xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 51cebc98f3d8f6b7d9a9bb8ec419a3ba82aa9d4c)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/Analysis/Utils/Local.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Transforms/Utils.h"
47 #include "llvm/Transforms/Utils/LoopUtils.h"
48 #include "llvm/Transforms/Utils/SSAUpdater.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "lcssa"
52 
53 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
54 
55 #ifdef EXPENSIVE_CHECKS
56 static bool VerifyLoopLCSSA = true;
57 #else
58 static bool VerifyLoopLCSSA = false;
59 #endif
60 static cl::opt<bool, true>
61     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
62                         cl::Hidden,
63                         cl::desc("Verify loop lcssa form (time consuming)"));
64 
65 /// Return true if the specified block is in the list.
66 static bool isExitBlock(BasicBlock *BB,
67                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
68   return is_contained(ExitBlocks, BB);
69 }
70 
71 /// For every instruction from the worklist, check to see if it has any uses
72 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
73 /// rewrite the uses.
74 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
75                                     DominatorTree &DT, LoopInfo &LI) {
76   SmallVector<Use *, 16> UsesToRewrite;
77   SmallSetVector<PHINode *, 16> PHIsToRemove;
78   PredIteratorCache PredCache;
79   bool Changed = false;
80 
81   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
82   // instructions within the same loops, computing the exit blocks is
83   // expensive, and we're not mutating the loop structure.
84   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
85 
86   while (!Worklist.empty()) {
87     UsesToRewrite.clear();
88 
89     Instruction *I = Worklist.pop_back_val();
90     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
91     BasicBlock *InstBB = I->getParent();
92     Loop *L = LI.getLoopFor(InstBB);
93     assert(L && "Instruction belongs to a BB that's not part of a loop");
94     if (!LoopExitBlocks.count(L))
95       L->getExitBlocks(LoopExitBlocks[L]);
96     assert(LoopExitBlocks.count(L));
97     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
98 
99     if (ExitBlocks.empty())
100       continue;
101 
102     for (Use &U : I->uses()) {
103       Instruction *User = cast<Instruction>(U.getUser());
104       BasicBlock *UserBB = User->getParent();
105       if (auto *PN = dyn_cast<PHINode>(User))
106         UserBB = PN->getIncomingBlock(U);
107 
108       if (InstBB != UserBB && !L->contains(UserBB))
109         UsesToRewrite.push_back(&U);
110     }
111 
112     // If there are no uses outside the loop, exit with no change.
113     if (UsesToRewrite.empty())
114       continue;
115 
116     ++NumLCSSA; // We are applying the transformation
117 
118     // Invoke instructions are special in that their result value is not
119     // available along their unwind edge. The code below tests to see whether
120     // DomBB dominates the value, so adjust DomBB to the normal destination
121     // block, which is effectively where the value is first usable.
122     BasicBlock *DomBB = InstBB;
123     if (auto *Inv = dyn_cast<InvokeInst>(I))
124       DomBB = Inv->getNormalDest();
125 
126     DomTreeNode *DomNode = DT.getNode(DomBB);
127 
128     SmallVector<PHINode *, 16> AddedPHIs;
129     SmallVector<PHINode *, 8> PostProcessPHIs;
130 
131     SmallVector<PHINode *, 4> InsertedPHIs;
132     SSAUpdater SSAUpdate(&InsertedPHIs);
133     SSAUpdate.Initialize(I->getType(), I->getName());
134 
135     // Insert the LCSSA phi's into all of the exit blocks dominated by the
136     // value, and add them to the Phi's map.
137     for (BasicBlock *ExitBB : ExitBlocks) {
138       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
139         continue;
140 
141       // If we already inserted something for this BB, don't reprocess it.
142       if (SSAUpdate.HasValueForBlock(ExitBB))
143         continue;
144 
145       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
146                                     I->getName() + ".lcssa", &ExitBB->front());
147 
148       // Add inputs from inside the loop for this PHI.
149       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
150         PN->addIncoming(I, Pred);
151 
152         // If the exit block has a predecessor not within the loop, arrange for
153         // the incoming value use corresponding to that predecessor to be
154         // rewritten in terms of a different LCSSA PHI.
155         if (!L->contains(Pred))
156           UsesToRewrite.push_back(
157               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
158                   PN->getNumIncomingValues() - 1)));
159       }
160 
161       AddedPHIs.push_back(PN);
162 
163       // Remember that this phi makes the value alive in this block.
164       SSAUpdate.AddAvailableValue(ExitBB, PN);
165 
166       // LoopSimplify might fail to simplify some loops (e.g. when indirect
167       // branches are involved). In such situations, it might happen that an
168       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
169       // create PHIs in such an exit block, we are also inserting PHIs into L2's
170       // header. This could break LCSSA form for L2 because these inserted PHIs
171       // can also have uses outside of L2. Remember all PHIs in such situation
172       // as to revisit than later on. FIXME: Remove this if indirectbr support
173       // into LoopSimplify gets improved.
