1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms loops by placing phi nodes at the end of the loops for 11 // all values that are live across the loop boundary. For example, it turns 12 // the left into the right code: 13 // 14 // for (...) for (...) 15 // if (c) if (c) 16 // X1 = ... X1 = ... 17 // else else 18 // X2 = ... X2 = ... 19 // X3 = phi(X1, X2) X3 = phi(X1, X2) 20 // ... = X3 + 4 X4 = phi(X3) 21 // ... = X4 + 4 22 // 23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will 24 // be trivially eliminated by InstCombine. The major benefit of this 25 // transformation is that it makes many other loop optimizations, such as 26 // LoopUnswitching, simpler. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Utils/LCSSA.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/BasicAliasAnalysis.h" 35 #include "llvm/Analysis/GlobalsModRef.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/ScalarEvolution.h" 38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/PredIteratorCache.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/SSAUpdater.h" 48 using namespace llvm; 49 50 #define DEBUG_TYPE "lcssa" 51 52 STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 53 54 /// Return true if the specified block is in the list. 55 static bool isExitBlock(BasicBlock *BB, 56 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 57 return is_contained(ExitBlocks, BB); 58 } 59 60 /// For every instruction from the worklist, check to see if it has any uses 61 /// that are outside the current loop. If so, insert LCSSA PHI nodes and 62 /// rewrite the uses. 63 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist, 64 DominatorTree &DT, LoopInfo &LI) { 65 SmallVector<Use *, 16> UsesToRewrite; 66 SmallSetVector<PHINode *, 16> PHIsToRemove; 67 PredIteratorCache PredCache; 68 bool Changed = false; 69 70 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of 71 // instructions within the same loops, computing the exit blocks is 72 // expensive, and we're not mutating the loop structure. 73 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks; 74 75 while (!Worklist.empty()) { 76 UsesToRewrite.clear(); 77 78 Instruction *I = Worklist.pop_back_val(); 79 BasicBlock *InstBB = I->getParent(); 80 Loop *L = LI.getLoopFor(InstBB); 81 if (!LoopExitBlocks.count(L)) 82 L->getExitBlocks(LoopExitBlocks[L]); 83 assert(LoopExitBlocks.count(L)); 84 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L]; 85 86 if (ExitBlocks.empty()) 87 continue; 88 89 // Tokens cannot be used in PHI nodes, so we skip over them. 90 // We can run into tokens which are live out of a loop with catchswitch 91 // instructions in Windows EH if the catchswitch has one catchpad which 92 // is inside the loop and another which is not. 93 if (I->getType()->isTokenTy()) 94 continue; 95 96 for (Use &U : I->uses()) { 97 Instruction *User = cast<Instruction>(U.getUser()); 98 BasicBlock *UserBB = User->getParent(); 99 if (PHINode *PN = dyn_cast<PHINode>(User)) 100 UserBB = PN->getIncomingBlock(U); 101 102 if (InstBB != UserBB && !L->contains(UserBB)) 103 UsesToRewrite.push_back(&U); 104 } 105 106 // If there are no uses outside the loop, exit with no change. 107 if (UsesToRewrite.empty()) 108 continue; 109 110 ++NumLCSSA; // We are applying the transformation 111 112 // Invoke instructions are special in that their result value is not 113 // available along their unwind edge. The code below tests to see whether 114 // DomBB dominates the value, so adjust DomBB to the normal destination 115 // block, which is effectively where the value is first usable. 116 BasicBlock *DomBB = InstBB; 117 if (InvokeInst *Inv = dyn_cast<InvokeInst>(I)) 118 DomBB = Inv->getNormalDest(); 119 120 DomTreeNode *DomNode = DT.getNode(DomBB); 121 122 SmallVector<PHINode *, 16> AddedPHIs; 123 SmallVector<PHINode *, 8> PostProcessPHIs; 124 125 SmallVector<PHINode *, 4> InsertedPHIs; 126 SSAUpdater SSAUpdate(&InsertedPHIs); 127 SSAUpdate.Initialize(I->getType(), I->getName()); 128 129 // Insert the LCSSA phi's into all of the exit blocks dominated by the 130 // value, and add them to the Phi's map. 131 for (BasicBlock *ExitBB : ExitBlocks) { 132 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 133 continue; 134 135 // If we already inserted something for this BB, don't reprocess it. 136 if (SSAUpdate.HasValueForBlock(ExitBB)) 137 continue; 138 139 