xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 05b44f7eaebfbca19999fde149c4c586fc965015)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary.  For example, it turns
11 // the left into the right code:
12 //
13 // for (...)                for (...)
14 //   if (c)                   if (c)
15 //     X1 = ...                 X1 = ...
16 //   else                     else
17 //     X2 = ...                 X2 = ...
18 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19 // ... = X3 + 4             X4 = phi(X3)
20 //                          ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine.  The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "lcssa"
57 
58 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
59 
60 #ifdef EXPENSIVE_CHECKS
61 static bool VerifyLoopLCSSA = true;
62 #else
63 static bool VerifyLoopLCSSA = false;
64 #endif
65 static cl::opt<bool, true>
66     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
67                         cl::Hidden,
68                         cl::desc("Verify loop lcssa form (time consuming)"));
69 
70 /// Return true if the specified block is in the list.
71 static bool isExitBlock(BasicBlock *BB,
72                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
73   return is_contained(ExitBlocks, BB);
74 }
75 
76 /// For every instruction from the worklist, check to see if it has any uses
77 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
78 /// rewrite the uses.
79 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
80                                     const DominatorTree &DT, const LoopInfo &LI,
81                                     ScalarEvolution *SE, IRBuilderBase &Builder,
82                                     SmallVectorImpl<PHINode *> *PHIsToRemove) {
83   SmallVector<Use *, 16> UsesToRewrite;
84   SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
85   PredIteratorCache PredCache;
86   bool Changed = false;
87 
88   IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
89 
90   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
91   // instructions within the same loops, computing the exit blocks is
92   // expensive, and we're not mutating the loop structure.
93   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
94 
95   while (!Worklist.empty()) {
96     UsesToRewrite.clear();
97 
98     Instruction *I = Worklist.pop_back_val();
99     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
100     BasicBlock *InstBB = I->getParent();
101     Loop *L = LI.getLoopFor(InstBB);
102     assert(L && "Instruction belongs to a BB that's not part of a loop");
103     if (!LoopExitBlocks.count(L))
104       L->getExitBlocks(LoopExitBlocks[L]);
105     assert(LoopExitBlocks.count(L));
106     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
107 
108     if (ExitBlocks.empty())
109       continue;
110 
111     for (Use &U : I->uses()) {
112       Instruction *User = cast<Instruction>(U.getUser());
113       BasicBlock *UserBB = User->getParent();
114       if (auto *PN = dyn_cast<PHINode>(User))
115         UserBB = PN->getIncomingBlock(U);
116 
117       if (InstBB != UserBB && !L->contains(UserBB))
118         UsesToRewrite.push_back(&U);
119     }
120 
121     // If there are no uses outside the loop, exit with no change.
122     if (UsesToRewrite.empty())
123       continue;
124 
125     ++NumLCSSA; // We are applying the transformation
126 
127     // Invoke instructions are special in that their result value is not
128     // available along their unwind edge. The code below tests to see whether
129     // DomBB dominates the value, so adjust DomBB to the normal destination
130     // block, which is effectively where the value is first usable.
131     BasicBlock *DomBB = InstBB;
132     if (auto *Inv = dyn_cast<InvokeInst>(I))
133       DomBB = Inv->getNormalDest();
134 
135     const DomTreeNode *DomNode = DT.getNode(DomBB);
136 
137     SmallVector<PHINode *, 16> AddedPHIs;
138     SmallVector<PHINode *, 8> PostProcessPHIs;
139 
140     SmallVector<PHINode *, 4> InsertedPHIs;
141     SSAUpdater SSAUpdate(&InsertedPHIs);
142     SSAUpdate.Initialize(I->getType(), I->getName());
143 
144     // Force re-computation of I, as some users now need to use the new PHI
145     // node.
146     if (SE)
147       SE->forgetValue(I);
148 
149     // Insert the LCSSA phi's into all of the exit blocks dominated by the
150     // value, and add them to the Phi's map.
151     for (BasicBlock *ExitBB : ExitBlocks) {
152       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
153         continue;
154 
155       // If we already inserted something for this BB, don't reprocess it.
156       if (SSAUpdate.HasValueForBlock(ExitBB))
157         continue;
158       Builder.SetInsertPoint(&ExitBB->front());
159       PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
160                                       I->getName() + ".lcssa");
161       // Get the debug location from the original instruction.
