1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/Analysis/ConstantFolding.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/IR/AttributeMask.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstIterator.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/ValueMapper.h" 37 #include <map> 38 #include <optional> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "clone-function" 42 43 /// See comments in Cloning.h. 44 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 45 const Twine &NameSuffix, Function *F, 46 ClonedCodeInfo *CodeInfo) { 47 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 48 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat; 49 if (BB->hasName()) 50 NewBB->setName(BB->getName() + NameSuffix); 51 52 bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false; 53 54 // Loop over all instructions, and copy them over. 55 for (const Instruction &I : *BB) { 56 Instruction *NewInst = I.clone(); 57 if (I.hasName()) 58 NewInst->setName(I.getName() + NameSuffix); 59 60 NewInst->insertBefore(*NewBB, NewBB->end()); 61 NewInst->cloneDebugInfoFrom(&I); 62 63 VMap[&I] = NewInst; // Add instruction map to value. 64 65 if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) { 66 hasCalls = true; 67 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof); 68 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_callsite); 69 } 70 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 71 if (!AI->isStaticAlloca()) { 72 hasDynamicAllocas = true; 73 } 74 } 75 } 76 77 if (CodeInfo) { 78 CodeInfo->ContainsCalls |= hasCalls; 79 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; 80 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 81 } 82 return NewBB; 83 } 84 85 void llvm::CloneFunctionAttributesInto(Function *NewFunc, 86 const Function *OldFunc, 87 ValueToValueMapTy &VMap, 88 bool ModuleLevelChanges, 89 ValueMapTypeRemapper *TypeMapper, 90 ValueMaterializer *Materializer) { 91 // Copy all attributes other than those stored in Function's AttributeList 92 // which holds e.g. parameters and return value attributes. 93 AttributeList NewAttrs = NewFunc->getAttributes(); 94 NewFunc->copyAttributesFrom(OldFunc); 95 NewFunc->setAttributes(NewAttrs); 96 97 const RemapFlags FuncGlobalRefFlags = 98 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; 99 100 // Fix up the personality function that got copied over. 101 if (OldFunc->hasPersonalityFn()) 102 NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap, 103 FuncGlobalRefFlags, TypeMapper, 104 Materializer)); 105 106 if (OldFunc->hasPrefixData()) { 107 NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap, 108 FuncGlobalRefFlags, TypeMapper, 109 Materializer)); 110 } 111 112 if (OldFunc->hasPrologueData()) { 113 NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap, 114 FuncGlobalRefFlags, TypeMapper, 115 Materializer)); 116 } 117 118 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 119 AttributeList OldAttrs = OldFunc->getAttributes(); 120 121 // Clone any argument attributes that are present in the VMap. 122 for (const Argument &OldArg : OldFunc->args()) { 123 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 124 // Remap the parameter indices. 125 NewArgAttrs[NewArg->getArgNo()] = 126 OldAttrs.getParamAttrs(OldArg.getArgNo()); 127 } 128 } 129 130 NewFunc->setAttributes( 131 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(), 132 OldAttrs.getRetAttrs(), NewArgAttrs)); 133 } 134 135 DISubprogram *llvm::CollectDebugInfoForCloning(const Function &F, 136 CloneFunctionChangeType Changes, 137 DebugInfoFinder &DIFinder) { 138 DISubprogram *SPClonedWithinModule = nullptr; 139 if (Changes < CloneFunctionChangeType::DifferentModule) { 140 SPClonedWithinModule = F.getSubprogram(); 141 } 142 if (SPClonedWithinModule) 143 DIFinder.processSubprogram(SPClonedWithinModule); 144 145 const Module *M = F.getParent(); 146 if (Changes != CloneFunctionChangeType::ClonedModule && M) { 147 // Inspect instructions to process e.g. DILexicalBlocks of inlined functions 148 for (const auto &I : instructions(F)) 149 DIFinder.processInstruction(*M, I); 150 } 151 152 return SPClonedWithinModule; 153 } 154 155 bool llvm::BuildDebugInfoMDMap(DenseMap<const Metadata *, TrackingMDRef> &MD, 156 CloneFunctionChangeType Changes, 157 DebugInfoFinder &DIFinder, 158 DISubprogram *SPClonedWithinModule) { 159 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; 160 if (Changes < CloneFunctionChangeType::DifferentModule && 161 DIFinder.subprogram_count() > 0) { 162 // Turn on module-level changes, since we need to clone (some of) the 163 // debug info metadata. 164 // 165 // FIXME: Metadata effectively owned by a function should be made 166 // local, and only that local metadata should be cloned. 167 ModuleLevelChanges = true; 168 169 auto mapToSelfIfNew = [&MD](MDNode *N) { 170 // Avoid clobbering an existing mapping. 