xref: /llvm-project/llvm/lib/Transforms/Utils/LCSSA.cpp (revision 04423cf785f917220a19e803c58f4f5023108137)
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/PredIteratorCache.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "lcssa"
51 
52 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
53 
54 /// Return true if the specified block is in the list.
55 static bool isExitBlock(BasicBlock *BB,
56                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
57   return is_contained(ExitBlocks, BB);
58 }
59 
60 /// For every instruction from the worklist, check to see if it has any uses
61 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
62 /// rewrite the uses.
63 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
64                                     DominatorTree &DT, LoopInfo &LI) {
65   SmallVector<Use *, 16> UsesToRewrite;
66   SmallSetVector<PHINode *, 16> PHIsToRemove;
67   PredIteratorCache PredCache;
68   bool Changed = false;
69 
70   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
71   // instructions within the same loops, computing the exit blocks is
72   // expensive, and we're not mutating the loop structure.
73   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
74 
75   while (!Worklist.empty()) {
76     UsesToRewrite.clear();
77 
78     Instruction *I = Worklist.pop_back_val();
79     BasicBlock *InstBB = I->getParent();
80     Loop *L = LI.getLoopFor(InstBB);
81     if (!LoopExitBlocks.count(L))
82       L->getExitBlocks(LoopExitBlocks[L]);
83     assert(LoopExitBlocks.count(L));
84     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
85 
86     if (ExitBlocks.empty())
87       continue;
88 
89     // Tokens cannot be used in PHI nodes, so we skip over them.
90     // We can run into tokens which are live out of a loop with catchswitch
91     // instructions in Windows EH if the catchswitch has one catchpad which
92     // is inside the loop and another which is not.
93     if (I->getType()->isTokenTy())
94       continue;
95 
96     for (Use &U : I->uses()) {
97       Instruction *User = cast<Instruction>(U.getUser());
98       BasicBlock *UserBB = User->getParent();
99       if (PHINode *PN = dyn_cast<PHINode>(User))
100         UserBB = PN->getIncomingBlock(U);
101 
102       if (InstBB != UserBB && !L->contains(UserBB))
103         UsesToRewrite.push_back(&U);
104     }
105 
106     // If there are no uses outside the loop, exit with no change.
107     if (UsesToRewrite.empty())
108       continue;
109 
110     ++NumLCSSA; // We are applying the transformation
111 
112     // Invoke instructions are special in that their result value is not
113     // available along their unwind edge. The code below tests to see whether
114     // DomBB dominates the value, so adjust DomBB to the normal destination
115     // block, which is effectively where the value is first usable.
116     BasicBlock *DomBB = InstBB;
117     if (InvokeInst *Inv = dyn_cast<InvokeInst>(I))
118       DomBB = Inv->getNormalDest();
119 
120     DomTreeNode *DomNode = DT.getNode(DomBB);
121 
122     SmallVector<PHINode *, 16> AddedPHIs;
123     SmallVector<PHINode *, 8> PostProcessPHIs;
124 
125     SmallVector<PHINode *, 4> InsertedPHIs;
126     SSAUpdater SSAUpdate(&InsertedPHIs);
127     SSAUpdate.Initialize(I->getType(), I->getName());
128 
129     // Insert the LCSSA phi's into all of the exit blocks dominated by the
130     // value, and add them to the Phi's map.
131     for (BasicBlock *ExitBB : ExitBlocks) {
132       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
133         continue;
134 
135       // If we already inserted something for this BB, don't reprocess it.
136       if (SSAUpdate.HasValueForBlock(ExitBB))
137         continue;
138 
139       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
140                                     I->getName() + ".lcssa", &ExitBB->front());
141 
142       // Add inputs from inside the loop for this PHI.
143       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
144         PN->addIncoming(I, Pred);
145 
146         // If the exit block has a predecessor not within the loop, arrange for
147         // the incoming value use corresponding to that predecessor to be
148         // rewritten in terms of a different LCSSA PHI.
