1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Owen Anderson and is distributed under the 6 // University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if(c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Function.h" 33 #include "llvm/Instructions.h" 34 #include "llvm/ADT/SetVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/Dominators.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Support/CFG.h" 39 #include <algorithm> 40 #include <map> 41 42 using namespace llvm; 43 44 namespace { 45 static Statistic<> NumLCSSA("lcssa", 46 "Number of live out of a loop variables"); 47 48 class LCSSA : public FunctionPass { 49 public: 50 51 52 LoopInfo *LI; // Loop information 53 DominatorTree *DT; // Dominator Tree for the current Function... 54 DominanceFrontier *DF; // Current Dominance Frontier 55 std::vector<BasicBlock*> LoopBlocks; 56 57 virtual bool runOnFunction(Function &F); 58 bool visitSubloop(Loop* L); 59 void processInstruction(Instruction* Instr, 60 const std::vector<BasicBlock*>& exitBlocks); 61 62 /// This transformation requires natural loop information & requires that 63 /// loop preheaders be inserted into the CFG. It maintains both of these, 64 /// as well as the CFG. It also requires dominator information. 65 /// 66 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 67 AU.setPreservesCFG(); 68 AU.addRequiredID(LoopSimplifyID); 69 AU.addPreservedID(LoopSimplifyID); 70 AU.addRequired<LoopInfo>(); 71 AU.addRequired<DominatorTree>(); 72 AU.addRequired<DominanceFrontier>(); 73 } 74 private: 75 SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L); 76 Instruction *getValueDominatingBlock(BasicBlock *BB, 77 std::map<BasicBlock*, Instruction*>& PotDoms); 78 79 /// inLoop - returns true if the given block is within the current loop 80 const bool inLoop(BasicBlock* B) { 81 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 82 } 83 }; 84 85 RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 86 } 87 88 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } 89 const PassInfo *llvm::LCSSAID = X.getPassInfo(); 90 91 /// runOnFunction - Process all loops in the function, inner-most out. 92 bool LCSSA::runOnFunction(Function &F) { 93 bool changed = false; 94 LI = &getAnalysis<LoopInfo>(); 95 DF = &getAnalysis<DominanceFrontier>(); 96 DT = &getAnalysis<DominatorTree>(); 97 98 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { 99 changed |= visitSubloop(*I); 100 } 101 102 return changed; 103 } 104 105 /// visitSubloop - Recursively process all subloops, and then process the given 106 /// loop if it has live-out values. 107 bool LCSSA::visitSubloop(Loop* L) { 108 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 109 visitSubloop(*I); 110 111 // Speed up queries by creating a sorted list of blocks 112 LoopBlocks.clear(); 113 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 114 std::sort(LoopBlocks.begin(), LoopBlocks.end()); 115 116 SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L); 117 118 // If no values are affected, we can save a lot of work, since we know that 119 // nothing will be changed. 120 if (AffectedValues.empty()) 121 return false; 122 123 std::vector<BasicBlock*> exitBlocks; 124 L->getExitBlocks(exitBlocks); 125 126 127 // Iterate over all affected values for this loop and insert Phi nodes 128 // for them in the appropriate exit blocks 129 130 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), 131 E = AffectedValues.end(); I != E; ++I) { 132 processInstruction(*I, exitBlocks); 133 } 134 135 return true; 136 } 137 138 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 139 /// eliminate all out-of-loop uses. 140 void LCSSA::processInstruction(Instruction* Instr, 141 const std::vector<BasicBlock*>& exitBlocks) 142 { 143 ++NumLCSSA; // We are applying the transformation 144 145 std::map<BasicBlock*, Instruction*> Phis; 146 147 // Add the base instruction to the Phis list. This makes tracking down 148 // the dominating values easier when we're filling in Phi nodes. This will 149 // be removed later, before we perform use replacement. 