1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/SSAUpdater.h" 50 using namespace llvm; 51 52 #define DEBUG_TYPE "lcssa" 53 54 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 55 56 #ifdef EXPENSIVE_CHECKS 57 static bool VerifyLoopLCSSA = true; 58 #else 59 static bool VerifyLoopLCSSA = false; 60 #endif 61 static cl::opt<bool, true> 62 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 63 cl::Hidden, 64 cl::desc("Verify loop lcssa form (time consuming)")); 65 66 /// Return true if the specified block is in the list. 67 static bool isExitBlock(BasicBlock *BB, 68 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 69 return is_contained(ExitBlocks, BB); 70 } 71 72 /// For every instruction from the worklist, check to see if it has any uses 73 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 74 /// rewrite the uses. 75 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 76 DominatorTree &DT, LoopInfo &LI) { 77 SmallVector<Use *, 16> UsesToRewrite; 78 SmallSetVector<PHINode *, 16> PHIsToRemove; 79 PredIteratorCache PredCache; 80 bool Changed = false; 81 82 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 83 // instructions within the same loops, computing the exit blocks is 84 // expensive, and we're not mutating the loop structure. 85 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 86 87 while (!Worklist.empty()) { 88 UsesToRewrite.clear(); 89 90 Instruction *I = Worklist.pop_back_val(); 91 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 92 BasicBlock *InstBB = I->getParent(); 93 Loop *L = LI.getLoopFor(InstBB); 94 assert(L && "Instruction belongs to a BB that's not part of a loop"); 95 if (!LoopExitBlocks.count(L)) 96 L->getExitBlocks(LoopExitBlocks[L]); 97 assert(LoopExitBlocks.count(L)); 98 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 99 100 if (ExitBlocks.empty()) 101 continue; 102 103 for (Use &U : I->uses()) { 104 Instruction *User = cast<Instruction>(U.getUser()); 105 BasicBlock *UserBB = User->getParent(); 106 if (auto *PN = dyn_cast<PHINode>(User)) 107 UserBB = PN->getIncomingBlock(U); 108 109 if (InstBB != UserBB && !L->contains(UserBB)) 110 UsesToRewrite.push_back(&U); 111 } 112 113 // If there are no uses outside the loop, exit with no change. 114 if (UsesToRewrite.empty()) 115 continue; 116 117 ++NumLCSSA; // We are applying the transformation 118 119 // Invoke instructions are special in that their result value is not 120 // available along their unwind edge. The code below tests to see whether 121 // DomBB dominates the value, so adjust DomBB to the normal destination 122 // block, which is effectively where the value is first usable. 123 BasicBlock *DomBB = InstBB; 124 if (auto *Inv = dyn_cast<InvokeInst>(I)) 125 DomBB = Inv->getNormalDest(); 126 127 DomTreeNode *DomNode = DT.getNode(DomBB); 128 129 SmallVector<PHINode *, 16> AddedPHIs; 130 SmallVector<PHINode *, 8> PostProcessPHIs; 131 132 SmallVector<PHINode *, 4> InsertedPHIs; 133 SSAUpdater SSAUpdate(&InsertedPHIs); 134 SSAUpdate.Initialize(I->getType(), I->getName()); 135 136 // Insert the LCSSA phi's into all of the exit blocks dominated by the 137 // value, and add them to the Phi's map. 138 for (BasicBlock *ExitBB : ExitBlocks) { 139 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 140 continue; 141 142 // If we already inserted something for this BB, don't reprocess it. 143 if (SSAUpdate.HasValueForBlock(ExitBB)) 144 continue; 145 146 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 147 I->getName() + ".lcssa", &ExitBB->front()); 148 // Get the debug location from the original instruction. 149 PN->setDebugLoc(I->getDebugLoc()); 150 // Add inputs from inside the loop for this PHI. 151 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 152 PN->addIncoming(I, Pred); 153 154 // If the exit block has a predecessor not within the loop, arrange for 155 // the incoming value use corresponding to that predecessor to be 156 // rewritten in terms of a different LCSSA PHI. 157 if (!L->contains(Pred)) 158 UsesToRewrite.push_back( 159 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 160 PN->getNumIncomingValues() - 1))); 161 } 162 163 AddedPHIs.push_back(PN); 164 165 // Remember that this phi makes the value alive in this block. 