xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 3c9cf023db32ba2cfa1e052ddc58f57dd080995c)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/SSAUpdater.h"
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "lcssa"
55 
56 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
57 
58 #ifdef EXPENSIVE_CHECKS
59 static bool VerifyLoopLCSSA = true;
60 #else
61 static bool VerifyLoopLCSSA = false;
62 #endif
63 static cl::opt<bool, true>
64     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
65                         cl::Hidden,
66                         cl::desc("Verify loop lcssa form (time consuming)"));
67 
68 /// Return true if the specified block is in the list.
69 static bool isExitBlock(BasicBlock *BB,
70                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
71   return is_contained(ExitBlocks, BB);
72 }
73 
74 /// For every instruction from the worklist, check to see if it has any uses
75 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
76 /// rewrite the uses.
77 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
78                                     const DominatorTree &DT, const LoopInfo &LI,
79                                     ScalarEvolution *SE,
80                                     SmallVectorImpl<PHINode *> *PHIsToRemove,
81                                     SmallVectorImpl<PHINode *> *InsertedPHIs) {
82   SmallVector<Use *, 16> UsesToRewrite;
83   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
84   PredIteratorCache PredCache;
85   bool Changed = false;
86 
87   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
88   // instructions within the same loops, computing the exit blocks is
89   // expensive, and we're not mutating the loop structure.
90   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
91 
92   while (!Worklist.empty()) {
93     UsesToRewrite.clear();
94 
95     Instruction *I = Worklist.pop_back_val();
96     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
97     BasicBlock *InstBB = I->getParent();
98     Loop *L = LI.getLoopFor(InstBB);
99     assert(L && "Instruction belongs to a BB that's not part of a loop");
100     if (!LoopExitBlocks.count(L))
101       L->getExitBlocks(LoopExitBlocks[L]);
102     assert(LoopExitBlocks.count(L));
103     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
104 
105     if (ExitBlocks.empty())
106       continue;
107 
108     for (Use &U : make_early_inc_range(I->uses())) {
109       Instruction *User = cast<Instruction>(U.getUser());
110       BasicBlock *UserBB = User->getParent();
111 
112       // Skip uses in unreachable blocks.
113       if (!DT.isReachableFromEntry(UserBB)) {
114         U.set(PoisonValue::get(I->getType()));
115         continue;
116       }
117 
118       // For practical purposes, we consider that the use in a PHI
119       // occurs in the respective predecessor block. For more info,
120       // see the `phi` doc in LangRef and the LCSSA doc.
121       if (auto *PN = dyn_cast<PHINode>(User))
122         UserBB = PN->getIncomingBlock(U);
123 
124       if (InstBB != UserBB && !L->contains(UserBB))
125         UsesToRewrite.push_back(&U);
126     }
127 
128     // If there are no uses outside the loop, exit with no change.
129     if (UsesToRewrite.empty())
130       continue;
131 
132     ++NumLCSSA; // We are applying the transformation
133 
134     // Invoke instructions are special in that their result value is not
135     // available along their unwind edge. The code below tests to see whether
136     // DomBB dominates the value, so adjust DomBB to the normal destination
137     // block, which is effectively where the value is first usable.
138     BasicBlock *DomBB = InstBB;
139     if (auto *Inv = dyn_cast<InvokeInst>(I))
140       DomBB = Inv->getNormalDest();
141 
142     const DomTreeNode *DomNode = DT.getNode(DomBB);
143 
144     SmallVector<PHINode *, 16> AddedPHIs;
145     SmallVector<PHINode *, 8> PostProcessPHIs;
146 
147     SmallVector<PHINode *, 4> LocalInsertedPHIs;
148     SSAUpdater SSAUpdate(&LocalInsertedPHIs);
149     SSAUpdate.Initialize(I->getType(), I->getName());
150 
151     // Force re-computation of I, as some users now need to use the new PHI
152     // node.
153     if (SE)
154       SE->forgetValue(I);
155 
156     // Insert the LCSSA phi's into all of the exit blocks dominated by the
157     // value, and add them to the Phi's map.
158     for (BasicBlock *ExitBB : ExitBlocks) {
159       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
160         continue;
161 
162       // If we already inserted something for this BB, don't reprocess it.
