1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/Analysis/Utils/Local.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 #include "llvm/Transforms/Utils/SSAUpdater.h" 49 using namespace llvm; 50 51 #define DEBUG_TYPE "lcssa" 52 53 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 54 55 #ifdef EXPENSIVE_CHECKS 56 static bool VerifyLoopLCSSA = true; 57 #else 58 static bool VerifyLoopLCSSA = false; 59 #endif 60 static cl::opt<bool, true> 61 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 62 cl::Hidden, 63 cl::desc("Verify loop lcssa form (time consuming)")); 64 65 /// Return true if the specified block is in the list. 66 static bool isExitBlock(BasicBlock *BB, 67 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 68 return is_contained(ExitBlocks, BB); 69 } 70 71 /// For every instruction from the worklist, check to see if it has any uses 72 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 73 /// rewrite the uses. 74 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 75 DominatorTree &DT, LoopInfo &LI) { 76 SmallVector<Use *, 16> UsesToRewrite; 77 SmallSetVector<PHINode *, 16> PHIsToRemove; 78 PredIteratorCache PredCache; 79 bool Changed = false; 80 81 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 82 // instructions within the same loops, computing the exit blocks is 83 // expensive, and we're not mutating the loop structure. 84 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 85 86 while (!Worklist.empty()) { 87 UsesToRewrite.clear(); 88 89 Instruction *I = Worklist.pop_back_val(); 90 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 91 BasicBlock *InstBB = I->getParent(); 92 Loop *L = LI.getLoopFor(InstBB); 93 assert(L && "Instruction belongs to a BB that's not part of a loop"); 94 if (!LoopExitBlocks.count(L)) 95 L->getExitBlocks(LoopExitBlocks[L]); 96 assert(LoopExitBlocks.count(L)); 97 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 98 99 if (ExitBlocks.empty()) 100 continue; 101 102 for (Use &U : I->uses()) { 103 Instruction *User = cast<Instruction>(U.getUser()); 104 BasicBlock *UserBB = User->getParent(); 105 if (auto *PN = dyn_cast<PHINode>(User)) 106 UserBB = PN->getIncomingBlock(U); 107 108 if (InstBB != UserBB && !L->contains(UserBB)) 109 UsesToRewrite.push_back(&U); 110 } 111 112 // If there are no uses outside the loop, exit with no change. 113 if (UsesToRewrite.empty()) 114 continue; 115 116 ++NumLCSSA; // We are applying the transformation 117 118 // Invoke instructions are special in that their result value is not 119 // available along their unwind edge. The code below tests to see whether 120 // DomBB dominates the value, so adjust DomBB to the normal destination 121 // block, which is effectively where the value is first usable. 122 BasicBlock *DomBB = InstBB; 123 if (auto *Inv = dyn_cast<InvokeInst>(I)) 124 DomBB = Inv->getNormalDest(); 125 126 DomTreeNode *DomNode = DT.getNode(DomBB); 127 128 SmallVector<PHINode *, 16> AddedPHIs; 129 SmallVector<PHINode *, 8> PostProcessPHIs; 130 131 SmallVector<PHINode *, 4> InsertedPHIs; 132 SSAUpdater SSAUpdate(&InsertedPHIs); 133 SSAUpdate.Initialize(I->getType(), I->getName()); 134 135 // Insert the LCSSA phi's into all of the exit blocks dominated by the 136 // value, and add them to the Phi's map. 137 for (BasicBlock *ExitBB : ExitBlocks) { 138 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 139 continue; 140 141 // If we already inserted something for this BB, don't reprocess it. 142 if (SSAUpdate.HasValueForBlock(ExitBB)) 143 continue; 144 145 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 146 I->getName() + ".lcssa", &ExitBB->front()); 147 148 // Add inputs from inside the loop for this PHI. 149 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 150 PN->addIncoming(I, Pred); 151 152 // If the exit block has a predecessor not within the loop, arrange for 153 // the incoming value use corresponding to that predecessor to be 154 // rewritten in terms of a different LCSSA PHI. 155 if (!L->contains(Pred)) 156 UsesToRewrite.push_back( 157 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 158 PN->getNumIncomingValues() - 1))); 159 } 160 161 AddedPHIs.push_back(PN); 162 163 // Remember that this phi makes the value alive in this block. 164 SSAUpdate.AddAvailableValue(ExitBB, PN); 165 166 // LoopSimplify might fail to simplify some loops (e.g. when indirect 167 // branches are involved). In such situations, it might happen that an 168 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 169 // create PHIs in such an exit block, we are also inserting PHIs into L2's 170 // header. This could break LCSSA form for L2 because these inserted PHIs 171 // can also have uses outside of L2. Remember all PHIs in such situation 172 // as to revisit than later on. FIXME: Remove this if indirectbr support 173 // into LoopSimplify gets improved. 174 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 175 if (!L->contains(OtherLoop)) 176 PostProcessPHIs.push_back(PN); 177 } 178 179 // Rewrite all uses outside the loop in terms of the new PHIs we just 180 // inserted. 