1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/GlobalsModRef.h" 35 #include "llvm/Analysis/LoopPass.h" 36 #include "llvm/Analysis/ScalarEvolution.h" 37 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/PredIteratorCache.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Transforms/Utils/LoopUtils.h" 45 #include "llvm/Transforms/Utils/SSAUpdater.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "lcssa" 49 50 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 51 52 /// Return true if the specified block is in the list. 53 static bool isExitBlock(BasicBlock *BB, 54 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 55 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 56 if (ExitBlocks[i] == BB) 57 return true; 58 return false; 59 } 60 61 /// Given an instruction in the loop, check to see if it has any uses that are 62 /// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the 63 /// uses. 64 static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT, 65 const SmallVectorImpl<BasicBlock *> &ExitBlocks, 66 PredIteratorCache &PredCache, LoopInfo *LI) { 67 SmallVector<Use *, 16> UsesToRewrite; 68 69 BasicBlock *InstBB = Inst.getParent(); 70 71 for (Use &U : Inst.uses()) { 72 Instruction *User = cast<Instruction>(U.getUser()); 73 BasicBlock *UserBB = User->getParent(); 74 if (PHINode *PN = dyn_cast<PHINode>(User)) 75 UserBB = PN->getIncomingBlock(U); 76 77 if (InstBB != UserBB && !L.contains(UserBB)) 78 UsesToRewrite.push_back(&U); 79 } 80 81 // If there are no uses outside the loop, exit with no change. 82 if (UsesToRewrite.empty()) 83 return false; 84 85 ++NumLCSSA; // We are applying the transformation 86 87 // Invoke/CatchPad instructions are special in that their result value is not 88 // available along their unwind edge. The code below tests to see whether 89 // DomBB dominates the value, so adjust DomBB to the normal destination block, 90 // which is effectively where the value is first usable. 91 BasicBlock *DomBB = Inst.getParent(); 92 if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst)) 93 DomBB = Inv->getNormalDest(); 94 if (auto *CPI = dyn_cast<CatchPadInst>(&Inst)) 95 DomBB = CPI->getNormalDest(); 96 97 DomTreeNode *DomNode = DT.getNode(DomBB); 98 99 SmallVector<PHINode *, 16> AddedPHIs; 100 SmallVector<PHINode *, 8> PostProcessPHIs; 101 102 SSAUpdater SSAUpdate; 103 SSAUpdate.Initialize(Inst.getType(), Inst.getName()); 104 105 // Insert the LCSSA phi's into all of the exit blocks dominated by the 106 // value, and add them to the Phi's map. 107 for (BasicBlock *ExitBB : ExitBlocks) { 108 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 109 continue; 110 111 // If we already inserted something for this BB, don't reprocess it. 112 if (SSAUpdate.HasValueForBlock(ExitBB)) 113 continue; 114 115 PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB), 116 Inst.getName() + ".lcssa", &ExitBB->front()); 117 118 // Add inputs from inside the loop for this PHI. 119 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 120 PN->addIncoming(&Inst, Pred); 121 122 // If the exit block has a predecessor not within the loop, arrange for 123 // the incoming value use corresponding to that predecessor to be 124 // rewritten in terms of a different LCSSA PHI. 125 if (!L.contains(Pred)) 126 UsesToRewrite.push_back( 127 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 128 PN->getNumIncomingValues() - 1))); 129 } 130 131 AddedPHIs.push_back(PN); 132 133 // Remember that this phi makes the value alive in this block. 134 SSAUpdate.AddAvailableValue(ExitBB, PN); 135 136 // LoopSimplify might fail to simplify some loops (e.g. when indirect 137 // branches are involved). In such situations, it might happen that an exit 138 // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create 139 // PHIs in such an exit block, we are also inserting PHIs into L2's header. 140 // This could break LCSSA form for L2 because these inserted PHIs can also 141 // have uses outside of L2. Remember all PHIs in such situation as to 142 // revisit than later on. FIXME: Remove this if indirectbr support into 143 // LoopSimplify gets improved. 144 if (auto *OtherLoop = LI->getLoopFor(ExitBB)) 145 if (!L.contains(OtherLoop)) 146 PostProcessPHIs.push_back(PN); 147 } 148 149 // Rewrite all uses outside the loop in terms of the new PHIs we just 150 // inserted. 151 for (Use *UseToRewrite : UsesToRewrite) { 152 // If this use is in an exit block, rewrite to use the newly inserted PHI. 153 // This is required for correctness because SSAUpdate doesn't handle uses in 154 // the same block. It assumes the PHI we inserted is at the end of the 155 // block. 156 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 157 BasicBlock *UserBB = User->getParent(); 158 if (PHINode *PN = dyn_cast<PHINode>(User)) 159 UserBB = PN->getIncomingBlock(*UseToRewrite); 160 161 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 162 // Tell the VHs that the uses changed. This updates SCEV's caches. 163 if (UseToRewrite->get()->hasValueHandle()) 164 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 165 UseToRewrite->set(&UserBB->front()); 166 continue; 167 } 168 169 // Otherwise, do full PHI insertion. 