166 SSAUpdate.AddAvailableValue(ExitBB, PN); 167 168 // LoopSimplify might fail to simplify some loops (e.g. when indirect 169 // branches are involved). In such situations, it might happen that an 170 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 171 // create PHIs in such an exit block, we are also inserting PHIs into L2's 172 // header. This could break LCSSA form for L2 because these inserted PHIs 173 // can also have uses outside of L2. Remember all PHIs in such situation 174 // as to revisit than later on. FIXME: Remove this if indirectbr support 175 // into LoopSimplify gets improved. 176 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 177 if (!L->contains(OtherLoop)) 178 PostProcessPHIs.push_back(PN); 179 } 180 181 // Rewrite all uses outside the loop in terms of the new PHIs we just 182 // inserted. 183 for (Use *UseToRewrite : UsesToRewrite) { 184 // If this use is in an exit block, rewrite to use the newly inserted PHI. 185 // This is required for correctness because SSAUpdate doesn't handle uses 186 // in the same block. It assumes the PHI we inserted is at the end of the 187 // block. 188 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 189 BasicBlock *UserBB = User->getParent(); 190 if (auto *PN = dyn_cast<PHINode>(User)) 191 UserBB = PN->getIncomingBlock(*UseToRewrite); 192 193 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 194 // Tell the VHs that the uses changed. This updates SCEV's caches. 195 if (UseToRewrite->get()->hasValueHandle()) 196 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 197 UseToRewrite->set(&UserBB->front()); 198 continue; 199 } 200 201 // If we added a single PHI, it must dominate all uses and we can directly 202 // rename it. 203 if (AddedPHIs.size() == 1) { 204 // Tell the VHs that the uses changed. This updates SCEV's caches. 205 // We might call ValueIsRAUWd multiple times for the same value. 206 if (UseToRewrite->get()->hasValueHandle()) 207 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, AddedPHIs[0]); 208 UseToRewrite->set(AddedPHIs[0]); 209 continue; 210 } 211 212 // Otherwise, do full PHI insertion. 213 SSAUpdate.RewriteUse(*UseToRewrite); 214 } 215 216 SmallVector<DbgValueInst *, 4> DbgValues; 217 llvm::findDbgValues(DbgValues, I); 218 219 // Update pre-existing debug value uses that reside outside the loop. 220 auto &Ctx = I->getContext(); 221 for (auto DVI : DbgValues) { 222 BasicBlock *UserBB = DVI->getParent(); 223 if (InstBB == UserBB || L->contains(UserBB)) 224 continue; 225 // We currently only handle debug values residing in blocks that were 226 // traversed while rewriting the uses. If we inserted just a single PHI, 227 // we will handle all relevant debug values. 228 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 229 : SSAUpdate.FindValueForBlock(UserBB); 230 if (V) 231 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 232 } 233 234 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 235 // to post-process them to keep LCSSA form. 236 for (PHINode *InsertedPN : InsertedPHIs) { 237 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 238 if (!L->contains(OtherLoop)) 239 PostProcessPHIs.push_back(InsertedPN); 240 } 241 242 // Post process PHI instructions that were inserted into another disjoint 243 // loop and update their exits properly. 244 for (auto *PostProcessPN : PostProcessPHIs) 245 if (!PostProcessPN->use_empty()) 246 Worklist.push_back(PostProcessPN); 247 248 // Keep track of PHI nodes that we want to remove because they did not have 249 // any uses rewritten. If the new PHI is used, store it so that we can 250 // try to propagate dbg.value intrinsics to it. 251 SmallVector<PHINode *, 2> NeedDbgValues; 252 for (PHINode *PN : AddedPHIs) 253 if (PN->use_empty()) 254 PHIsToRemove.insert(PN); 255 else 256 NeedDbgValues.push_back(PN); 257 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 258 Changed = true; 259 } 260 // Remove PHI nodes that did not have any uses rewritten. We need to redo the 261 // use_empty() check here, because even if the PHI node wasn't used when added 262 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is 263 // not guaranteed to handle trees/cycles of PHI nodes that only are used by 264 // each other. Such situations has only been noticed when the input IR 265 // contains unreachable code, and leaving some extra redundant PHI nodes in 266 // such situations is considered a minor problem. 