite.clear();
91 
92     Instruction *I = Worklist.pop_back_val();
93     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
94     BasicBlock *InstBB = I->getParent();
95     Loop *L = LI.getLoopFor(InstBB);
96     assert(L && "Instruction belongs to a BB that's not part of a loop");
97     if (!LoopExitBlocks.count(L))
98       L->getExitBlocks(LoopExitBlocks[L]);
99     assert(LoopExitBlocks.count(L));
100     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
101 
102     if (ExitBlocks.empty())
103       continue;
104 
105     for (Use &U : I->uses()) {
106       Instruction *User = cast<Instruction>(U.getUser());
107       BasicBlock *UserBB = User->getParent();
108       if (auto *PN = dyn_cast<PHINode>(User))
109         UserBB = PN->getIncomingBlock(U);
110 
111       if (InstBB != UserBB && !L->contains(UserBB))
112         UsesToRewrite.push_back(&U);
113     }
114 
115     // If there are no uses outside the loop, exit with no change.
116     if (UsesToRewrite.empty())
117       continue;
118 
119     ++NumLCSSA; // We are applying the transformation
120 
121     // Invoke instructions are special in that their result value is not
122     // available along their unwind edge. The code below tests to see whether
123     // DomBB dominates the value, so adjust DomBB to the normal destination
124     // block, which is effectively where the value is first usable.
125     BasicBlock *DomBB = InstBB;
126     if (auto *Inv = dyn_cast<InvokeInst>(I))
127       DomBB = Inv->getNormalDest();
128 
129     DomTreeNode *DomNode = DT.getNode(DomBB);
130 
131     SmallVector<PHINode *, 16> AddedPHIs;
132     SmallVector<PHINode *, 8> PostProcessPHIs;
133 
134     SmallVector<PHINode *, 4> InsertedPHIs;
135     SSAUpdater SSAUpdate(&InsertedPHIs);
136     SSAUpdate.Initialize(I->getType(), I->getName());
137 
138     // Force re-computation of I, as some users now need to use the new PHI
139     // node.
140     if (SE)
141       SE->forgetValue(I);
142 
143     // Insert the LCSSA phi's into all of the exit blocks dominated by the
144     // value, and add them to the Phi's map.
145     for (BasicBlock *ExitBB : ExitBlocks) {
146       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
147         continue;
148 
149       // If we already inserted something for this BB, don't reprocess it.
150       if (SSAUpdate.HasValueForBlock(ExitBB))
151         continue;
152 
153       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
154                                     I->getName() + ".lcssa", &ExitBB->front());
155       // Get the debug location from the original instruction.
156       PN->setDebugLoc(I->getDebugLoc());
157       // Add inputs from inside the loop for this PHI.
158       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
159         PN->addIncoming(I, Pred);
160 
161         // If the exit block has a predecessor not within the loop, arrange for
162         // the incoming value use corresponding to that predecessor to be
163         // rewritten in terms of a different LCSSA PHI.
164         if (!L->contains(Pred))
165           UsesToRewrite.push_back(
166               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
167                   PN->getNumIncomingValues() - 1)));
168       }
169 
170       AddedPHIs.push_back(PN);
171 
172       // Remember that this phi makes the value alive in this block.
173       SSAUpdate.AddAvailableValue(ExitBB, PN);
174 
175       // LoopSimplify might fail to simplify some loops (e.g. when indirect
176       // branches are involved). In such situations, it might happen that an
177       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
178       // create PHIs in such an exit block, we are also inserting PHIs into L2's
179       // header. This could break LCSSA form for L2 because these inserted PHIs
180       // can also have uses outside of L2. Remember all PHIs in such situation
181       // as to revisit than later on. FIXME: Remove this if indirectbr support
182       // into LoopSimplify gets improved.
183       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
184         if (!L->contains(OtherLoop))
185           PostProcessPHIs.push_back(PN);
186     }
187 
188     // Rewrite all uses outside the loop in terms of the new PHIs we just
189     // inserted.
190     for (Use *UseToRewrite : UsesToRewrite) {
191       // If this use is in an exit block, rewrite to use the newly inserted PHI.
192       // This is required for correctness because SSAUpdate doesn't handle uses
193       // in the same block.  It assumes the PHI we inserted is at the end of the
194       // block.
195       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
196       BasicBlock *UserBB = User->getParent();
197       if (auto *PN = dyn_cast<PHINode>(User))
198         UserBB = PN->getIncomingBlock(*UseToRewrite);
199 
200       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
201         // Tell the VHs that the uses changed. This updates SCEV's caches.
202         if (UseToRewrite->get()->hasValueHandle())
203           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
204         UseToRewrite->set(&UserBB->front());
205         continue;
206       }
207 
208       // If we added a single PHI, it must dominate all uses and we can directly
209       // rename it.
210       if (AddedPHIs.size() == 1) {
211         // Tell the VHs that the uses changed. This updates SCEV's caches.
212         // We might call ValueIsRAUWd multiple times for the same value.