163       if (SSAUpdate.HasValueForBlock(ExitBB))
164         continue;
165       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
166                                     I->getName() + ".lcssa", &ExitBB->front());
167       if (InsertedPHIs)
168         InsertedPHIs->push_back(PN);
169       // Get the debug location from the original instruction.
170       PN->setDebugLoc(I->getDebugLoc());
171 
172       // Add inputs from inside the loop for this PHI. This is valid
173       // because `I` dominates `ExitBB` (checked above).  This implies
174       // that every incoming block/edge is dominated by `I` as well,
175       // i.e. we can add uses of `I` to those incoming edges/append to the incoming
176       // blocks without violating the SSA dominance property.
177       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
178         PN->addIncoming(I, Pred);
179 
180         // If the exit block has a predecessor not within the loop, arrange for
181         // the incoming value use corresponding to that predecessor to be
182         // rewritten in terms of a different LCSSA PHI.
183         if (!L->contains(Pred))
184           UsesToRewrite.push_back(
185               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
186                   PN->getNumIncomingValues() - 1)));
187       }
188 
189       AddedPHIs.push_back(PN);
190 
191       // Remember that this phi makes the value alive in this block.
192       SSAUpdate.AddAvailableValue(ExitBB, PN);
193 
194       // LoopSimplify might fail to simplify some loops (e.g. when indirect
195       // branches are involved). In such situations, it might happen that an
196       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
197       // create PHIs in such an exit block, we are also inserting PHIs into L2's
198       // header. This could break LCSSA form for L2 because these inserted PHIs
199       // can also have uses outside of L2. Remember all PHIs in such situation
200       // as to revisit than later on. FIXME: Remove this if indirectbr support
201       // into LoopSimplify gets improved.
202       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
203         if (!L->contains(OtherLoop))
204           PostProcessPHIs.push_back(PN);
205     }
206 
207     // Rewrite all uses outside the loop in terms of the new PHIs we just
208     // inserted.
209     for (Use *UseToRewrite : UsesToRewrite) {
210       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
211       BasicBlock *UserBB = User->getParent();
212 
213       // For practical purposes, we consider that the use in a PHI
214       // occurs in the respective predecessor block. For more info,
215       // see the `phi` doc in LangRef and the LCSSA doc.
216       if (auto *PN = dyn_cast<PHINode>(User))
217         UserBB = PN->getIncomingBlock(*UseToRewrite);
218 
219       // If this use is in an exit block, rewrite to use the newly inserted PHI.
220       // This is required for correctness because SSAUpdate doesn't handle uses
221       // in the same block.  It assumes the PHI we inserted is at the end of the
222       // block.
223       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
224         UseToRewrite->set(&UserBB->front());
225         continue;
226       }
227 
228       // If we added a single PHI, it must dominate all uses and we can directly
229       // rename it.
230       if (AddedPHIs.size() == 1) {
231         UseToRewrite->set(AddedPHIs[0]);
232         continue;
233       }
234 
235       // Otherwise, do full PHI insertion.
236       SSAUpdate.RewriteUse(*UseToRewrite);
237     }
238 
239     SmallVector<DbgValueInst *, 4> DbgValues;
240     llvm::findDbgValues(DbgValues, I);
241 
242     // Update pre-existing debug value uses that reside outside the loop.
243     for (auto *DVI : DbgValues) {
244       BasicBlock *UserBB = DVI->getParent();
245       if (InstBB == UserBB || L->contains(UserBB))
246         continue;
247       // We currently only handle debug values residing in blocks that were
248       // traversed while rewriting the uses. If we inserted just a single PHI,
249       // we will handle all relevant debug values.
250       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
251                                        : SSAUpdate.FindValueForBlock(UserBB);
252       if (V)
253         DVI->replaceVariableLocationOp(I, V);
254     }
255 
256     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
257     // to post-process them to keep LCSSA form.
258     for (PHINode *InsertedPN : LocalInsertedPHIs) {
259       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
260         if (!L->contains(OtherLoop))
261           PostProcessPHIs.push_back(InsertedPN);
262       if (InsertedPHIs)
263         InsertedPHIs->push_back(InsertedPN);
264     }
265 
266     // Post process PHI instructions that were inserted into another disjoint
267     // loop and update their exits properly.
