1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms loops by placing phi nodes at the end of the loops for 10 // all values that are live across the loop boundary. For example, it turns 11 // the left into the right code: 12 // 13 // for (...) for (...) 14 // if (c) if (c) 15 // X1 = ... X1 = ... 16 // else else 17 // X2 = ... X2 = ... 18 // X3 = phi(X1, X2) X3 = phi(X1, X2) 19 // ... = X3 + 4 X4 = phi(X3) 20 // ... = X4 + 4 21 // 22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 23 // be trivially eliminated by InstCombine. The major benefit of this 24 // transformation is that it makes many other loop optimizations, such as 25 // LoopUnswitching, simpler. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Utils/LCSSA.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BasicAliasAnalysis.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/MemorySSA.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/PredIteratorCache.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Transforms/Utils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/LoopUtils.h" 53 #include "llvm/Transforms/Utils/SSAUpdater.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "lcssa" 57 58 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 59 60 #ifdef EXPENSIVE_CHECKS 61 static bool VerifyLoopLCSSA = true; 62 #else 63 static bool VerifyLoopLCSSA = false; 64 #endif 65 static cl::opt<bool, true> 66 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), 67 cl::Hidden, 68 cl::desc("Verify loop lcssa form (time consuming)")); 69 70 /// Return true if the specified block is in the list. 71 static bool isExitBlock(BasicBlock *BB, 72 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 73 return is_contained(ExitBlocks, BB); 74 } 75 76 /// For every instruction from the worklist, check to see if it has any uses 77 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 78 /// rewrite the uses. 79 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 80 const DominatorTree &DT, const LoopInfo &LI, 81 ScalarEvolution *SE, IRBuilderBase &Builder, 82 SmallVectorImpl<PHINode *> *PHIsToRemove) { 83 SmallVector<Use *, 16> UsesToRewrite; 84 SmallSetVector<PHINode *, 16> LocalPHIsToRemove; 85 PredIteratorCache PredCache; 86 bool Changed = false; 87 88 IRBuilderBase::InsertPointGuard InsertPtGuard(Builder); 89 90 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 91 // instructions within the same loops, computing the exit blocks is 92 // expensive, and we're not mutating the loop structure. 93 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 94 95 while (!Worklist.empty()) { 96 UsesToRewrite.clear(); 97 98 Instruction *I = Worklist.pop_back_val(); 99 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); 100 BasicBlock *InstBB = I->getParent(); 101 Loop *L = LI.getLoopFor(InstBB); 102 assert(L && "Instruction belongs to a BB that's not part of a loop"); 103 if (!LoopExitBlocks.count(L)) 104 L->getExitBlocks(LoopExitBlocks[L]); 105 assert(LoopExitBlocks.count(L)); 106 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 107 108 if (ExitBlocks.empty()) 109 continue; 110 111 for (Use &U : I->uses()) { 112 Instruction *User = cast<Instruction>(U.getUser()); 113 BasicBlock *UserBB = User->getParent(); 114 if (auto *PN = dyn_cast<PHINode>(User)) 115 UserBB = PN->getIncomingBlock(U); 116 117 if (InstBB != UserBB && !L->contains(UserBB)) 118 UsesToRewrite.push_back(&U); 119 } 120 121 // If there are no uses outside the loop, exit with no change. 122 if (UsesToRewrite.empty()) 123 continue; 124 125 ++NumLCSSA; // We are applying the transformation 126 127 // Invoke instructions are special in that their result value is not 128 // available along their unwind edge. The code below tests to see whether 129 // DomBB dominates the value, so adjust DomBB to the normal destination 130 // block, which is effectively where the value is first usable. 131 BasicBlock *DomBB = InstBB; 132 if (auto *Inv = dyn_cast<InvokeInst>(I)) 133 DomBB = Inv->getNormalDest(); 134 135 const DomTreeNode *DomNode = DT.getNode(DomBB); 136 137 SmallVector<PHINode *, 16> AddedPHIs; 138 SmallVector<PHINode *, 8> PostProcessPHIs; 139 140 SmallVector<PHINode *, 4> InsertedPHIs; 141 SSAUpdater SSAUpdate(&InsertedPHIs); 142 SSAUpdate.Initialize(I->getType(), I->getName()); 143 144 // Force re-computation of I, as some users now need to use the new PHI 145 // node. 146 if (SE) 147 SE->forgetValue(I); 148 149 // Insert the LCSSA phi's into all of the exit blocks dominated by the 150 // value, and add them to the Phi's map. 151 for (BasicBlock *ExitBB : ExitBlocks) { 152 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 153 continue; 154 155 // If we already inserted something for this BB, don't reprocess it. 156 if (SSAUpdate.HasValueForBlock(ExitBB)) 157 continue; 158 Builder.SetInsertPoint(&ExitBB->front()); 159 PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB), 160 I->getName() + ".lcssa"); 161 // Get the debug location from the original instruction. 