267 for (PHINode *PN : PHIsToRemove) 268 if (PN->use_empty()) 269 PN->eraseFromParent(); 270 return Changed; 271 } 272 273 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 274 static void computeBlocksDominatingExits( 275 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 276 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 277 SmallVector<BasicBlock *, 8> BBWorklist; 278 279 // We start from the exit blocks, as every block trivially dominates itself 280 // (not strictly). 281 for (BasicBlock *BB : ExitBlocks) 282 BBWorklist.push_back(BB); 283 284 while (!BBWorklist.empty()) { 285 BasicBlock *BB = BBWorklist.pop_back_val(); 286 287 // Check if this is a loop header. If this is the case, we're done. 288 if (L.getHeader() == BB) 289 continue; 290 291 // Otherwise, add its immediate predecessor in the dominator tree to the 292 // worklist, unless we visited it already. 293 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 294 295 // Exit blocks can have an immediate dominator not beloinging to the 296 // loop. For an exit block to be immediately dominated by another block 297 // outside the loop, it implies not all paths from that dominator, to the 298 // exit block, go through the loop. 299 // Example: 300 // 301 // |---- A 302 // | | 303 // | B<-- 304 // | | | 305 // |---> C -- 306 // | 307 // D 308 // 309 // C is the exit block of the loop and it's immediately dominated by A, 310 // which doesn't belong to the loop. 311 if (!L.contains(IDomBB)) 312 continue; 313 314 if (BlocksDominatingExits.insert(IDomBB)) 315 BBWorklist.push_back(IDomBB); 316 } 317 } 318 319 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 320 ScalarEvolution *SE) { 321 bool Changed = false; 322 323 #ifdef EXPENSIVE_CHECKS 324 // Verify all sub-loops are in LCSSA form already. 325 for (Loop *SubLoop: L) 326 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 327 #endif 328 329 SmallVector<BasicBlock *, 8> ExitBlocks; 330 L.getExitBlocks(ExitBlocks); 331 if (ExitBlocks.empty()) 332 return false; 333 334 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 335 336 // We want to avoid use-scanning leveraging dominance informations. 337 // If a block doesn't dominate any of the loop exits, the none of the values 338 // defined in the loop can be used outside. 339 // We compute the set of blocks fullfilling the conditions in advance 340 // walking the dominator tree upwards until we hit a loop header. 341 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 342 343 SmallVector<Instruction *, 8> Worklist; 344 345 // Look at all the instructions in the loop, checking to see if they have uses 346 // outside the loop. If so, put them into the worklist to rewrite those uses. 347 for (BasicBlock *BB : BlocksDominatingExits) { 348 // Skip blocks that are part of any sub-loops, they must be in LCSSA 349 // already. 350 if (LI->getLoopFor(BB) != &L) 351 continue; 352 for (Instruction &I : *BB) { 353 // Reject two common cases fast: instructions with no uses (like stores) 354 // and instructions with one use that is in the same block as this. 355 if (I.use_empty() || 356 (I.hasOneUse() && I.user_back()->getParent() == BB && 357 !isa<PHINode>(I.user_back()))) 358 continue; 359 360 // Tokens cannot be used in PHI nodes, so we skip over them. 361 // We can run into tokens which are live out of a loop with catchswitch 362 // instructions in Windows EH if the catchswitch has one catchpad which 363 // is inside the loop and another which is not. 364 if (I.getType()->isTokenTy()) 365 continue; 366 367 Worklist.push_back(&I); 368 } 369 } 370 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 371 372 // If we modified the code, remove any caches about the loop from SCEV to 373 // avoid dangling entries. 