xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 4c1bdcf5d7778ef8a135de1bb5c57a47c5192b14)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/SetVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Support/CFG.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/PredIteratorCache.h"
45 #include <algorithm>
46 #include <map>
47 using namespace llvm;
48 
49 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
50 
51 namespace {
52   struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
53     static char ID; // Pass identification, replacement for typeid
54     LCSSA() : LoopPass(&ID) {}
55 
56     // Cached analysis information for the current function.
57     LoopInfo *LI;
58     DominatorTree *DT;
59     std::vector<BasicBlock*> LoopBlocks;
60     PredIteratorCache PredCache;
61     Loop *L;
62 
63     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
64 
65     void ProcessInstruction(Instruction* Instr,
66                             const SmallVector<BasicBlock*, 8>& exitBlocks);
67 
68     /// This transformation requires natural loop information & requires that
69     /// loop preheaders be inserted into the CFG.  It maintains both of these,
70     /// as well as the CFG.  It also requires dominator information.
71     ///
72     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73       AU.setPreservesCFG();
74       AU.addRequiredID(LoopSimplifyID);
75       AU.addPreservedID(LoopSimplifyID);
76       AU.addRequiredTransitive<LoopInfo>();
77       AU.addPreserved<LoopInfo>();
78       AU.addRequiredTransitive<DominatorTree>();
79       AU.addPreserved<ScalarEvolution>();
80       AU.addPreserved<DominatorTree>();
81 
82       // Request DominanceFrontier now, even though LCSSA does
83       // not use it. This allows Pass Manager to schedule Dominance
84       // Frontier early enough such that one LPPassManager can handle
85       // multiple loop transformation passes.
86       AU.addRequired<DominanceFrontier>();
87       AU.addPreserved<DominanceFrontier>();
88     }
89   private:
90 
91     /// verifyAnalysis() - Verify loop nest.
92     virtual void verifyAnalysis() const {
93 #ifndef NDEBUG
94       // Sanity check: Check basic loop invariants.
95       L->verifyLoop();
96       // Check the special guarantees that LCSSA makes.
97       assert(L->isLCSSAForm());
98 #endif
99     }
100 
101     void getLoopValuesUsedOutsideLoop(Loop *L,
102                                       SetVector<Instruction*> &AffectedValues,
103                                  const SmallVector<BasicBlock*, 8>& exitBlocks);
104 
105     Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
106                             DenseMap<DomTreeNode*, Value*> &Phis);
107 
108     /// inLoop - returns true if the given block is within the current loop
109     bool inLoop(BasicBlock* B) {
110       return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
111     }
112   };
113 }
114 
115 char LCSSA::ID = 0;
116 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
117 
118 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
119 const PassInfo *const llvm::LCSSAID = &X;
120 
121 /// runOnFunction - Process all loops in the function, inner-most out.
122 bool LCSSA::runOnLoop(Loop *l, LPPassManager &LPM) {
123   L = l;
124   PredCache.clear();
125 
126   LI = &LPM.getAnalysis<LoopInfo>();
127   DT = &getAnalysis<DominatorTree>();
128 
129   // Speed up queries by creating a sorted list of blocks
130   LoopBlocks.clear();
131   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
132   std::sort(LoopBlocks.begin(), LoopBlocks.end());
133 
134   SmallVector<BasicBlock*, 8> exitBlocks;
135   L->getExitBlocks(exitBlocks);
136 
137   SetVector<Instruction*> AffectedValues;
138   getLoopValuesUsedOutsideLoop(L, AffectedValues, exitBlocks);
139 
140   // If no values are affected, we can save a lot of work, since we know that
141   // nothing will be changed.
142   if (AffectedValues.empty())
143     return false;
144 
145   // Iterate over all affected values for this loop and insert Phi nodes
146   // for them in the appropriate exit blocks
147 
148   for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
149        E = AffectedValues.end(); I != E; ++I)
150     ProcessInstruction(*I, exitBlocks);
151 
152   assert(L->isLCSSAForm());
153 
154   return true;
155 }
156 
157 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
158 /// eliminate all out-of-loop uses.
159 void LCSSA::ProcessInstruction(Instruction *Instr,
160                                const SmallVector<BasicBlock*, 8>& exitBlocks) {
161   ++NumLCSSA; // We are applying the transformation
162 
163   // Keep track of the blocks that have the value available already.
164   DenseMap<DomTreeNode*, Value*> Phis;
165 
166   BasicBlock *DomBB = Instr->getParent();
167 
168   // Invoke instructions are special in that their result value is not available
169   // along their unwind edge. The code below tests to see whether DomBB dominates
170   // the value, so adjust DomBB to the normal destination block, which is
171   // effectively where the value is first usable.