171 (void)MD.try_emplace(N, N); 172 }; 173 174 // Avoid cloning types, compile units, and (other) subprograms. 175 for (DISubprogram *ISP : DIFinder.subprograms()) { 176 if (ISP != SPClonedWithinModule) 177 mapToSelfIfNew(ISP); 178 } 179 180 // If a subprogram isn't going to be cloned skip its lexical blocks as well. 181 for (DIScope *S : DIFinder.scopes()) { 182 auto *LScope = dyn_cast<DILocalScope>(S); 183 if (LScope && LScope->getSubprogram() != SPClonedWithinModule) 184 mapToSelfIfNew(S); 185 } 186 187 for (DICompileUnit *CU : DIFinder.compile_units()) 188 mapToSelfIfNew(CU); 189 190 for (DIType *Type : DIFinder.types()) 191 mapToSelfIfNew(Type); 192 } else { 193 assert(!SPClonedWithinModule && 194 "Subprogram should be in DIFinder->subprogram_count()..."); 195 } 196 197 return ModuleLevelChanges; 198 } 199 200 void llvm::CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc, 201 ValueToValueMapTy &VMap, 202 RemapFlags RemapFlag, 203 ValueMapTypeRemapper *TypeMapper, 204 ValueMaterializer *Materializer) { 205 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 206 OldFunc.getAllMetadata(MDs); 207 for (auto MD : MDs) { 208 NewFunc.addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag, 209 TypeMapper, Materializer)); 210 } 211 } 212 213 void llvm::CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc, 214 ValueToValueMapTy &VMap, RemapFlags RemapFlag, 215 SmallVectorImpl<ReturnInst *> &Returns, 216 const char *NameSuffix, 217 ClonedCodeInfo *CodeInfo, 218 ValueMapTypeRemapper *TypeMapper, 219 ValueMaterializer *Materializer) { 220 if (OldFunc.isDeclaration()) 221 return; 222 223 // Loop over all of the basic blocks in the function, cloning them as 224 // appropriate. Note that we save BE this way in order to handle cloning of 225 // recursive functions into themselves. 226 for (const BasicBlock &BB : OldFunc) { 227 228 // Create a new basic block and copy instructions into it! 229 BasicBlock *CBB = 230 CloneBasicBlock(&BB, VMap, NameSuffix, &NewFunc, CodeInfo); 231 232 // Add basic block mapping. 233 VMap[&BB] = CBB; 234 235 // It is only legal to clone a function if a block address within that 236 // function is never referenced outside of the function. Given that, we 237 // want to map block addresses from the old function to block addresses in 238 // the clone. (This is different from the generic ValueMapper 239 // implementation, which generates an invalid blockaddress when 240 // cloning a function.) 241 if (BB.hasAddressTaken()) { 242 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(&OldFunc), 243 const_cast<BasicBlock *>(&BB)); 244 VMap[OldBBAddr] = BlockAddress::get(&NewFunc, CBB); 245 } 246 247 // Note return instructions for the caller. 248 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 249 Returns.push_back(RI); 250 } 251 252 // Loop over all of the instructions in the new function, fixing up operand 253 // references as we go. This uses VMap to do all the hard work. 254 for (Function::iterator 255 BB = cast<BasicBlock>(VMap[&OldFunc.front()])->getIterator(), 256 BE = NewFunc.end(); 257 BB != BE; ++BB) 258 // Loop over all instructions, fixing each one as we find it, and any 259 // attached debug-info records. 260 for (Instruction &II : *BB) { 261 RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer); 262 RemapDbgRecordRange(II.getModule(), II.getDbgRecordRange(), VMap, 263 RemapFlag, TypeMapper, Materializer); 264 } 265 } 266 267 // Clone OldFunc into NewFunc, transforming the old arguments into references to 268 // VMap values. 269 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 270 ValueToValueMapTy &VMap, 271 CloneFunctionChangeType Changes, 272 SmallVectorImpl<ReturnInst *> &Returns, 273 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 274 ValueMapTypeRemapper *TypeMapper, 275 ValueMaterializer *Materializer) { 276 NewFunc->setIsNewDbgInfoFormat(OldFunc->IsNewDbgInfoFormat); 277 assert(NameSuffix && "NameSuffix cannot be null!"); 278 279 #ifndef NDEBUG 280 for (const Argument &I : OldFunc->args()) 281 assert(VMap.count(&I) && "No mapping from source argument specified!"); 282 #endif 283 284 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; 285 286 CloneFunctionAttributesInto(NewFunc, OldFunc, VMap, ModuleLevelChanges, 287 TypeMapper, Materializer); 288 289 // Everything else beyond this point deals with function instructions, 290 // so if we are dealing with a function declaration, we're done. 291 if (OldFunc->isDeclaration()) 292 return; 293 294 // When we remap instructions within the same module, we want to avoid 295 // duplicating inlined DISubprograms, so record all subprograms we find as we 296 // duplicate instructions and then freeze them in the MD map. We also record 297 // information about dbg.value and dbg.declare to avoid duplicating the 298 // types. 