181 for (Use *UseToRewrite : UsesToRewrite) { 182 // If this use is in an exit block, rewrite to use the newly inserted PHI. 183 // This is required for correctness because SSAUpdate doesn't handle uses 184 // in the same block. It assumes the PHI we inserted is at the end of the 185 // block. 186 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 187 BasicBlock *UserBB = User->getParent(); 188 if (auto *PN = dyn_cast<PHINode>(User)) 189 UserBB = PN->getIncomingBlock(*UseToRewrite); 190 191 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 192 // Tell the VHs that the uses changed. This updates SCEV's caches. 193 if (UseToRewrite->get()->hasValueHandle()) 194 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 195 UseToRewrite->set(&UserBB->front()); 196 continue; 197 } 198 199 // Otherwise, do full PHI insertion. 200 SSAUpdate.RewriteUse(*UseToRewrite); 201 } 202 203 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 204 // to post-process them to keep LCSSA form. 205 for (PHINode *InsertedPN : InsertedPHIs) { 206 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 207 if (!L->contains(OtherLoop)) 208 PostProcessPHIs.push_back(InsertedPN); 209 } 210 211 // Post process PHI instructions that were inserted into another disjoint 212 // loop and update their exits properly. 213 for (auto *PostProcessPN : PostProcessPHIs) 214 if (!PostProcessPN->use_empty()) 215 Worklist.push_back(PostProcessPN); 216 217 // Keep track of PHI nodes that we want to remove because they did not have 218 // any uses rewritten. If the new PHI is used, store it so that we can 219 // try to propagate dbg.value intrinsics to it. 220 SmallVector<PHINode *, 2> NeedDbgValues; 221 for (PHINode *PN : AddedPHIs) 222 if (PN->use_empty()) 223 PHIsToRemove.insert(PN); 224 else 225 NeedDbgValues.push_back(PN); 226 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 227 Changed = true; 228 } 229 // Remove PHI nodes that did not have any uses rewritten. We need to redo the 230 // use_empty() check here, because even if the PHI node wasn't used when added 231 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is 232 // not guaranteed to handle trees/cycles of PHI nodes that only are used by 233 // each other. Such situations has only been noticed when the input IR 234 // contains unreachable code, and leaving some extra redundant PHI nodes in 235 // such situations is considered a minor problem. 236 for (PHINode *PN : PHIsToRemove) 237 if (PN->use_empty()) 238 PN->eraseFromParent(); 239 return Changed; 240 } 241 242 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 243 static void computeBlocksDominatingExits( 244 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 245 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 246 SmallVector<BasicBlock *, 8> BBWorklist; 247 248 // We start from the exit blocks, as every block trivially dominates itself 249 // (not strictly). 250 for (BasicBlock *BB : ExitBlocks) 251 BBWorklist.push_back(BB); 252 253 while (!BBWorklist.empty()) { 254 BasicBlock *BB = BBWorklist.pop_back_val(); 255 256 // Check if this is a loop header. If this is the case, we're done. 257 if (L.getHeader() == BB) 258 continue; 259 260 // Otherwise, add its immediate predecessor in the dominator tree to the 261 // worklist, unless we visited it already. 262 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 263 264 // Exit blocks can have an immediate dominator not beloinging to the 265 // loop. For an exit block to be immediately dominated by another block 266 // outside the loop, it implies not all paths from that dominator, to the 267 // exit block, go through the loop. 268 // Example: 269 // 270 // |---- A 271 // | | 272 // | B<-- 273 // | | | 274 // |---> C -- 275 // | 276 // D 277 // 278 // C is the exit block of the loop and it's immediately dominated by A, 279 // which doesn't belong to the loop. 280 if (!L.contains(IDomBB)) 281 continue; 282 283 if (BlocksDominatingExits.insert(IDomBB)) 284 BBWorklist.push_back(IDomBB); 285 } 286 } 287 288 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 289 ScalarEvolution *SE) { 290 bool Changed = false; 291 292 SmallVector<BasicBlock *, 8> ExitBlocks; 293 L.getExitBlocks(ExitBlocks); 294 if (ExitBlocks.empty()) 295 return false; 296 297 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 298 299 // We want to avoid use-scanning leveraging dominance informations. 300 // If a block doesn't dominate any of the loop exits, the none of the values 301 // defined in the loop can be used outside. 302 // We compute the set of blocks fullfilling the conditions in advance 303 // walking the dominator tree upwards until we hit a loop header. 