174       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
175         if (!L->contains(OtherLoop))
176           PostProcessPHIs.push_back(PN);
177     }
178 
179     // Rewrite all uses outside the loop in terms of the new PHIs we just
180     // inserted.
181     for (Use *UseToRewrite : UsesToRewrite) {
182       // If this use is in an exit block, rewrite to use the newly inserted PHI.
183       // This is required for correctness because SSAUpdate doesn't handle uses
184       // in the same block.  It assumes the PHI we inserted is at the end of the
185       // block.
186       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
187       BasicBlock *UserBB = User->getParent();
188       if (auto *PN = dyn_cast<PHINode>(User))
189         UserBB = PN->getIncomingBlock(*UseToRewrite);
190 
191       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
192         // Tell the VHs that the uses changed. This updates SCEV's caches.
193         if (UseToRewrite->get()->hasValueHandle())
194           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
195         UseToRewrite->set(&UserBB->front());
196         continue;
197       }
198 
199       // Otherwise, do full PHI insertion.
200       SSAUpdate.RewriteUse(*UseToRewrite);
201     }
202 
203     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
204     // to post-process them to keep LCSSA form.
205     for (PHINode *InsertedPN : InsertedPHIs) {
206       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
207         if (!L->contains(OtherLoop))
208           PostProcessPHIs.push_back(InsertedPN);
209     }
210 
211     // Post process PHI instructions that were inserted into another disjoint
212     // loop and update their exits properly.
213     for (auto *PostProcessPN : PostProcessPHIs)
214       if (!PostProcessPN->use_empty())
215         Worklist.push_back(PostProcessPN);
216 
217     // Keep track of PHI nodes that we want to remove because they did not have
218     // any uses rewritten. If the new PHI is used, store it so that we can
219     // try to propagate dbg.value intrinsics to it.
220     SmallVector<PHINode *, 2> NeedDbgValues;
221     for (PHINode *PN : AddedPHIs)
222       if (PN->use_empty())
223         PHIsToRemove.insert(PN);
224       else
225         NeedDbgValues.push_back(PN);
226     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
227     Changed = true;
228   }
229   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
230   // use_empty() check here, because even if the PHI node wasn't used when added
231   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
232   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
233   // each other. Such situations has only been noticed when the input IR
234   // contains unreachable code, and leaving some extra redundant PHI nodes in
235   // such situations is considered a minor problem.
236   for (PHINode *PN : PHIsToRemove)
237     if (PN->use_empty())
238       PN->eraseFromParent();
239   return Changed;
240 }
241 
242 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
243 static void computeBlocksDominatingExits(
244     Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
245     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
246   SmallVector<BasicBlock *, 8> BBWorklist;
247 
248   // We start from the exit blocks, as every block trivially dominates itself
249   // (not strictly).
250   for (BasicBlock *BB : ExitBlocks)
251     BBWorklist.push_back(BB);
252 
253   while (!BBWorklist.empty()) {
254     BasicBlock *BB = BBWorklist.pop_back_val();
255 
256     // Check if this is a loop header. If this is the case, we're done.
257     if (L.getHeader() == BB)
258       continue;
259 
260     // Otherwise, add its immediate predecessor in the dominator tree to the
261     // worklist, unless we visited it already.
262     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
263 
264     // Exit blocks can have an immediate dominator not beloinging to the
265     // loop. For an exit block to be immediately dominated by another block
266     // outside the loop, it implies not all paths from that dominator, to the
267     // exit block, go through the loop.
268     // Example:
269     //
270     // |---- A
271     // |     |
272     // |     B<--
273     // |     |  |
274     // |---> C --
275     //       |
276     //       D
277     //
278     // C is the exit block of the loop and it's immediately dominated by A,
279     // which doesn't belong to the loop.
280     if (!L.contains(IDomBB))
281       continue;
282 
283     if (BlocksDominatingExits.insert(IDomBB))
284       BBWorklist.push_back(IDomBB);
285   }
286 }
287 
288 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
289                      ScalarEvolution *SE) {
290   bool Changed = false;
291 
292   SmallVector<BasicBlock *, 8> ExitBlocks;
293   L.getExitBlocks(ExitBlocks);
294   if (ExitBlocks.empty())
295     return false;
296 
297   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
298 
299   // We want to avoid use-scanning leveraging dominance informations.
300   // If a block doesn't dominate any of the loop exits, the none of the values
301   // defined in the loop can be used outside.
302   // We compute the set of blocks fullfilling the conditions in advance
303   // walking the dominator tree upwards until we hit a loop header.
304   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
305 
306   SmallVector<Instruction *, 8> Worklist;
307 
308   // Look at all the instructions in the loop, checking to see if they have uses
309   // outside the loop.  If so, put them into the worklist to rewrite those uses.