172   if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr))
173     DomBB = Inv->getNormalDest();
174 
175   DomTreeNode *DomNode = DT->getNode(DomBB);
176 
177   // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
178   // add them to the Phi's map.
179   for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(),
180       BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
181     BasicBlock *BB = *BBI;
182     DomTreeNode *ExitBBNode = DT->getNode(BB);
183     Value *&Phi = Phis[ExitBBNode];
184     if (!Phi && DT->dominates(DomNode, ExitBBNode)) {
185       PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa",
186                                     BB->begin());
187       PN->reserveOperandSpace(PredCache.GetNumPreds(BB));
188 
189       // Remember that this phi makes the value alive in this block.
190       Phi = PN;
191 
192       // Add inputs from inside the loop for this PHI.
193       for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI)
194         PN->addIncoming(Instr, *PI);
195     }
196   }
197 
198 
199   // Record all uses of Instr outside the loop.  We need to rewrite these.  The
200   // LCSSA phis won't be included because they use the value in the loop.
201   for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
202        UI != E;) {
203     BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
204     if (PHINode *P = dyn_cast<PHINode>(*UI)) {
205       UserBB = P->getIncomingBlock(UI);
206     }
207 
208     // If the user is in the loop, don't rewrite it!
209     if (UserBB == Instr->getParent() || inLoop(UserBB)) {
210       ++UI;
211       continue;
212     }
213 
214     // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
215     // inserting PHI nodes into join points where needed.
216     Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
217 
218     // Preincrement the iterator to avoid invalidating it when we change the
219     // value.
220     Use &U = UI.getUse();
221     ++UI;
222     U.set(Val);
223   }
224 }
225 
226 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
227 /// are used by instructions outside of it.
228 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
229                                       SetVector<Instruction*> &AffectedValues,
230                                 const SmallVector<BasicBlock*, 8>& exitBlocks) {
231   // FIXME: For large loops, we may be able to avoid a lot of use-scanning
232   // by using dominance information.  In particular, if a block does not
233   // dominate any of the loop exits, then none of the values defined in the
234   // block could be used outside the loop.
235   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
236        BB != BE; ++BB) {
237     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
238       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
239            ++UI) {
240         BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
241         if (PHINode* p = dyn_cast<PHINode>(*UI)) {
242           UserBB = p->getIncomingBlock(UI);
243         }
244 
245         if (*BB != UserBB && !inLoop(UserBB)) {
246           AffectedValues.insert(I);
247           break;
248         }
249       }
250   }
251 }
252 
253 /// GetValueForBlock - Get the value to use within the specified basic block.
254 /// available values are in Phis.
255 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
256                                DenseMap<DomTreeNode*, Value*> &Phis) {
257   // If there is no dominator info for this BB, it is unreachable.
258   if (BB == 0)
259     return UndefValue::get(OrigInst->getType());
260 
261   // If we have already computed this value, return the previously computed val.
262   if (Phis.count(BB)) return Phis[BB];
263 
264   DomTreeNode *IDom = BB->getIDom();
265 
266   // Otherwise, there are two cases: we either have to insert a PHI node or we
267   // don't.  We need to insert a PHI node if this block is not dominated by one
268   // of the exit nodes from the loop (the loop could have multiple exits, and
269   // though the value defined *inside* the loop dominated all its uses, each
270   // exit by itself may not dominate all the uses).
271   //
272   // The simplest way to check for this condition is by checking to see if the
273   // idom is in the loop.  If so, we *know* that none of the exit blocks
274   // dominate this block.  Note that we *know* that the block defining the
275   // original instruction is in the idom chain, because if it weren't, then the
276   // original value didn't dominate this use.
277   if (!inLoop(IDom->getBlock())) {
278     // Idom is not in the loop, we must still be "below" the exit block and must
279     // be fully dominated by the value live in the idom.
280     Value* val = GetValueForBlock(IDom, OrigInst, Phis);
281     Phis.insert(std::make_pair(BB, val));
282     return val;
283   }
284 
285   BasicBlock *BBN = BB->getBlock();
286 
287   // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
288   // now, then get values to fill in the incoming values for the PHI.
289   PHINode *PN = PHINode::Create(OrigInst->getType(),
290                                 OrigInst->getName() + ".lcssa", BBN->begin());
291   PN->reserveOperandSpace(PredCache.GetNumPreds(BBN));
292   Phis.insert(std::make_pair(BB, PN));
293 
294   // Fill in the incoming values for the block.
295   for (BasicBlock** PI = PredCache.GetPreds(BBN); *PI; ++PI)
296     PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
297   return PN;
298 }
299 
300