150 Phis[Instr->getParent()] = Instr; 151 152 // Phi nodes that need to be IDF-processed 153 std::vector<PHINode*> workList; 154 155 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(), 156 BBE = exitBlocks.end(); BBI != BBE; ++BBI) 157 if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) { 158 PHINode *phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 159 (*BBI)->begin()); 160 workList.push_back(phi); 161 Phis[*BBI] = phi; 162 } 163 164 // Phi nodes that need to have their incoming values filled. 165 std::vector<PHINode*> needIncomingValues; 166 167 // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where 168 // necessary. Keep track of these new Phi's in the "Phis" map. 169 while (!workList.empty()) { 170 PHINode *CurPHI = workList.back(); 171 workList.pop_back(); 172 173 // Even though we've removed this Phi from the work list, we still need 174 // to fill in its incoming values. 175 needIncomingValues.push_back(CurPHI); 176 177 // Get the current Phi's DF, and insert Phi nodes. Add these new 178 // nodes to our worklist. 179 DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent()); 180 if (it != DF->end()) { 181 const DominanceFrontier::DomSetType &S = it->second; 182 for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), 183 PE = S.end(); P != PE; ++P) { 184 if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*P))) { 185 Instruction *&Phi = Phis[*P]; 186 if (Phi == 0) { 187 // Still doesn't have operands... 188 Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa", 189 (*P)->begin()); 190 191 workList.push_back(cast<PHINode>(Phi)); 192 } 193 } 194 } 195 } 196 } 197 198 // Fill in all Phis we've inserted that need their incoming values filled in. 199 for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(), 200 IVE = needIncomingValues.end(); IVI != IVE; ++IVI) { 201 for (pred_iterator PI = pred_begin((*IVI)->getParent()), 202 E = pred_end((*IVI)->getParent()); PI != E; ++PI) 203 (*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis), 204 *PI); 205 } 206 207 // Find all uses of the affected value, and replace them with the 208 // appropriate Phi. 209 std::vector<Instruction*> Uses; 210 for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end(); 211 UI != UE; ++UI) { 212 Instruction* use = cast<Instruction>(*UI); 213 // Don't need to update uses within the loop body. 214 if (!inLoop(use->getParent())) 215 Uses.push_back(use); 216 } 217 218 for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end(); 219 II != IE; ++II) { 220 if (PHINode* phi = dyn_cast<PHINode>(*II)) { 221 for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) { 222 if (phi->getIncomingValue(i) == Instr) { 223 Instruction* dominator = 224 getValueDominatingBlock(phi->getIncomingBlock(i), Phis); 225 phi->setIncomingValue(i, dominator); 226 } 227 } 228 } else { 229 Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis); 230 (*II)->replaceUsesOfWith(Instr, NewVal); 231 } 232 } 233 } 234 235 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 236 /// are used by instructions outside of it. 237 SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { 238 239 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 240 // by using dominance information. In particular, if a block does not 241 // dominate any of the loop exits, then none of the values defined in the 242 // block could be used outside the loop. 243 244 SetVector<Instruction*> AffectedValues; 245 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); 246 BB != E; ++BB) { 247 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 248 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; 249 ++UI) { 250 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 251 if (!inLoop(UserBB)) { 252 AffectedValues.insert(I); 253 break; 254 } 255 } 256 } 257 return AffectedValues; 258 } 259 260 /// getValueDominatingBlock - Return the value within the potential dominators 261 /// map that dominates the given block. 262 Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB, 263 std::map<BasicBlock*, Instruction*>& PotDoms) { 264 DominatorTree::Node* bbNode = DT->getNode(BB); 265 while (bbNode != 0) { 266 std::map<BasicBlock*, Instruction*>::iterator I = 267 PotDoms.find(bbNode->getBlock()); 268 if (I != PotDoms.end()) { 269 return (*I).second; 270 } 271 bbNode = bbNode->getIDom(); 272 } 273 274 assert(0 && "No dominating value found."); 275 276 return 0; 277 } 278