310   for (BasicBlock *BB : BlocksDominatingExits) {
311     for (Instruction &I : *BB) {
312       // Reject two common cases fast: instructions with no uses (like stores)
313       // and instructions with one use that is in the same block as this.
314       if (I.use_empty() ||
315           (I.hasOneUse() && I.user_back()->getParent() == BB &&
316            !isa<PHINode>(I.user_back())))
317         continue;
318 
319       // Tokens cannot be used in PHI nodes, so we skip over them.
320       // We can run into tokens which are live out of a loop with catchswitch
321       // instructions in Windows EH if the catchswitch has one catchpad which
322       // is inside the loop and another which is not.
323       if (I.getType()->isTokenTy())
324         continue;
325 
326       Worklist.push_back(&I);
327     }
328   }
329   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
330 
331   // If we modified the code, remove any caches about the loop from SCEV to
332   // avoid dangling entries.
333   // FIXME: This is a big hammer, can we clear the cache more selectively?
334   if (SE && Changed)
335     SE->forgetLoop(&L);
336 
337   assert(L.isLCSSAForm(DT));
338 
339   return Changed;
340 }
341 
342 /// Process a loop nest depth first.
343 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
344                                 ScalarEvolution *SE) {
345   bool Changed = false;
346 
347   // Recurse depth-first through inner loops.
348   for (Loop *SubLoop : L.getSubLoops())
349     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
350 
351   Changed |= formLCSSA(L, DT, LI, SE);
352   return Changed;
353 }
354 
355 /// Process all loops in the function, inner-most out.
356 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
357                                 ScalarEvolution *SE) {
358   bool Changed = false;
359   for (auto &L : *LI)
360     Changed |= formLCSSARecursively(*L, DT, LI, SE);
361   return Changed;
362 }
363 
364 namespace {
365 struct LCSSAWrapperPass : public FunctionPass {
366   static char ID; // Pass identification, replacement for typeid
367   LCSSAWrapperPass() : FunctionPass(ID) {
368     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
369   }
370 
371   // Cached analysis information for the current function.
372   DominatorTree *DT;
373   LoopInfo *LI;
374   ScalarEvolution *SE;
375 
376   bool runOnFunction(Function &F) override;
377   void verifyAnalysis() const override {
378     // This check is very expensive. On the loop intensive compiles it may cause
379     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
380     // always does limited form of the LCSSA verification. Similar reasoning
381     // was used for the LoopInfo verifier.
382     if (VerifyLoopLCSSA) {
383       assert(all_of(*LI,
384                     [&](Loop *L) {
385                       return L->isRecursivelyLCSSAForm(*DT, *LI);
386                     }) &&
387              "LCSSA form is broken!");
388     }
389   };
390 
391   /// This transformation requires natural loop information & requires that
392   /// loop preheaders be inserted into the CFG.  It maintains both of these,
393   /// as well as the CFG.  It also requires dominator information.
394   void getAnalysisUsage(AnalysisUsage &AU) const override {
395     AU.setPreservesCFG();
396 
397     AU.addRequired<DominatorTreeWrapperPass>();
398     AU.addRequired<LoopInfoWrapperPass>();
399     AU.addPreservedID(LoopSimplifyID);
400     AU.addPreserved<AAResultsWrapperPass>();
401     AU.addPreserved<BasicAAWrapperPass>();
402     AU.addPreserved<GlobalsAAWrapperPass>();
403     AU.addPreserved<ScalarEvolutionWrapperPass>();
404     AU.addPreserved<SCEVAAWrapperPass>();
405 
406     // This is needed to perform LCSSA verification inside LPPassManager
407     AU.addRequired<LCSSAVerificationPass>();
408     AU.addPreserved<LCSSAVerificationPass>();
409   }
410 };
411 }
412 
413 char LCSSAWrapperPass::ID = 0;
414 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
415                       false, false)
416 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
417 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
418 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
419 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
420                     false, false)
421 
422 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
423 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
424 
425 /// Transform \p F into loop-closed SSA form.
426 bool LCSSAWrapperPass::runOnFunction(Function &F) {
427   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
428   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
429   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
430   SE = SEWP ? &SEWP->getSE() : nullptr;
431 
432   return formLCSSAOnAllLoops(LI, *DT, SE);
433 }
434 
435 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
436   auto &LI = AM.getResult<LoopAnalysis>(F);
437   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
438   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
439   if (!formLCSSAOnAllLoops(&LI, DT, SE))
440     return PreservedAnalyses::all();
441 
442   PreservedAnalyses PA;
443   PA.preserveSet<CFGAnalyses>();
444   PA.preserve<BasicAA>();
445   PA.preserve<GlobalsAA>();
446   PA.preserve<SCEVAA>();
447   PA.preserve<ScalarEvolutionAnalysis>();
448   return PA;
449 }
450