213         if (UseToRewrite->get()->hasValueHandle())
214           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]);
215         UseToRewrite->set(AddedPHIs[0]);
216         continue;
217       }
218 
219       // Otherwise, do full PHI insertion.
220       SSAUpdate.RewriteUse(*UseToRewrite);
221     }
222 
223     SmallVector<DbgValueInst *, 4> DbgValues;
224     llvm::findDbgValues(DbgValues, I);
225 
226     // Update pre-existing debug value uses that reside outside the loop.
227     auto &Ctx = I->getContext();
228     for (auto DVI : DbgValues) {
229       BasicBlock *UserBB = DVI->getParent();
230       if (InstBB == UserBB || L->contains(UserBB))
231         continue;
232       // We currently only handle debug values residing in blocks that were
233       // traversed while rewriting the uses. If we inserted just a single PHI,
234       // we will handle all relevant debug values.
235       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
236                                        : SSAUpdate.FindValueForBlock(UserBB);
237       if (V)
238         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
239     }
240 
241     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
242     // to post-process them to keep LCSSA form.
243     for (PHINode *InsertedPN : InsertedPHIs) {
244       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
245         if (!L->contains(OtherLoop))
246           PostProcessPHIs.push_back(InsertedPN);
247     }
248 
249     // Post process PHI instructions that were inserted into another disjoint
250     // loop and update their exits properly.
251     for (auto *PostProcessPN : PostProcessPHIs)
252       if (!PostProcessPN->use_empty())
253         Worklist.push_back(PostProcessPN);
254 
255     // Keep track of PHI nodes that we want to remove because they did not have
256     // any uses rewritten. If the new PHI is used, store it so that we can
257     // try to propagate dbg.value intrinsics to it.
258     SmallVector<PHINode *, 2> NeedDbgValues;
259     for (PHINode *PN : AddedPHIs)
260       if (PN->use_empty())
261         PHIsToRemove.insert(PN);
262       else
263         NeedDbgValues.push_back(PN);
264     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
265     Changed = true;
266   }
267   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
268   // use_empty() check here, because even if the PHI node wasn't used when added
269   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
270   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
271   // each other. Such situations has only been noticed when the input IR
272   // contains unreachable code, and leaving some extra redundant PHI nodes in
273   // such situations is considered a minor problem.
274   for (PHINode *PN : PHIsToRemove)
275     if (PN->use_empty())
276       PN->eraseFromParent();
277   return Changed;
278 }
279 
280 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
281 static void computeBlocksDominatingExits(
282     Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
283     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
284   SmallVector<BasicBlock *, 8> BBWorklist;
285 
286   // We start from the exit blocks, as every block trivially dominates itself
287   // (not strictly).
288   for (BasicBlock *BB : ExitBlocks)
289     BBWorklist.push_back(BB);
290 
291   while (!BBWorklist.empty()) {
292     BasicBlock *BB = BBWorklist.pop_back_val();
293 
294     // Check if this is a loop header. If this is the case, we're done.
295     if (L.getHeader() == BB)
296       continue;
297 
298     // Otherwise, add its immediate predecessor in the dominator tree to the
299     // worklist, unless we visited it already.
300     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
301 
302     // Exit blocks can have an immediate dominator not beloinging to the
303     // loop. For an exit block to be immediately dominated by another block
304     // outside the loop, it implies not all paths from that dominator, to the
305     // exit block, go through the loop.
306     // Example:
307     //
308     // |---- A
309     // |     |
310     // |     B<--
311     // |     |  |
312     // |---> C --
313     //       |
314     //       D
315     //
316     // C is the exit block of the loop and it's immediately dominated by A,
317     // which doesn't belong to the loop.
318     if (!L.contains(IDomBB))
319       continue;
320 
321     if (BlocksDominatingExits.insert(IDomBB))
322       BBWorklist.push_back(IDomBB);
323   }
324 }
325 
326 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
327                      ScalarEvolution *SE) {
328   bool Changed = false;
329 
330 #ifdef EXPENSIVE_CHECKS
331   // Verify all sub-loops are in LCSSA form already.
332   for (Loop *SubLoop: L)
333     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
334 #endif
335 
336   SmallVector<BasicBlock *, 8> ExitBlocks;
337   L.getExitBlocks(ExitBlocks);
338   if (ExitBlocks.empty())
339     return false;
340 
341   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
342 
343   // We want to avoid use-scanning leveraging dominance informations.
344   // If a block doesn't dominate any of the loop exits, the none of the values
345   // defined in the loop can be used outside.
346   // We compute the set of blocks fullfilling the conditions in advance
347   // walking the dominator tree upwards until we hit a loop header.
348   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
349 
350   SmallVector<Instruction *, 8> Worklist;
351 
352   // Look at all the instructions in the loop, checking to see if they have uses
353   // outside the loop.  If so, put them into the worklist to rewrite those uses.
354   for (BasicBlock *BB : BlocksDominatingExits) {
355     // Skip blocks that are part of any sub-loops, they must be in LCSSA
356     // already.