374 // FIXME: This is a big hammer, can we clear the cache more selectively? 375 if (SE && Changed) 376 SE->forgetLoop(&L); 377 378 assert(L.isLCSSAForm(DT)); 379 380 return Changed; 381 } 382 383 /// Process a loop nest depth first. 384 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 385 ScalarEvolution *SE) { 386 bool Changed = false; 387 388 // Recurse depth-first through inner loops. 389 for (Loop *SubLoop : L.getSubLoops()) 390 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 391 392 Changed |= formLCSSA(L, DT, LI, SE); 393 return Changed; 394 } 395 396 /// Process all loops in the function, inner-most out. 397 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 398 ScalarEvolution *SE) { 399 bool Changed = false; 400 for (auto &L : *LI) 401 Changed |= formLCSSARecursively(*L, DT, LI, SE); 402 return Changed; 403 } 404 405 namespace { 406 struct LCSSAWrapperPass : public FunctionPass { 407 static char ID; // Pass identification, replacement for typeid 408 LCSSAWrapperPass() : FunctionPass(ID) { 409 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 410 } 411 412 // Cached analysis information for the current function. 413 DominatorTree *DT; 414 LoopInfo *LI; 415 ScalarEvolution *SE; 416 417 bool runOnFunction(Function &F) override; 418 void verifyAnalysis() const override { 419 // This check is very expensive. On the loop intensive compiles it may cause 420 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 421 // always does limited form of the LCSSA verification. Similar reasoning 422 // was used for the LoopInfo verifier. 423 if (VerifyLoopLCSSA) { 424 assert(all_of(*LI, 425 [&](Loop *L) { 426 return L->isRecursivelyLCSSAForm(*DT, *LI); 427 }) && 428 "LCSSA form is broken!"); 429 } 430 }; 431 432 /// This transformation requires natural loop information & requires that 433 /// loop preheaders be inserted into the CFG. It maintains both of these, 434 /// as well as the CFG. It also requires dominator information. 435 void getAnalysisUsage(AnalysisUsage &AU) const override { 436 AU.setPreservesCFG(); 437 438 AU.addRequired<DominatorTreeWrapperPass>(); 439 AU.addRequired<LoopInfoWrapperPass>(); 440 AU.addPreservedID(LoopSimplifyID); 441 AU.addPreserved<AAResultsWrapperPass>(); 442 AU.addPreserved<BasicAAWrapperPass>(); 443 AU.addPreserved<GlobalsAAWrapperPass>(); 444 AU.addPreserved<ScalarEvolutionWrapperPass>(); 445 AU.addPreserved<SCEVAAWrapperPass>(); 446 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 447 448 // This is needed to perform LCSSA verification inside LPPassManager 449 AU.addRequired<LCSSAVerificationPass>(); 450 AU.addPreserved<LCSSAVerificationPass>(); 451 } 452 }; 453 } 454 455 char LCSSAWrapperPass::ID = 0; 456 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 457 false, false) 458 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 459 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 460 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 461 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 462 false, false) 463 464 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 465 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 466 467 /// Transform \p F into loop-closed SSA form. 468 bool LCSSAWrapperPass::runOnFunction(Function &F) { 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 471 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 472 SE = SEWP ? &SEWP->getSE() : nullptr; 473 474 return formLCSSAOnAllLoops(LI, *DT, SE); 475 } 476 477 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 478 auto &LI = AM.getResult<LoopAnalysis>(F); 479 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 480 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 481 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 482 return PreservedAnalyses::all(); 483 484 PreservedAnalyses PA; 485 PA.preserveSet<CFGAnalyses>(); 486 PA.preserve<BasicAA>(); 487 PA.preserve<GlobalsAA>(); 488 PA.preserve<SCEVAA>(); 489 PA.preserve<ScalarEvolutionAnalysis>(); 490 // BPI maps terminators to probabilities, since we don't modify the CFG, no 491 // updates are needed to preserve it. 492 PA.preserve<BranchProbabilityAnalysis>(); 493 return PA; 494 } 495