268     for (auto *PostProcessPN : PostProcessPHIs)
269       if (!PostProcessPN->use_empty())
270         Worklist.push_back(PostProcessPN);
271 
272     // Keep track of PHI nodes that we want to remove because they did not have
273     // any uses rewritten.
274     for (PHINode *PN : AddedPHIs)
275       if (PN->use_empty())
276         LocalPHIsToRemove.insert(PN);
277 
278     Changed = true;
279   }
280 
281   // Remove PHI nodes that did not have any uses rewritten or add them to
282   // PHIsToRemove, so the caller can remove them after some additional cleanup.
283   // We need to redo the use_empty() check here, because even if the PHI node
284   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
285   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
286   // nodes that only are used by each other. Such situations has only been
287   // noticed when the input IR contains unreachable code, and leaving some extra
288   // redundant PHI nodes in such situations is considered a minor problem.
289   if (PHIsToRemove) {
290     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
291   } else {
292     for (PHINode *PN : LocalPHIsToRemove)
293       if (PN->use_empty())
294         PN->eraseFromParent();
295   }
296   return Changed;
297 }
298 
299 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
300 static void computeBlocksDominatingExits(
301     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
302     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
303   // We start from the exit blocks, as every block trivially dominates itself
304   // (not strictly).
305   SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
306 
307   while (!BBWorklist.empty()) {
308     BasicBlock *BB = BBWorklist.pop_back_val();
309 
310     // Check if this is a loop header. If this is the case, we're done.
311     if (L.getHeader() == BB)
312       continue;
313 
314     // Otherwise, add its immediate predecessor in the dominator tree to the
315     // worklist, unless we visited it already.
316     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
317 
318     // Exit blocks can have an immediate dominator not belonging to the
319     // loop. For an exit block to be immediately dominated by another block
320     // outside the loop, it implies not all paths from that dominator, to the
321     // exit block, go through the loop.
322     // Example:
323     //
324     // |---- A
325     // |     |
326     // |     B<--
327     // |     |  |
328     // |---> C --
329     //       |
330     //       D
331     //
332     // C is the exit block of the loop and it's immediately dominated by A,
333     // which doesn't belong to the loop.
334     if (!L.contains(IDomBB))
335       continue;
336 
337     if (BlocksDominatingExits.insert(IDomBB))
338       BBWorklist.push_back(IDomBB);
339   }
340 }
341 
342 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
343                      ScalarEvolution *SE) {
344   bool Changed = false;
345 
346 #ifdef EXPENSIVE_CHECKS
347   // Verify all sub-loops are in LCSSA form already.
348   for (Loop *SubLoop: L) {
349     (void)SubLoop; // Silence unused variable warning.
350     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
351   }
352 #endif
353 
354   SmallVector<BasicBlock *, 8> ExitBlocks;
355   L.getExitBlocks(ExitBlocks);
356   if (ExitBlocks.empty())
357     return false;
358 
359   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
360 
361   // We want to avoid use-scanning leveraging dominance informations.
362   // If a block doesn't dominate any of the loop exits, the none of the values
363   // defined in the loop can be used outside.
364   // We compute the set of blocks fullfilling the conditions in advance
365   // walking the dominator tree upwards until we hit a loop header.
366   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
367 
368   SmallVector<Instruction *, 8> Worklist;
369 
370   // Look at all the instructions in the loop, checking to see if they have uses
371   // outside the loop.  If so, put them into the worklist to rewrite those uses.
372   for (BasicBlock *BB : BlocksDominatingExits) {
373     // Skip blocks that are part of any sub-loops, they must be in LCSSA
374     // already.
375     if (LI->getLoopFor(BB) != &L)
376       continue;
377     for (Instruction &I : *BB) {
378       // Reject two common cases fast: instructions with no uses (like stores)
379       // and instructions with one use that is in the same block as this.
380       if (I.use_empty() ||
381           (I.hasOneUse() && I.user_back()->getParent() == BB &&
382            !isa<PHINode>(I.user_back())))
383         continue;
384 
385       // Tokens cannot be used in PHI nodes, so we skip over them.
386       // We can run into tokens which are live out of a loop with catchswitch
387       // instructions in Windows EH if the catchswitch has one catchpad which
388       // is inside the loop and another which is not.
