1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #define DEBUG_TYPE "lcssa" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Constants.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Function.h" 35 #include "llvm/Instructions.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/Analysis/Dominators.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Support/CFG.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/PredIteratorCache.h" 45 #include <map> 46 using namespace llvm; 47 48 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 49 50 namespace { 51 struct VISIBILITY_HIDDEN LCSSA : public LoopPass { 52 static char ID; // Pass identification, replacement for typeid 53 LCSSA() : LoopPass(&ID) {} 54 55 // Cached analysis information for the current function. 56 LoopInfo *LI; 57 DominatorTree *DT; 58 std::vector<BasicBlock*> LoopBlocks; 59 PredIteratorCache PredCache; 60 Loop *L; 61 62 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 63 64 /// This transformation requires natural loop information & requires that 65 /// loop preheaders be inserted into the CFG. It maintains both of these, 66 /// as well as the CFG. It also requires dominator information. 67 /// 68 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 69 AU.setPreservesCFG(); 70 AU.addRequiredID(LoopSimplifyID); 71 AU.addPreservedID(LoopSimplifyID); 72 AU.addRequiredTransitive<LoopInfo>(); 73 AU.addPreserved<LoopInfo>(); 74 AU.addRequiredTransitive<DominatorTree>(); 75 AU.addPreserved<ScalarEvolution>(); 76 AU.addPreserved<DominatorTree>(); 77 78 // Request DominanceFrontier now, even though LCSSA does 79 // not use it. This allows Pass Manager to schedule Dominance 80 // Frontier early enough such that one LPPassManager can handle 81 // multiple loop transformation passes. 82 AU.addRequired<DominanceFrontier>(); 83 AU.addPreserved<DominanceFrontier>(); 84 } 85 private: 86 void ProcessInstruction(Instruction* Instr, 87 const SmallVector<BasicBlock*, 8>& exitBlocks); 88 89 /// verifyAnalysis() - Verify loop nest. 90 virtual void verifyAnalysis() const { 91 // Check the special guarantees that LCSSA makes. 92 assert(L->isLCSSAForm() && "LCSSA form not preserved!"); 93 } 94 95 void getLoopValuesUsedOutsideLoop(Loop *L, 96 SmallVectorImpl<Instruction*> &AffectedValues); 97 98 Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 99 DenseMap<DomTreeNode*, Value*> &Phis); 100 101 /// inLoop - returns true if the given block is within the current loop 102 bool inLoop(BasicBlock *B) const { 103 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); 104 } 105 }; 106 } 107 108 char LCSSA::ID = 0; 109 static RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); 110 111 Pass *llvm::createLCSSAPass() { return new LCSSA(); } 112 const PassInfo *const llvm::LCSSAID = &X; 113 114 /// runOnFunction - Process all loops in the function, inner-most out. 115 bool LCSSA::runOnLoop(Loop *l, LPPassManager &LPM) { 116 L = l; 117 PredCache.clear(); 118 119 LI = &LPM.getAnalysis<LoopInfo>(); 120 DT = &getAnalysis<DominatorTree>(); 121 122 // Speed up queries by creating a sorted vector of blocks. 123 LoopBlocks.clear(); 124 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); 125 array_pod_sort(LoopBlocks.begin(), LoopBlocks.end()); 126 127 SmallVector<Instruction*, 16> AffectedValues; 128 getLoopValuesUsedOutsideLoop(L, AffectedValues); 129 130 // If no values are affected, we can save a lot of work, since we know that 131 // nothing will be changed. 132 if (AffectedValues.empty()) 133 return false; 134 135 SmallVector<BasicBlock*, 8> ExitBlocks; 136 L->getExitBlocks(ExitBlocks); 137 138 // Iterate over all affected values for this loop and insert Phi nodes 139 // for them in the appropriate exit blocks. 140 for (SmallVectorImpl<Instruction*>::iterator I = AffectedValues.begin(), 141 E = AffectedValues.end(); I != E; ++I) 142 ProcessInstruction(*I, ExitBlocks); 143 144 assert(L->isLCSSAForm()); 145 146 return true; 147 } 148 149 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, 150 /// eliminate all out-of-loop uses. 151 void LCSSA::ProcessInstruction(Instruction *Instr, 152 const SmallVector<BasicBlock*, 8> &ExitBlocks) { 153 ++NumLCSSA; // We are applying the transformation 154 155 // Keep track of the blocks that have the value available already. 156 DenseMap<DomTreeNode*, Value*> Phis; 157 158 BasicBlock *DomBB = Instr->getParent(); 159 160 // Invoke instructions are special in that their result value is not available 161 // along their unwind edge. The code below tests to see whether DomBB dominates 162 // the value, so adjust DomBB to the normal destination block, which is 163 // effectively where the value is first usable. 