357     if (LI->getLoopFor(BB) != &L)
358       continue;
359     for (Instruction &I : *BB) {
360       // Reject two common cases fast: instructions with no uses (like stores)
361       // and instructions with one use that is in the same block as this.
362       if (I.use_empty() ||
363           (I.hasOneUse() && I.user_back()->getParent() == BB &&
364            !isa<PHINode>(I.user_back())))
365         continue;
366 
367       // Tokens cannot be used in PHI nodes, so we skip over them.
368       // We can run into tokens which are live out of a loop with catchswitch
369       // instructions in Windows EH if the catchswitch has one catchpad which
370       // is inside the loop and another which is not.
371       if (I.getType()->isTokenTy())
372         continue;
373 
374       Worklist.push_back(&I);
375     }
376   }
377   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE);
378 
379   // If we modified the code, remove any caches about the loop from SCEV to
380   // avoid dangling entries.
381   // FIXME: This is a big hammer, can we clear the cache more selectively?
382   if (SE && Changed)
383     SE->forgetLoop(&L);
384 
385   assert(L.isLCSSAForm(DT));
386 
387   return Changed;
388 }
389 
390 /// Process a loop nest depth first.
391 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
392                                 ScalarEvolution *SE) {
393   bool Changed = false;
394 
395   // Recurse depth-first through inner loops.
396   for (Loop *SubLoop : L.getSubLoops())
397     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
398 
399   Changed |= formLCSSA(L, DT, LI, SE);
400   return Changed;
401 }
402 
403 /// Process all loops in the function, inner-most out.
404 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
405                                 ScalarEvolution *SE) {
406   bool Changed = false;
407   for (auto &L : *LI)
408     Changed |= formLCSSARecursively(*L, DT, LI, SE);
409   return Changed;
410 }
411 
412 namespace {
413 struct LCSSAWrapperPass : public FunctionPass {
414   static char ID; // Pass identification, replacement for typeid
415   LCSSAWrapperPass() : FunctionPass(ID) {
416     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
417   }
418 
419   // Cached analysis information for the current function.
420   DominatorTree *DT;
421   LoopInfo *LI;
422   ScalarEvolution *SE;
423 
424   bool runOnFunction(Function &F) override;
425   void verifyAnalysis() const override {
426     // This check is very expensive. On the loop intensive compiles it may cause
427     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
428     // always does limited form of the LCSSA verification. Similar reasoning
429     // was used for the LoopInfo verifier.
430     if (VerifyLoopLCSSA) {
431       assert(all_of(*LI,
432                     [&](Loop *L) {
433                       return L->isRecursivelyLCSSAForm(*DT, *LI);
434                     }) &&
435              "LCSSA form is broken!");
436     }
437   };
438 
439   /// This transformation requires natural loop information & requires that
440   /// loop preheaders be inserted into the CFG.  It maintains both of these,
441   /// as well as the CFG.  It also requires dominator information.
442   void getAnalysisUsage(AnalysisUsage &AU) const override {
443     AU.setPreservesCFG();
444 
445     AU.addRequired<DominatorTreeWrapperPass>();
446     AU.addRequired<LoopInfoWrapperPass>();
447     AU.addPreservedID(LoopSimplifyID);
448     AU.addPreserved<AAResultsWrapperPass>();
449     AU.addPreserved<BasicAAWrapperPass>();
450     AU.addPreserved<GlobalsAAWrapperPass>();
451     AU.addPreserved<ScalarEvolutionWrapperPass>();
452     AU.addPreserved<SCEVAAWrapperPass>();
453     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
454     AU.addPreserved<MemorySSAWrapperPass>();
455 
456     // This is needed to perform LCSSA verification inside LPPassManager
457     AU.addRequired<LCSSAVerificationPass>();
458     AU.addPreserved<LCSSAVerificationPass>();
459   }
460 };
461 }
462 
463 char LCSSAWrapperPass::ID = 0;
464 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
465                       false, false)
466 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
467 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
468 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
469 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
470                     false, false)
471 
472 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
473 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
474 
475 /// Transform \p F into loop-closed SSA form.
476 bool LCSSAWrapperPass::runOnFunction(Function &F) {
477   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
478   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
479   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
480   SE = SEWP ? &SEWP->getSE() : nullptr;
481 
482   return formLCSSAOnAllLoops(LI, *DT, SE);
483 }
484 
485 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
486   auto &LI = AM.getResult<LoopAnalysis>(F);
487   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
488   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
489   if (!formLCSSAOnAllLoops(&LI, DT, SE))
490     return PreservedAnalyses::all();
491 
492   PreservedAnalyses PA;
493   PA.preserveSet<CFGAnalyses>();
494   PA.preserve<BasicAA>();
495   PA.preserve<GlobalsAA>();
496   PA.preserve<SCEVAA>();
497   PA.preserve<ScalarEvolutionAnalysis>();
498   // BPI maps terminators to probabilities, since we don't modify the CFG, no
499   // updates are needed to preserve it.
500   PA.preserve<BranchProbabilityAnalysis>();
501   PA.preserve<MemorySSAAnalysis>();
502   return PA;
503 }
504