389       if (I.getType()->isTokenTy())
390         continue;
391 
392       Worklist.push_back(&I);
393     }
394   }
395 
396   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE);
397 
398   assert(L.isLCSSAForm(DT));
399 
400   return Changed;
401 }
402 
403 /// Process a loop nest depth first.
404 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
405                                 const LoopInfo *LI, ScalarEvolution *SE) {
406   bool Changed = false;
407 
408   // Recurse depth-first through inner loops.
409   for (Loop *SubLoop : L.getSubLoops())
410     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
411 
412   Changed |= formLCSSA(L, DT, LI, SE);
413   return Changed;
414 }
415 
416 /// Process all loops in the function, inner-most out.
417 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
418                                 ScalarEvolution *SE) {
419   bool Changed = false;
420   for (const auto &L : *LI)
421     Changed |= formLCSSARecursively(*L, DT, LI, SE);
422   return Changed;
423 }
424 
425 namespace {
426 struct LCSSAWrapperPass : public FunctionPass {
427   static char ID; // Pass identification, replacement for typeid
428   LCSSAWrapperPass() : FunctionPass(ID) {
429     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
430   }
431 
432   // Cached analysis information for the current function.
433   DominatorTree *DT;
434   LoopInfo *LI;
435   ScalarEvolution *SE;
436 
437   bool runOnFunction(Function &F) override;
438   void verifyAnalysis() const override {
439     // This check is very expensive. On the loop intensive compiles it may cause
440     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
441     // always does limited form of the LCSSA verification. Similar reasoning
442     // was used for the LoopInfo verifier.
443     if (VerifyLoopLCSSA) {
444       assert(all_of(*LI,
445                     [&](Loop *L) {
446                       return L->isRecursivelyLCSSAForm(*DT, *LI);
447                     }) &&
448              "LCSSA form is broken!");
449     }
450   };
451 
452   /// This transformation requires natural loop information & requires that
453   /// loop preheaders be inserted into the CFG.  It maintains both of these,
454   /// as well as the CFG.  It also requires dominator information.
455   void getAnalysisUsage(AnalysisUsage &AU) const override {
456     AU.setPreservesCFG();
457 
458     AU.addRequired<DominatorTreeWrapperPass>();
459     AU.addRequired<LoopInfoWrapperPass>();
460     AU.addPreservedID(LoopSimplifyID);
461     AU.addPreserved<AAResultsWrapperPass>();
462     AU.addPreserved<BasicAAWrapperPass>();
463     AU.addPreserved<GlobalsAAWrapperPass>();
464     AU.addPreserved<ScalarEvolutionWrapperPass>();
465     AU.addPreserved<SCEVAAWrapperPass>();
466     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
467     AU.addPreserved<MemorySSAWrapperPass>();
468 
469     // This is needed to perform LCSSA verification inside LPPassManager
470     AU.addRequired<LCSSAVerificationPass>();
471     AU.addPreserved<LCSSAVerificationPass>();
472   }
473 };
474 }
475 
476 char LCSSAWrapperPass::ID = 0;
477 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
478                       false, false)
479 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
480 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
481 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
482 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
483                     false, false)
484 
485 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
486 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
487 
488 /// Transform \p F into loop-closed SSA form.
489 bool LCSSAWrapperPass::runOnFunction(Function &F) {
490   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
491   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
492   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
493   SE = SEWP ? &SEWP->getSE() : nullptr;
494 
495   return formLCSSAOnAllLoops(LI, *DT, SE);
496 }
497 
498 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
499   auto &LI = AM.getResult<LoopAnalysis>(F);
500   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
501   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
502   if (!formLCSSAOnAllLoops(&LI, DT, SE))
503     return PreservedAnalyses::all();
504 
505   PreservedAnalyses PA;
506   PA.preserveSet<CFGAnalyses>();
507   PA.preserve<ScalarEvolutionAnalysis>();
508   // BPI maps terminators to probabilities, since we don't modify the CFG, no
509   // updates are needed to preserve it.
510   PA.preserve<BranchProbabilityAnalysis>();
511   PA.preserve<MemorySSAAnalysis>();
512   return PA;
513 }
514