162       PN->setDebugLoc(I->getDebugLoc());
163       // Add inputs from inside the loop for this PHI.
164       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
165         PN->addIncoming(I, Pred);
166 
167         // If the exit block has a predecessor not within the loop, arrange for
168         // the incoming value use corresponding to that predecessor to be
169         // rewritten in terms of a different LCSSA PHI.
170         if (!L->contains(Pred))
171           UsesToRewrite.push_back(
172               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
173                   PN->getNumIncomingValues() - 1)));
174       }
175 
176       AddedPHIs.push_back(PN);
177 
178       // Remember that this phi makes the value alive in this block.
179       SSAUpdate.AddAvailableValue(ExitBB, PN);
180 
181       // LoopSimplify might fail to simplify some loops (e.g. when indirect
182       // branches are involved). In such situations, it might happen that an
183       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
184       // create PHIs in such an exit block, we are also inserting PHIs into L2's
185       // header. This could break LCSSA form for L2 because these inserted PHIs
186       // can also have uses outside of L2. Remember all PHIs in such situation
187       // as to revisit than later on. FIXME: Remove this if indirectbr support
188       // into LoopSimplify gets improved.
189       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
190         if (!L->contains(OtherLoop))
191           PostProcessPHIs.push_back(PN);
192     }
193 
194     // Rewrite all uses outside the loop in terms of the new PHIs we just
195     // inserted.
196     for (Use *UseToRewrite : UsesToRewrite) {
197       // If this use is in an exit block, rewrite to use the newly inserted PHI.
198       // This is required for correctness because SSAUpdate doesn't handle uses
199       // in the same block.  It assumes the PHI we inserted is at the end of the
200       // block.
201       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
202       BasicBlock *UserBB = User->getParent();
203       if (auto *PN = dyn_cast<PHINode>(User))
204         UserBB = PN->getIncomingBlock(*UseToRewrite);
205 
206       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
207         UseToRewrite->set(&UserBB->front());
208         continue;
209       }
210 
211       // If we added a single PHI, it must dominate all uses and we can directly
212       // rename it.
213       if (AddedPHIs.size() == 1) {
214         UseToRewrite->set(AddedPHIs[0]);
215         continue;
216       }
217 
218       // Otherwise, do full PHI insertion.
219       SSAUpdate.RewriteUse(*UseToRewrite);
220     }
221 
222     SmallVector<DbgValueInst *, 4> DbgValues;
223     llvm::findDbgValues(DbgValues, I);
224 
225     // Update pre-existing debug value uses that reside outside the loop.
226     auto &Ctx = I->getContext();
227     for (auto DVI : DbgValues) {
228       BasicBlock *UserBB = DVI->getParent();
229       if (InstBB == UserBB || L->contains(UserBB))
230         continue;
231       // We currently only handle debug values residing in blocks that were
232       // traversed while rewriting the uses. If we inserted just a single PHI,
233       // we will handle all relevant debug values.
234       Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
235                                        : SSAUpdate.FindValueForBlock(UserBB);
236       if (V)
237         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
238     }
239 
240     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
241     // to post-process them to keep LCSSA form.
242     for (PHINode *InsertedPN : InsertedPHIs) {
243       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
244         if (!L->contains(OtherLoop))
245           PostProcessPHIs.push_back(InsertedPN);
246     }
247 
248     // Post process PHI instructions that were inserted into another disjoint
249     // loop and update their exits properly.
250     for (auto *PostProcessPN : PostProcessPHIs)
251       if (!PostProcessPN->use_empty())
252         Worklist.push_back(PostProcessPN);
253 
254     // Keep track of PHI nodes that we want to remove because they did not have
255     // any uses rewritten. If the new PHI is used, store it so that we can
256     // try to propagate dbg.value intrinsics to it.
257     SmallVector<PHINode *, 2> NeedDbgValues;
258     for (PHINode *PN : AddedPHIs)
259       if (PN->use_empty())
260         LocalPHIsToRemove.insert(PN);
261       else
262         NeedDbgValues.push_back(PN);
263     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
264     Changed = true;
265   }
266 
267   // Remove PHI nodes that did not have any uses rewritten or add them to
268   // PHIsToRemove, so the caller can remove them after some additional cleanup.