149         if (!L->contains(Pred))
150           UsesToRewrite.push_back(
151               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
152                   PN->getNumIncomingValues() - 1)));
153       }
154 
155       AddedPHIs.push_back(PN);
156 
157       // Remember that this phi makes the value alive in this block.
158       SSAUpdate.AddAvailableValue(ExitBB, PN);
159 
160       // LoopSimplify might fail to simplify some loops (e.g. when indirect
161       // branches are involved). In such situations, it might happen that an
162       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
163       // create PHIs in such an exit block, we are also inserting PHIs into L2's
164       // header. This could break LCSSA form for L2 because these inserted PHIs
165       // can also have uses outside of L2. Remember all PHIs in such situation
166       // as to revisit than later on. FIXME: Remove this if indirectbr support
167       // into LoopSimplify gets improved.
168       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
169         if (!L->contains(OtherLoop))
170           PostProcessPHIs.push_back(PN);
171     }
172 
173     // Rewrite all uses outside the loop in terms of the new PHIs we just
174     // inserted.
175     for (Use *UseToRewrite : UsesToRewrite) {
176       // If this use is in an exit block, rewrite to use the newly inserted PHI.
177       // This is required for correctness because SSAUpdate doesn't handle uses
178       // in the same block.  It assumes the PHI we inserted is at the end of the
179       // block.
180       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
181       BasicBlock *UserBB = User->getParent();
182       if (PHINode *PN = dyn_cast<PHINode>(User))
183         UserBB = PN->getIncomingBlock(*UseToRewrite);
184 
185       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
186         // Tell the VHs that the uses changed. This updates SCEV's caches.
187         if (UseToRewrite->get()->hasValueHandle())
188           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
189         UseToRewrite->set(&UserBB->front());
190         continue;
191       }
192 
193       // Otherwise, do full PHI insertion.
194       SSAUpdate.RewriteUse(*UseToRewrite);
195     }
196 
197     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
198     // to post-process them to keep LCSSA form.
199     for (PHINode *InsertedPN : InsertedPHIs) {
200       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
201         if (!L->contains(OtherLoop))
202           PostProcessPHIs.push_back(InsertedPN);
203     }
204 
205     // Post process PHI instructions that were inserted into another disjoint
206     // loop and update their exits properly.
207     for (auto *PostProcessPN : PostProcessPHIs) {
208       if (PostProcessPN->use_empty())
209         continue;
210 
211       // Reprocess each PHI instruction.
212       Worklist.push_back(PostProcessPN);
213     }
214 
215     // Keep track of PHI nodes that we want to remove because they did not have
216     // any uses rewritten.
217     for (PHINode *PN : AddedPHIs)
218       if (PN->use_empty())
219         PHIsToRemove.insert(PN);
220 
221     Changed = true;
222   }
223   // Remove PHI nodes that did not have any uses rewritten.
224   for (PHINode *PN : PHIsToRemove) {
225     assert (PN->use_empty() && "Trying to remove a phi with uses.");
226     PN->eraseFromParent();
227   }
228   return Changed;
229 }
230 
231 /// Return true if the specified block dominates at least
232 /// one of the blocks in the specified list.
233 static bool
234 blockDominatesAnExit(BasicBlock *BB,
235                      DominatorTree &DT,
236                      const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
237   DomTreeNode *DomNode = DT.getNode(BB);
238   return any_of(ExitBlocks, [&](BasicBlock *EB) {
239     return DT.dominates(DomNode, DT.getNode(EB));
240   });
241 }
242 
243 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
244                      ScalarEvolution *SE) {
245   bool Changed = false;
246 
247   // Get the set of exiting blocks.
248   SmallVector<BasicBlock *, 8> ExitBlocks;
249   L.getExitBlocks(ExitBlocks);
250 
251   if (ExitBlocks.empty())
252     return false;
253 
254   SmallVector<Instruction *, 8> Worklist;
255 
256   // Look at all the instructions in the loop, checking to see if they have uses
257   // outside the loop.  If so, put them into the worklist to rewrite those uses.
258   for (BasicBlock *BB : L.blocks()) {
259     // For large loops, avoid use-scanning by using dominance information:  In
260     // particular, if a block does not dominate any of the loop exits, then none
261     // of the values defined in the block could be used outside the loop.