170 SSAUpdate.RewriteUse(*UseToRewrite); 171 } 172 173 // Post process PHI instructions that were inserted into another disjoint loop 174 // and update their exits properly. 175 for (auto *I : PostProcessPHIs) { 176 if (I->use_empty()) 177 continue; 178 179 BasicBlock *PHIBB = I->getParent(); 180 Loop *OtherLoop = LI->getLoopFor(PHIBB); 181 SmallVector<BasicBlock *, 8> EBs; 182 OtherLoop->getExitBlocks(EBs); 183 if (EBs.empty()) 184 continue; 185 186 // Recurse and re-process each PHI instruction. FIXME: we should really 187 // convert this entire thing to a worklist approach where we process a 188 // vector of instructions... 189 processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI); 190 } 191 192 // Remove PHI nodes that did not have any uses rewritten. 193 for (PHINode *PN : AddedPHIs) 194 if (PN->use_empty()) 195 PN->eraseFromParent(); 196 197 return true; 198 } 199 200 /// Return true if the specified block dominates at least 201 /// one of the blocks in the specified list. 202 static bool 203 blockDominatesAnExit(BasicBlock *BB, 204 DominatorTree &DT, 205 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 206 DomTreeNode *DomNode = DT.getNode(BB); 207 for (BasicBlock *ExitBB : ExitBlocks) 208 if (DT.dominates(DomNode, DT.getNode(ExitBB))) 209 return true; 210 211 return false; 212 } 213 214 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 215 ScalarEvolution *SE) { 216 bool Changed = false; 217 218 // Get the set of exiting blocks. 219 SmallVector<BasicBlock *, 8> ExitBlocks; 220 L.getExitBlocks(ExitBlocks); 221 222 if (ExitBlocks.empty()) 223 return false; 224 225 PredIteratorCache PredCache; 226 227 // Look at all the instructions in the loop, checking to see if they have uses 228 // outside the loop. If so, rewrite those uses. 229 for (BasicBlock *BB : L.blocks()) { 230 // For large loops, avoid use-scanning by using dominance information: In 231 // particular, if a block does not dominate any of the loop exits, then none 232 // of the values defined in the block could be used outside the loop. 233 if (!blockDominatesAnExit(BB, DT, ExitBlocks)) 234 continue; 235 236 for (Instruction &I : *BB) { 237 // Reject two common cases fast: instructions with no uses (like stores) 238 // and instructions with one use that is in the same block as this. 239 if (I.use_empty() || 240 (I.hasOneUse() && I.user_back()->getParent() == BB && 241 !isa<PHINode>(I.user_back()))) 242 continue; 243 244 Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI); 245 } 246 } 247 248 // If we modified the code, remove any caches about the loop from SCEV to 249 // avoid dangling entries. 250 // FIXME: This is a big hammer, can we clear the cache more selectively? 251 if (SE && Changed) 252 SE->forgetLoop(&L); 253 254 assert(L.isLCSSAForm(DT)); 255 256 return Changed; 257 } 258 259 /// Process a loop nest depth first. 260 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 261 ScalarEvolution *SE) { 262 bool Changed = false; 263 264 // Recurse depth-first through inner loops. 265 for (Loop *SubLoop : L.getSubLoops()) 266 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 267 268 Changed |= formLCSSA(L, DT, LI, SE); 269 return Changed; 270 } 271 272 namespace { 273 struct LCSSA : public FunctionPass { 274 static char ID; // Pass identification, replacement for typeid 275 LCSSA() : FunctionPass(ID) { 276 initializeLCSSAPass(*PassRegistry::getPassRegistry()); 277 } 278 279 // Cached analysis information for the current function. 280 DominatorTree *DT; 281 LoopInfo *LI; 282 ScalarEvolution *SE; 283 284 bool runOnFunction(Function &F) override; 285 286 /// This transformation requires natural loop information & requires that 287 /// loop preheaders be inserted into the CFG. It maintains both of these, 288 /// as well as the CFG. It also requires dominator information. 289 void getAnalysisUsage(AnalysisUsage &AU) const override { 290 AU.setPreservesCFG(); 291 292 AU.addRequired<DominatorTreeWrapperPass>(); 293 AU.addRequired<LoopInfoWrapperPass>(); 294 AU.addPreservedID(LoopSimplifyID); 295 AU.addPreserved<AAResultsWrapperPass>(); 296 AU.addPreserved<GlobalsAAWrapperPass>(); 297 AU.addPreserved<ScalarEvolutionWrapperPass>(); 298 AU.addPreserved<SCEVAAWrapperPass>(); 299 } 300 }; 301 } 302 303 char LCSSA::ID = 0; 304 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 305 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 306 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 307 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 308 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 309 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 310 311 Pass *llvm::createLCSSAPass() { return new LCSSA(); } 312 char &llvm::LCSSAID = LCSSA::ID; 313 314 315 /// Process all loops in the function, inner-most out. 316 bool LCSSA::runOnFunction(Function &F) { 317 bool Changed = false; 318 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 319 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 320 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 321 SE = SEWP ? &SEWP->getSE() : nullptr; 322 323 // Simplify each loop nest in the function. 324 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 325 Changed |= formLCSSARecursively(**I, *DT, LI, SE); 326 327 return Changed; 328 } 329 330