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB), 140 I->getName() + ".lcssa", &ExitBB->front()); 141 142 // Add inputs from inside the loop for this PHI. 143 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 144 PN->addIncoming(I, Pred); 145 146 // If the exit block has a predecessor not within the loop, arrange for 147 // the incoming value use corresponding to that predecessor to be 148 // rewritten in terms of a different LCSSA PHI. 149 if (!L->contains(Pred)) 150 UsesToRewrite.push_back( 151 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 152 PN->getNumIncomingValues() - 1))); 153 } 154 155 AddedPHIs.push_back(PN); 156 157 // Remember that this phi makes the value alive in this block. 158 SSAUpdate.AddAvailableValue(ExitBB, PN); 159 160 // LoopSimplify might fail to simplify some loops (e.g. when indirect 161 // branches are involved). In such situations, it might happen that an 162 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we 163 // create PHIs in such an exit block, we are also inserting PHIs into L2's 164 // header. This could break LCSSA form for L2 because these inserted PHIs 165 // can also have uses outside of L2. Remember all PHIs in such situation 166 // as to revisit than later on. FIXME: Remove this if indirectbr support 167 // into LoopSimplify gets improved. 168 if (auto *OtherLoop = LI.getLoopFor(ExitBB)) 169 if (!L->contains(OtherLoop)) 170 PostProcessPHIs.push_back(PN); 171 } 172 173 // Rewrite all uses outside the loop in terms of the new PHIs we just 174 // inserted. 175 for (Use *UseToRewrite : UsesToRewrite) { 176 // If this use is in an exit block, rewrite to use the newly inserted PHI. 177 // This is required for correctness because SSAUpdate doesn't handle uses 178 // in the same block. It assumes the PHI we inserted is at the end of the 179 // block. 180 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 181 BasicBlock *UserBB = User->getParent(); 182 if (PHINode *PN = dyn_cast<PHINode>(User)) 183 UserBB = PN->getIncomingBlock(*UseToRewrite); 184 185 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 186 // Tell the VHs that the uses changed. This updates SCEV's caches. 187 if (UseToRewrite->get()->hasValueHandle()) 188 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 189 UseToRewrite->set(&UserBB->front()); 190 continue; 191 } 192 193 // Otherwise, do full PHI insertion. 194 SSAUpdate.RewriteUse(*UseToRewrite); 195 } 196 197 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need 198 // to post-process them to keep LCSSA form. 199 for (PHINode *InsertedPN : InsertedPHIs) { 200 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) 201 if (!L->contains(OtherLoop)) 202 PostProcessPHIs.push_back(InsertedPN); 203 } 204 205 // Post process PHI instructions that were inserted into another disjoint 206 // loop and update their exits properly. 207 for (auto *PostProcessPN : PostProcessPHIs) { 208 if (PostProcessPN->use_empty()) 209 continue; 210 211 // Reprocess each PHI instruction. 212 Worklist.push_back(PostProcessPN); 213 } 214 215 // Keep track of PHI nodes that we want to remove because they did not have 216 // any uses rewritten. 217 for (PHINode *PN : AddedPHIs) 218 if (PN->use_empty()) 219 PHIsToRemove.insert(PN); 220 221 Changed = true; 222 } 223 // Remove PHI nodes that did not have any uses rewritten. 224 for (PHINode *PN : PHIsToRemove) { 225 assert (PN->use_empty() && "Trying to remove a phi with uses."); 226 PN->eraseFromParent(); 227 } 228 return Changed; 229 } 230 231 /// Return true if the specified block dominates at least 232 /// one of the blocks in the specified list. 233 static bool 234 blockDominatesAnExit(BasicBlock *BB, 235 DominatorTree &DT, 236 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 237 DomTreeNode *DomNode = DT.getNode(BB); 238 return any_of(ExitBlocks, [&](BasicBlock *EB) { 239 return DT.dominates(DomNode, DT.getNode(EB)); 240 }); 241 } 242 243 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 244 ScalarEvolution *SE) { 245 bool Changed = false; 246 247 // Get the set of exiting blocks. 