262     if (!blockDominatesAnExit(BB, DT, ExitBlocks))
263       continue;
264 
265     for (Instruction &I : *BB) {
266       // Reject two common cases fast: instructions with no uses (like stores)
267       // and instructions with one use that is in the same block as this.
268       if (I.use_empty() ||
269           (I.hasOneUse() && I.user_back()->getParent() == BB &&
270            !isa<PHINode>(I.user_back())))
271         continue;
272 
273       Worklist.push_back(&I);
274     }
275   }
276   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
277 
278   // If we modified the code, remove any caches about the loop from SCEV to
279   // avoid dangling entries.
280   // FIXME: This is a big hammer, can we clear the cache more selectively?
281   if (SE && Changed)
282     SE->forgetLoop(&L);
283 
284   assert(L.isLCSSAForm(DT));
285 
286   return Changed;
287 }
288 
289 /// Process a loop nest depth first.
290 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
291                                 ScalarEvolution *SE) {
292   bool Changed = false;
293 
294   // Recurse depth-first through inner loops.
295   for (Loop *SubLoop : L.getSubLoops())
296     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
297 
298   Changed |= formLCSSA(L, DT, LI, SE);
299   return Changed;
300 }
301 
302 /// Process all loops in the function, inner-most out.
303 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
304                                 ScalarEvolution *SE) {
305   bool Changed = false;
306   for (auto &L : *LI)
307     Changed |= formLCSSARecursively(*L, DT, LI, SE);
308   return Changed;
309 }
310 
311 namespace {
312 struct LCSSAWrapperPass : public FunctionPass {
313   static char ID; // Pass identification, replacement for typeid
314   LCSSAWrapperPass() : FunctionPass(ID) {
315     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
316   }
317 
318   // Cached analysis information for the current function.
319   DominatorTree *DT;
320   LoopInfo *LI;
321   ScalarEvolution *SE;
322 
323   bool runOnFunction(Function &F) override;
324   void verifyAnalysis() const override {
325     assert(
326         all_of(*LI,
327                [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }) &&
328         "LCSSA form is broken!");
329   };
330 
331   /// This transformation requires natural loop information & requires that
332   /// loop preheaders be inserted into the CFG.  It maintains both of these,
333   /// as well as the CFG.  It also requires dominator information.
334   void getAnalysisUsage(AnalysisUsage &AU) const override {
335     AU.setPreservesCFG();
336 
337     AU.addRequired<DominatorTreeWrapperPass>();
338     AU.addRequired<LoopInfoWrapperPass>();
339     AU.addPreservedID(LoopSimplifyID);
340     AU.addPreserved<AAResultsWrapperPass>();
341     AU.addPreserved<BasicAAWrapperPass>();
342     AU.addPreserved<GlobalsAAWrapperPass>();
343     AU.addPreserved<ScalarEvolutionWrapperPass>();
344     AU.addPreserved<SCEVAAWrapperPass>();
345   }
346 };
347 }
348 
349 char LCSSAWrapperPass::ID = 0;
350 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
351                       false, false)
352 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
353 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
354 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
355                     false, false)
356 
357 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
358 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
359 
360 /// Transform \p F into loop-closed SSA form.
361 bool LCSSAWrapperPass::runOnFunction(Function &F) {
362   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
363   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
364   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
365   SE = SEWP ? &SEWP->getSE() : nullptr;
366 
367   return formLCSSAOnAllLoops(LI, *DT, SE);
368 }
369 
370 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
371   auto &LI = AM.getResult<LoopAnalysis>(F);
372   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
373   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
374   if (!formLCSSAOnAllLoops(&LI, DT, SE))
375     return PreservedAnalyses::all();
376 
377   // FIXME: This should also 'preserve the CFG'.
378   PreservedAnalyses PA;
379   PA.preserve<BasicAA>();
380   PA.preserve<GlobalsAA>();
381   PA.preserve<SCEVAA>();
382   PA.preserve<ScalarEvolutionAnalysis>();
383   return PA;
384 }
385