162 PN->setDebugLoc(I->getDebugLoc()); 163 // Add inputs from inside the loop for this PHI. 164 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 165 PN->addIncoming(I, Pred); 166 167 // If the exit block has a predecessor not within the loop, arrange for 168 // the incoming value use corresponding to that predecessor to be 169 // rewritten in terms of a different LCSSA PHI. 170 if (!L->contains(Pred)) 171 UsesToRewrite.push_back( 172 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 173 PN->getNumIncomingValues() - 1))); 174 } 175 176 AddedPHIs.push_back(PN); 177 178 // Remember that this phi makes the value alive in this block. 179 SSAUpdate.AddAvailableValue(ExitBB, PN); 180 181 // LoopSimplify might fail to simplify some loops (e.g. when indirect 182 // branches are involved). In such situations, it might happen that an 183 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 184 // create PHIs in such an exit block, we are also inserting PHIs into L2's 185 // header. This could break LCSSA form for L2 because these inserted PHIs 186 // can also have uses outside of L2. Remember all PHIs in such situation 187 // as to revisit than later on. FIXME: Remove this if indirectbr support 188 // into LoopSimplify gets improved. 189 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 190 if (!L->contains(OtherLoop)) 191 PostProcessPHIs.push_back(PN); 192 } 193 194 // Rewrite all uses outside the loop in terms of the new PHIs we just 195 // inserted. 196 for (Use *UseToRewrite : UsesToRewrite) { 197 // If this use is in an exit block, rewrite to use the newly inserted PHI. 198 // This is required for correctness because SSAUpdate doesn't handle uses 199 // in the same block. It assumes the PHI we inserted is at the end of the 200 // block. 201 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 202 BasicBlock *UserBB = User->getParent(); 203 if (auto *PN = dyn_cast<PHINode>(User)) 204 UserBB = PN->getIncomingBlock(*UseToRewrite); 205 206 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 207 UseToRewrite->set(&UserBB->front()); 208 continue; 209 } 210 211 // If we added a single PHI, it must dominate all uses and we can directly 212 // rename it. 213 if (AddedPHIs.size() == 1) { 214 UseToRewrite->set(AddedPHIs[0]); 215 continue; 216 } 217 218 // Otherwise, do full PHI insertion. 219 SSAUpdate.RewriteUse(*UseToRewrite); 220 } 221 222 SmallVector<DbgValueInst *, 4> DbgValues; 223 llvm::findDbgValues(DbgValues, I); 224 225 // Update pre-existing debug value uses that reside outside the loop. 226 auto &Ctx = I->getContext(); 227 for (auto DVI : DbgValues) { 228 BasicBlock *UserBB = DVI->getParent(); 229 if (InstBB == UserBB || L->contains(UserBB)) 230 continue; 231 // We currently only handle debug values residing in blocks that were 232 // traversed while rewriting the uses. If we inserted just a single PHI, 233 // we will handle all relevant debug values. 234 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] 235 : SSAUpdate.FindValueForBlock(UserBB); 236 if (V) 237 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 238 } 239 240 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 241 // to post-process them to keep LCSSA form. 242 for (PHINode *InsertedPN : InsertedPHIs) { 243 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 244 if (!L->contains(OtherLoop)) 245 PostProcessPHIs.push_back(InsertedPN); 246 } 247 248 // Post process PHI instructions that were inserted into another disjoint 249 // loop and update their exits properly. 250 for (auto *PostProcessPN : PostProcessPHIs) 251 if (!PostProcessPN->use_empty()) 252 Worklist.push_back(PostProcessPN); 253 254 // Keep track of PHI nodes that we want to remove because they did not have 255 // any uses rewritten. If the new PHI is used, store it so that we can 256 // try to propagate dbg.value intrinsics to it. 257 SmallVector<PHINode *, 2> NeedDbgValues; 258 for (PHINode *PN : AddedPHIs) 259 if (PN->use_empty()) 260 LocalPHIsToRemove.insert(PN); 261 else 262 NeedDbgValues.push_back(PN); 263 insertDebugValuesForPHIs(InstBB, NeedDbgValues); 264 Changed = true; 265 } 266 267 // Remove PHI nodes that did not have any uses rewritten or add them to 268 // PHIsToRemove, so the caller can remove them after some additional cleanup. 