269   // We need to redo the use_empty() check here, because even if the PHI node
270   // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
271   // using it.  This cleanup is not guaranteed to handle trees/cycles of PHI
272   // nodes that only are used by each other. Such situations has only been
273   // noticed when the input IR contains unreachable code, and leaving some extra
274   // redundant PHI nodes in such situations is considered a minor problem.
275   if (PHIsToRemove) {
276     PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
277   } else {
278     for (PHINode *PN : LocalPHIsToRemove)
279       if (PN->use_empty())
280         PN->eraseFromParent();
281   }
282   return Changed;
283 }
284 
285 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
286 static void computeBlocksDominatingExits(
287     Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
288     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
289   SmallVector<BasicBlock *, 8> BBWorklist;
290 
291   // We start from the exit blocks, as every block trivially dominates itself
292   // (not strictly).
293   for (BasicBlock *BB : ExitBlocks)
294     BBWorklist.push_back(BB);
295 
296   while (!BBWorklist.empty()) {
297     BasicBlock *BB = BBWorklist.pop_back_val();
298 
299     // Check if this is a loop header. If this is the case, we're done.
300     if (L.getHeader() == BB)
301       continue;
302 
303     // Otherwise, add its immediate predecessor in the dominator tree to the
304     // worklist, unless we visited it already.
305     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
306 
307     // Exit blocks can have an immediate dominator not beloinging to the
308     // loop. For an exit block to be immediately dominated by another block
309     // outside the loop, it implies not all paths from that dominator, to the
310     // exit block, go through the loop.
311     // Example:
312     //
313     // |---- A
314     // |     |
315     // |     B<--
316     // |     |  |
317     // |---> C --
318     //       |
319     //       D
320     //
321     // C is the exit block of the loop and it's immediately dominated by A,
322     // which doesn't belong to the loop.
323     if (!L.contains(IDomBB))
324       continue;
325 
326     if (BlocksDominatingExits.insert(IDomBB))
327       BBWorklist.push_back(IDomBB);
328   }
329 }
330 
331 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
332                      ScalarEvolution *SE) {
333   bool Changed = false;
334 
335 #ifdef EXPENSIVE_CHECKS
336   // Verify all sub-loops are in LCSSA form already.
337   for (Loop *SubLoop: L)
338     assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
339 #endif
340 
341   SmallVector<BasicBlock *, 8> ExitBlocks;
342   L.getExitBlocks(ExitBlocks);
343   if (ExitBlocks.empty())
344     return false;
345 
346   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
347 
348   // We want to avoid use-scanning leveraging dominance informations.
349   // If a block doesn't dominate any of the loop exits, the none of the values
350   // defined in the loop can be used outside.
351   // We compute the set of blocks fullfilling the conditions in advance
352   // walking the dominator tree upwards until we hit a loop header.
353   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
354 
355   SmallVector<Instruction *, 8> Worklist;
356 
357   // Look at all the instructions in the loop, checking to see if they have uses
358   // outside the loop.  If so, put them into the worklist to rewrite those uses.
359   for (BasicBlock *BB : BlocksDominatingExits) {
360     // Skip blocks that are part of any sub-loops, they must be in LCSSA
361     // already.
362     if (LI->getLoopFor(BB) != &L)
363       continue;
364     for (Instruction &I : *BB) {
365       // Reject two common cases fast: instructions with no uses (like stores)
366       // and instructions with one use that is in the same block as this.
367       if (I.use_empty() ||
368           (I.hasOneUse() && I.user_back()->getParent() == BB &&
369            !isa<PHINode>(I.user_back())))
370         continue;
371 
372       // Tokens cannot be used in PHI nodes, so we skip over them.
373       // We can run into tokens which are live out of a loop with catchswitch
374       // instructions in Windows EH if the catchswitch has one catchpad which
375       // is inside the loop and another which is not.
376       if (I.getType()->isTokenTy())
377         continue;
378 
379       Worklist.push_back(&I);
380     }
381   }
382 
383   IRBuilder<> Builder(L.getHeader()->getContext());
384   Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
385 
386   // If we modified the code, remove any caches about the loop from SCEV to
387   // avoid dangling entries.
388   // FIXME: This is a big hammer, can we clear the cache more selectively?