304 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 305 306 SmallVector<Instruction *, 8> Worklist; 307 308 // Look at all the instructions in the loop, checking to see if they have uses 309 // outside the loop. If so, put them into the worklist to rewrite those uses. 310 for (BasicBlock *BB : BlocksDominatingExits) { 311 for (Instruction &I : *BB) { 312 // Reject two common cases fast: instructions with no uses (like stores) 313 // and instructions with one use that is in the same block as this. 314 if (I.use_empty() || 315 (I.hasOneUse() && I.user_back()->getParent() == BB && 316 !isa<PHINode>(I.user_back()))) 317 continue; 318 319 // Tokens cannot be used in PHI nodes, so we skip over them. 320 // We can run into tokens which are live out of a loop with catchswitch 321 // instructions in Windows EH if the catchswitch has one catchpad which 322 // is inside the loop and another which is not. 323 if (I.getType()->isTokenTy()) 324 continue; 325 326 Worklist.push_back(&I); 327 } 328 } 329 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 330 331 // If we modified the code, remove any caches about the loop from SCEV to 332 // avoid dangling entries. 333 // FIXME: This is a big hammer, can we clear the cache more selectively? 334 if (SE && Changed) 335 SE->forgetLoop(&L); 336 337 assert(L.isLCSSAForm(DT)); 338 339 return Changed; 340 } 341 342 /// Process a loop nest depth first. 343 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 344 ScalarEvolution *SE) { 345 bool Changed = false; 346 347 // Recurse depth-first through inner loops. 348 for (Loop *SubLoop : L.getSubLoops()) 349 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 350 351 Changed |= formLCSSA(L, DT, LI, SE); 352 return Changed; 353 } 354 355 /// Process all loops in the function, inner-most out. 356 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 357 ScalarEvolution *SE) { 358 bool Changed = false; 359 for (auto &L : *LI) 360 Changed |= formLCSSARecursively(*L, DT, LI, SE); 361 return Changed; 362 } 363 364 namespace { 365 struct LCSSAWrapperPass : public FunctionPass { 366 static char ID; // Pass identification, replacement for typeid 367 LCSSAWrapperPass() : FunctionPass(ID) { 368 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 369 } 370 371 // Cached analysis information for the current function. 372 DominatorTree *DT; 373 LoopInfo *LI; 374 ScalarEvolution *SE; 375 376 bool runOnFunction(Function &F) override; 377 void verifyAnalysis() const override { 378 // This check is very expensive. On the loop intensive compiles it may cause 379 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 380 // always does limited form of the LCSSA verification. Similar reasoning 381 // was used for the LoopInfo verifier. 382 if (VerifyLoopLCSSA) { 383 assert(all_of(*LI, 384 [&](Loop *L) { 385 return L->isRecursivelyLCSSAForm(*DT, *LI); 386 }) && 387 "LCSSA form is broken!"); 388 } 389 }; 390 391 /// This transformation requires natural loop information & requires that 392 /// loop preheaders be inserted into the CFG. It maintains both of these, 393 /// as well as the CFG. It also requires dominator information. 394 void getAnalysisUsage(AnalysisUsage &AU) const override { 395 AU.setPreservesCFG(); 396 397 AU.addRequired<DominatorTreeWrapperPass>(); 398 AU.addRequired<LoopInfoWrapperPass>(); 399 AU.addPreservedID(LoopSimplifyID); 400 AU.addPreserved<AAResultsWrapperPass>(); 401 AU.addPreserved<BasicAAWrapperPass>(); 402 AU.addPreserved<GlobalsAAWrapperPass>(); 403 AU.addPreserved<ScalarEvolutionWrapperPass>(); 404 AU.addPreserved<SCEVAAWrapperPass>(); 405 406 // This is needed to perform LCSSA verification inside LPPassManager 407 AU.addRequired<LCSSAVerificationPass>(); 408 AU.addPreserved<LCSSAVerificationPass>(); 409 } 410 }; 411 } 412 413 char LCSSAWrapperPass::ID = 0; 414 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 415 false, false) 416 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 417 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 418 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 419 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 420 false, false) 421 422 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 423 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 424 425 /// Transform \p F into loop-closed SSA form. 426 bool LCSSAWrapperPass::runOnFunction(Function &F) { 427 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 428 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 429 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 430 SE = SEWP ? &SEWP->getSE() : nullptr; 431 432 return formLCSSAOnAllLoops(LI, *DT, SE); 433 } 434 435 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 436 auto &LI = AM.getResult<LoopAnalysis>(F); 437 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 438 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 439 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 440 return PreservedAnalyses::all(); 441 442 PreservedAnalyses PA; 443 PA.preserveSet<CFGAnalyses>(); 444 PA.preserve<BasicAA>(); 445 PA.preserve<GlobalsAA>(); 446 PA.preserve<SCEVAA>(); 447 PA.preserve<ScalarEvolutionAnalysis>(); 448 return PA; 449 } 450