269 // We need to redo the use_empty() check here, because even if the PHI node 270 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be 271 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI 272 // nodes that only are used by each other. Such situations has only been 273 // noticed when the input IR contains unreachable code, and leaving some extra 274 // redundant PHI nodes in such situations is considered a minor problem. 275 if (PHIsToRemove) { 276 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); 277 } else { 278 for (PHINode *PN : LocalPHIsToRemove) 279 if (PN->use_empty()) 280 PN->eraseFromParent(); 281 } 282 return Changed; 283 } 284 285 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. 286 static void computeBlocksDominatingExits( 287 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks, 288 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) { 289 SmallVector<BasicBlock *, 8> BBWorklist; 290 291 // We start from the exit blocks, as every block trivially dominates itself 292 // (not strictly). 293 for (BasicBlock *BB : ExitBlocks) 294 BBWorklist.push_back(BB); 295 296 while (!BBWorklist.empty()) { 297 BasicBlock *BB = BBWorklist.pop_back_val(); 298 299 // Check if this is a loop header. If this is the case, we're done. 300 if (L.getHeader() == BB) 301 continue; 302 303 // Otherwise, add its immediate predecessor in the dominator tree to the 304 // worklist, unless we visited it already. 305 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); 306 307 // Exit blocks can have an immediate dominator not beloinging to the 308 // loop. For an exit block to be immediately dominated by another block 309 // outside the loop, it implies not all paths from that dominator, to the 310 // exit block, go through the loop. 311 // Example: 312 // 313 // |---- A 314 // | | 315 // | B<-- 316 // | | | 317 // |---> C -- 318 // | 319 // D 320 // 321 // C is the exit block of the loop and it's immediately dominated by A, 322 // which doesn't belong to the loop. 323 if (!L.contains(IDomBB)) 324 continue; 325 326 if (BlocksDominatingExits.insert(IDomBB)) 327 BBWorklist.push_back(IDomBB); 328 } 329 } 330 331 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, 332 ScalarEvolution *SE) { 333 bool Changed = false; 334 335 #ifdef EXPENSIVE_CHECKS 336 // Verify all sub-loops are in LCSSA form already. 337 for (Loop *SubLoop: L) 338 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); 339 #endif 340 341 SmallVector<BasicBlock *, 8> ExitBlocks; 342 L.getExitBlocks(ExitBlocks); 343 if (ExitBlocks.empty()) 344 return false; 345 346 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits; 347 348 // We want to avoid use-scanning leveraging dominance informations. 349 // If a block doesn't dominate any of the loop exits, the none of the values 350 // defined in the loop can be used outside. 351 // We compute the set of blocks fullfilling the conditions in advance 352 // walking the dominator tree upwards until we hit a loop header. 353 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); 354 355 SmallVector<Instruction *, 8> Worklist; 356 357 // Look at all the instructions in the loop, checking to see if they have uses 358 // outside the loop. If so, put them into the worklist to rewrite those uses. 359 for (BasicBlock *BB : BlocksDominatingExits) { 360 // Skip blocks that are part of any sub-loops, they must be in LCSSA 361 // already. 362 if (LI->getLoopFor(BB) != &L) 363 continue; 364 for (Instruction &I : *BB) { 365 // Reject two common cases fast: instructions with no uses (like stores) 366 // and instructions with one use that is in the same block as this. 367 if (I.use_empty() || 368 (I.hasOneUse() && I.user_back()->getParent() == BB && 369 !isa<PHINode>(I.user_back()))) 370 continue; 371 372 // Tokens cannot be used in PHI nodes, so we skip over them. 373 // We can run into tokens which are live out of a loop with catchswitch 374 // instructions in Windows EH if the catchswitch has one catchpad which 375 // is inside the loop and another which is not. 376 if (I.getType()->isTokenTy()) 377 continue; 378 379 Worklist.push_back(&I); 380 } 381 } 382 383 IRBuilder<> Builder(L.getHeader()->getContext()); 384 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder); 385 386 // If we modified the code, remove any caches about the loop from SCEV to 387 // avoid dangling entries. 