164 if (InvokeInst *Inv = dyn_cast<InvokeInst>(Instr)) 165 DomBB = Inv->getNormalDest(); 166 167 DomTreeNode *DomNode = DT->getNode(DomBB); 168 169 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and 170 // add them to the Phi's map. 171 for (SmallVector<BasicBlock*, 8>::const_iterator BBI = ExitBlocks.begin(), 172 BBE = ExitBlocks.end(); BBI != BBE; ++BBI) { 173 BasicBlock *BB = *BBI; 174 DomTreeNode *ExitBBNode = DT->getNode(BB); 175 Value *&Phi = Phis[ExitBBNode]; 176 if (!Phi && DT->dominates(DomNode, ExitBBNode)) { 177 PHINode *PN = PHINode::Create(Instr->getType(), Instr->getName()+".lcssa", 178 BB->begin()); 179 PN->reserveOperandSpace(PredCache.GetNumPreds(BB)); 180 181 // Remember that this phi makes the value alive in this block. 182 Phi = PN; 183 184 // Add inputs from inside the loop for this PHI. 185 for (BasicBlock** PI = PredCache.GetPreds(BB); *PI; ++PI) 186 PN->addIncoming(Instr, *PI); 187 } 188 } 189 190 191 // Record all uses of Instr outside the loop. We need to rewrite these. The 192 // LCSSA phis won't be included because they use the value in the loop. 193 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); 194 UI != E;) { 195 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 196 if (PHINode *P = dyn_cast<PHINode>(*UI)) 197 UserBB = P->getIncomingBlock(UI); 198 199 // If the user is in the loop, don't rewrite it! 200 if (UserBB == Instr->getParent() || inLoop(UserBB)) { 201 ++UI; 202 continue; 203 } 204 205 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, 206 // inserting PHI nodes into join points where needed. 207 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); 208 209 // Preincrement the iterator to avoid invalidating it when we change the 210 // value. 211 Use &U = UI.getUse(); 212 ++UI; 213 U.set(Val); 214 } 215 } 216 217 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that 218 /// are used by instructions outside of it. 219 void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, 220 SmallVectorImpl<Instruction*> &AffectedValues) { 221 // FIXME: For large loops, we may be able to avoid a lot of use-scanning 222 // by using dominance information. In particular, if a block does not 223 // dominate any of the loop exits, then none of the values defined in the 224 // block could be used outside the loop. 225 for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end(); 226 BB != BE; ++BB) { 227 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) 228 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 229 UI != UE; ++UI) { 230 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); 231 if (PHINode *PN = dyn_cast<PHINode>(*UI)) 232 UserBB = PN->getIncomingBlock(UI); 233 234 if (*BB != UserBB && !inLoop(UserBB)) { 235 AffectedValues.push_back(I); 236 break; 237 } 238 } 239 } 240 } 241 242 /// GetValueForBlock - Get the value to use within the specified basic block. 243 /// available values are in Phis. 244 Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, 245 DenseMap<DomTreeNode*, Value*> &Phis) { 246 // If there is no dominator info for this BB, it is unreachable. 247 if (BB == 0) 248 return UndefValue::get(OrigInst->getType()); 249 250 // If we have already computed this value, return the previously computed val. 251 if (Phis.count(BB)) return Phis[BB]; 252 253 DomTreeNode *IDom = BB->getIDom(); 254 255 // Otherwise, there are two cases: we either have to insert a PHI node or we 256 // don't. We need to insert a PHI node if this block is not dominated by one 257 // of the exit nodes from the loop (the loop could have multiple exits, and 258 // though the value defined *inside* the loop dominated all its uses, each 259 // exit by itself may not dominate all the uses). 260 // 261 // The simplest way to check for this condition is by checking to see if the 262 // idom is in the loop. If so, we *know* that none of the exit blocks 263 // dominate this block. Note that we *know* that the block defining the 264 // original instruction is in the idom chain, because if it weren't, then the 265 // original value didn't dominate this use. 266 if (!inLoop(IDom->getBlock())) { 267 // Idom is not in the loop, we must still be "below" the exit block and must 268 // be fully dominated by the value live in the idom. 269 Value* val = GetValueForBlock(IDom, OrigInst, Phis); 270 Phis.insert(std::make_pair(BB, val)); 271 return val; 272 } 273 274 BasicBlock *BBN = BB->getBlock(); 275 276 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so 277 // now, then get values to fill in the incoming values for the PHI. 278 PHINode *PN = PHINode::Create(OrigInst->getType(), 279 OrigInst->getName() + ".lcssa", BBN->begin()); 280 PN->reserveOperandSpace(PredCache.GetNumPreds(BBN)); 281 Phis.insert(std::make_pair(BB, PN)); 282 283 // Fill in the incoming values for the block. 284 for (BasicBlock **PI = PredCache.GetPreds(BBN); *PI; ++PI) 285 PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); 286 return PN; 287 } 288 289