248 SmallVector<BasicBlock *, 8> ExitBlocks; 249 L.getExitBlocks(ExitBlocks); 250 251 if (ExitBlocks.empty()) 252 return false; 253 254 SmallVector<Instruction *, 8> Worklist; 255 256 // Look at all the instructions in the loop, checking to see if they have uses 257 // outside the loop. If so, put them into the worklist to rewrite those uses. 258 for (BasicBlock *BB : L.blocks()) { 259 // For large loops, avoid use-scanning by using dominance information: In 260 // particular, if a block does not dominate any of the loop exits, then none 261 // of the values defined in the block could be used outside the loop. 262 if (!blockDominatesAnExit(BB, DT, ExitBlocks)) 263 continue; 264 265 for (Instruction &I : *BB) { 266 // Reject two common cases fast: instructions with no uses (like stores) 267 // and instructions with one use that is in the same block as this. 268 if (I.use_empty() || 269 (I.hasOneUse() && I.user_back()->getParent() == BB && 270 !isa<PHINode>(I.user_back()))) 271 continue; 272 273 Worklist.push_back(&I); 274 } 275 } 276 Changed = formLCSSAForInstructions(Worklist, DT, *LI); 277 278 // If we modified the code, remove any caches about the loop from SCEV to 279 // avoid dangling entries. 280 // FIXME: This is a big hammer, can we clear the cache more selectively? 281 if (SE && Changed) 282 SE->forgetLoop(&L); 283 284 assert(L.isLCSSAForm(DT)); 285 286 return Changed; 287 } 288 289 /// Process a loop nest depth first. 290 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 291 ScalarEvolution *SE) { 292 bool Changed = false; 293 294 // Recurse depth-first through inner loops. 295 for (Loop *SubLoop : L.getSubLoops()) 296 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 297 298 Changed |= formLCSSA(L, DT, LI, SE); 299 return Changed; 300 } 301 302 /// Process all loops in the function, inner-most out. 303 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT, 304 ScalarEvolution *SE) { 305 bool Changed = false; 306 for (auto &L : *LI) 307 Changed |= formLCSSARecursively(*L, DT, LI, SE); 308 return Changed; 309 } 310 311 namespace { 312 struct LCSSAWrapperPass : public FunctionPass { 313 static char ID; // Pass identification, replacement for typeid 314 LCSSAWrapperPass() : FunctionPass(ID) { 315 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); 316 } 317 318 // Cached analysis information for the current function. 319 DominatorTree *DT; 320 LoopInfo *LI; 321 ScalarEvolution *SE; 322 323 bool runOnFunction(Function &F) override; 324 void verifyAnalysis() const override { 325 assert( 326 all_of(*LI, 327 [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }) && 328 "LCSSA form is broken!"); 329 }; 330 331 /// This transformation requires natural loop information & requires that 332 /// loop preheaders be inserted into the CFG. It maintains both of these, 333 /// as well as the CFG. It also requires dominator information. 334 void getAnalysisUsage(AnalysisUsage &AU) const override { 335 AU.setPreservesCFG(); 336 337 AU.addRequired<DominatorTreeWrapperPass>(); 338 AU.addRequired<LoopInfoWrapperPass>(); 339 AU.addPreservedID(LoopSimplifyID); 340 AU.addPreserved<AAResultsWrapperPass>(); 341 AU.addPreserved<BasicAAWrapperPass>(); 342 AU.addPreserved<GlobalsAAWrapperPass>(); 343 AU.addPreserved<ScalarEvolutionWrapperPass>(); 344 AU.addPreserved<SCEVAAWrapperPass>(); 345 } 346 }; 347 } 348 349 char LCSSAWrapperPass::ID = 0; 350 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 351 false, false) 352 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 353 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 354 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", 355 false, false) 356 357 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } 358 char &llvm::LCSSAID = LCSSAWrapperPass::ID; 359 360 /// Transform \p F into loop-closed SSA form. 361 bool LCSSAWrapperPass::runOnFunction(Function &F) { 362 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 363 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 364 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 365 SE = SEWP ? &SEWP->getSE() : nullptr; 366 367 return formLCSSAOnAllLoops(LI, *DT, SE); 368 } 369 370 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { 371 auto &LI = AM.getResult<LoopAnalysis>(F); 372 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 373 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); 374 if (!formLCSSAOnAllLoops(&LI, DT, SE)) 375 return PreservedAnalyses::all(); 376 377 // FIXME: This should also 'preserve the CFG'. 378 PreservedAnalyses PA; 379 PA.preserve<BasicAA>(); 380 PA.preserve<GlobalsAA>(); 381 PA.preserve<SCEVAA>(); 382 PA.preserve<ScalarEvolutionAnalysis>(); 383 return PA; 384 } 385