388 // FIXME: This is a big hammer, can we clear the cache more selectively? 389 if (SE && Changed) 390 SE->forgetLoop(&L); 391 392 assert(L.isLCSSAForm(DT)); 393 394 return Changed; 395 } 396 397 /// Process a loop nest depth first. 398 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, 399 const LoopInfo *LI, ScalarEvolution *SE) { 400 bool Changed = false; 401 402 // Recurse depth-first through inner loops. 403 for (Loop *SubLoop : L.getSubLoops()) 404 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 405 406 Changed |= formLCSSA(L, DT, LI, SE); 407 return Changed; 408 } 409 410 /// Process all loops in the function, inner-most out. 411 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, 412 ScalarEvolution *SE) { 413 bool Changed = false; 414 for (auto &L : *LI) 415 Changed |= formLCSSARecursively(*L, DT, LI, SE); 416 return Changed; 417 } 418 419 namespace { 420 struct LCSSAWrapperPass : public FunctionPass { 421 static char ID; // Pass identification, replacement for typeid 422 LCSSAWrapperPass() : FunctionPass(ID) { 423 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 424 } 425 426 // Cached analysis information for the current function. 427 DominatorTree *DT; 428 LoopInfo *LI; 429 ScalarEvolution *SE; 430 431 bool runOnFunction(Function &F) override; 432 void verifyAnalysis() const override { 433 // This check is very expensive. On the loop intensive compiles it may cause 434 // up to 10x slowdown. Currently it's disabled by default. LPPassManager 435 // always does limited form of the LCSSA verification. Similar reasoning 436 // was used for the LoopInfo verifier. 437 if (VerifyLoopLCSSA) { 438 assert(all_of(*LI, 439 [&](Loop *L) { 440 return L->isRecursivelyLCSSAForm(*DT, *LI); 441 }) && 442 "LCSSA form is broken!"); 443 } 444 }; 445 446 /// This transformation requires natural loop information & requires that 447 /// loop preheaders be inserted into the CFG. It maintains both of these, 448 /// as well as the CFG. It also requires dominator information. 449 void getAnalysisUsage(AnalysisUsage &AU) const override { 450 AU.setPreservesCFG(); 451 452 AU.addRequired<DominatorTreeWrapperPass>(); 453 AU.addRequired<LoopInfoWrapperPass>(); 454 AU.addPreservedID(LoopSimplifyID); 455 AU.addPreserved<AAResultsWrapperPass>(); 456 AU.addPreserved<BasicAAWrapperPass>(); 457 AU.addPreserved<GlobalsAAWrapperPass>(); 458 AU.addPreserved<ScalarEvolutionWrapperPass>(); 459 AU.addPreserved<SCEVAAWrapperPass>(); 460 AU.addPreserved<BranchProbabilityInfoWrapperPass>(); 461 AU.addPreserved<MemorySSAWrapperPass>(); 462 463 // This is needed to perform LCSSA verification inside LPPassManager 464 AU.addRequired<LCSSAVerificationPass>(); 465 AU.addPreserved<LCSSAVerificationPass>(); 466 } 467 }; 468 } 469 470 char LCSSAWrapperPass::ID = 0; 471 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 472 false, false) 473 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 474 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 475 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) 476 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 477 false, false) 478 479 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 480 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 481 482 /// Transform \p F into loop-closed SSA form. 483 bool LCSSAWrapperPass::runOnFunction(Function &F) { 484 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 485 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 486 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 487 SE = SEWP ? &SEWP->getSE() : nullptr; 488 489 return formLCSSAOnAllLoops(LI, *DT, SE); 490 } 491 492 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 493 auto &LI = AM.getResult<LoopAnalysis>(F); 494 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 495 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 496 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 497 return PreservedAnalyses::all(); 498 499 PreservedAnalyses PA; 500 PA.preserveSet<CFGAnalyses>(); 501 PA.preserve<BasicAA>(); 502 PA.preserve<GlobalsAA>(); 503 PA.preserve<SCEVAA>(); 504 PA.preserve<ScalarEvolutionAnalysis>(); 505 // BPI maps terminators to probabilities, since we don't modify the CFG, no 506 // updates are needed to preserve it. 507 PA.preserve<BranchProbabilityAnalysis>(); 508 PA.preserve<MemorySSAAnalysis>(); 509 return PA; 510 } 511