389   if (SE && Changed)
390     SE->forgetLoop(&L);
391 
392   assert(L.isLCSSAForm(DT));
393 
394   return Changed;
395 }
396 
397 /// Process a loop nest depth first.
398 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
399                                 const LoopInfo *LI, ScalarEvolution *SE) {
400   bool Changed = false;
401 
402   // Recurse depth-first through inner loops.
403   for (Loop *SubLoop : L.getSubLoops())
404     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
405 
406   Changed |= formLCSSA(L, DT, LI, SE);
407   return Changed;
408 }
409 
410 /// Process all loops in the function, inner-most out.
411 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
412                                 ScalarEvolution *SE) {
413   bool Changed = false;
414   for (auto &L : *LI)
415     Changed |= formLCSSARecursively(*L, DT, LI, SE);
416   return Changed;
417 }
418 
419 namespace {
420 struct LCSSAWrapperPass : public FunctionPass {
421   static char ID; // Pass identification, replacement for typeid
422   LCSSAWrapperPass() : FunctionPass(ID) {
423     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
424   }
425 
426   // Cached analysis information for the current function.
427   DominatorTree *DT;
428   LoopInfo *LI;
429   ScalarEvolution *SE;
430 
431   bool runOnFunction(Function &F) override;
432   void verifyAnalysis() const override {
433     // This check is very expensive. On the loop intensive compiles it may cause
434     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
435     // always does limited form of the LCSSA verification. Similar reasoning
436     // was used for the LoopInfo verifier.
437     if (VerifyLoopLCSSA) {
438       assert(all_of(*LI,
439                     [&](Loop *L) {
440                       return L->isRecursivelyLCSSAForm(*DT, *LI);
441                     }) &&
442              "LCSSA form is broken!");
443     }
444   };
445 
446   /// This transformation requires natural loop information & requires that
447   /// loop preheaders be inserted into the CFG.  It maintains both of these,
448   /// as well as the CFG.  It also requires dominator information.
449   void getAnalysisUsage(AnalysisUsage &AU) const override {
450     AU.setPreservesCFG();
451 
452     AU.addRequired<DominatorTreeWrapperPass>();
453     AU.addRequired<LoopInfoWrapperPass>();
454     AU.addPreservedID(LoopSimplifyID);
455     AU.addPreserved<AAResultsWrapperPass>();
456     AU.addPreserved<BasicAAWrapperPass>();
457     AU.addPreserved<GlobalsAAWrapperPass>();
458     AU.addPreserved<ScalarEvolutionWrapperPass>();
459     AU.addPreserved<SCEVAAWrapperPass>();
460     AU.addPreserved<BranchProbabilityInfoWrapperPass>();
461     AU.addPreserved<MemorySSAWrapperPass>();
462 
463     // This is needed to perform LCSSA verification inside LPPassManager
464     AU.addRequired<LCSSAVerificationPass>();
465     AU.addPreserved<LCSSAVerificationPass>();
466   }
467 };
468 }
469 
470 char LCSSAWrapperPass::ID = 0;
471 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
472                       false, false)
473 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
474 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
475 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
476 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
477                     false, false)
478 
479 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
480 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
481 
482 /// Transform \p F into loop-closed SSA form.
483 bool LCSSAWrapperPass::runOnFunction(Function &F) {
484   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
485   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
486   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
487   SE = SEWP ? &SEWP->getSE() : nullptr;
488 
489   return formLCSSAOnAllLoops(LI, *DT, SE);
490 }
491 
492 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
493   auto &LI = AM.getResult<LoopAnalysis>(F);
494   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
495   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
496   if (!formLCSSAOnAllLoops(&LI, DT, SE))
497     return PreservedAnalyses::all();
498 
499   PreservedAnalyses PA;
500   PA.preserveSet<CFGAnalyses>();
501   PA.preserve<BasicAA>();
502   PA.preserve<GlobalsAA>();
503   PA.preserve<SCEVAA>();
504   PA.preserve<ScalarEvolutionAnalysis>();
505   // BPI maps terminators to probabilities, since we don't modify the CFG, no
506   // updates are needed to preserve it.
507   PA.preserve<BranchProbabilityAnalysis>();
508   PA.preserve<MemorySSAAnalysis>();
509   return PA;
510 }
511