299 DebugInfoFinder DIFinder; 300 301 // Track the subprogram attachment that needs to be cloned to fine-tune the 302 // mapping within the same module. 303 if (Changes < CloneFunctionChangeType::DifferentModule) { 304 // Need to find subprograms, types, and compile units. 305 306 assert((NewFunc->getParent() == nullptr || 307 NewFunc->getParent() == OldFunc->getParent()) && 308 "Expected NewFunc to have the same parent, or no parent"); 309 } else { 310 // Need to find all the compile units. 311 312 assert((NewFunc->getParent() == nullptr || 313 NewFunc->getParent() != OldFunc->getParent()) && 314 "Expected NewFunc to have different parents, or no parent"); 315 316 if (Changes == CloneFunctionChangeType::DifferentModule) { 317 assert(NewFunc->getParent() && 318 "Need parent of new function to maintain debug info invariants"); 319 } 320 } 321 322 DISubprogram *SPClonedWithinModule = 323 CollectDebugInfoForCloning(*OldFunc, Changes, DIFinder); 324 325 ModuleLevelChanges = 326 BuildDebugInfoMDMap(VMap.MD(), Changes, DIFinder, SPClonedWithinModule); 327 328 const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; 329 330 CloneFunctionMetadataInto(*NewFunc, *OldFunc, VMap, RemapFlag, TypeMapper, 331 Materializer); 332 333 CloneFunctionBodyInto(*NewFunc, *OldFunc, VMap, RemapFlag, Returns, 334 NameSuffix, CodeInfo, TypeMapper, Materializer); 335 336 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the 337 // same module, the compile unit will already be listed (or not). When 338 // cloning a module, CloneModule() will handle creating the named metadata. 339 if (Changes != CloneFunctionChangeType::DifferentModule) 340 return; 341 342 // Update !llvm.dbg.cu with compile units added to the new module if this 343 // function is being cloned in isolation. 344 // 345 // FIXME: This is making global / module-level changes, which doesn't seem 346 // like the right encapsulation Consider dropping the requirement to update 347 // !llvm.dbg.cu (either obsoleting the node, or restricting it to 348 // non-discardable compile units) instead of discovering compile units by 349 // visiting the metadata attached to global values, which would allow this 350 // code to be deleted. Alternatively, perhaps give responsibility for this 351 // update to CloneFunctionInto's callers. 352 auto *NewModule = NewFunc->getParent(); 353 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 354 // Avoid multiple insertions of the same DICompileUnit to NMD. 355 SmallPtrSet<const void *, 8> Visited; 356 for (auto *Operand : NMD->operands()) 357 Visited.insert(Operand); 358 for (auto *Unit : DIFinder.compile_units()) { 359 MDNode *MappedUnit = 360 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer); 361 if (Visited.insert(MappedUnit).second) 362 NMD->addOperand(MappedUnit); 363 } 364 } 365 366 /// Return a copy of the specified function and add it to that function's 367 /// module. Also, any references specified in the VMap are changed to refer to 368 /// their mapped value instead of the original one. If any of the arguments to 369 /// the function are in the VMap, the arguments are deleted from the resultant 370 /// function. The VMap is updated to include mappings from all of the 371 /// instructions and basicblocks in the function from their old to new values. 372 /// 373 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 374 ClonedCodeInfo *CodeInfo) { 375 std::vector<Type *> ArgTypes; 376 377 // The user might be deleting arguments to the function by specifying them in 378 // the VMap. If so, we need to not add the arguments to the arg ty vector 379 // 380 for (const Argument &I : F->args()) 381 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 382 ArgTypes.push_back(I.getType()); 383 384 // Create a new function type... 385 FunctionType *FTy = 386 FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes, 387 F->getFunctionType()->isVarArg()); 388 389 // Create the new function... 390 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 391 F->getName(), F->getParent()); 392 NewF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat); 393 394 // Loop over the arguments, copying the names of the mapped arguments over... 395 Function::arg_iterator DestI = NewF->arg_begin(); 396 for (const Argument &I : F->args()) 397 if (VMap.count(&I) == 0) { // Is this argument preserved? 398 DestI->setName(I.getName()); // Copy the name over... 399 VMap[&I] = &*DestI++; // Add mapping to VMap 400 } 401 402 SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned. 403 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, 404 Returns, "", CodeInfo); 405 406 return NewF; 407 } 408 409 namespace { 410 /// This is a private class used to implement CloneAndPruneFunctionInto. 411 struct PruningFunctionCloner { 412 Function *NewFunc; 413 const Function *OldFunc; 414 ValueToValueMapTy &VMap; 415 bool ModuleLevelChanges; 416 const char *NameSuffix; 417 ClonedCodeInfo *CodeInfo; 418 bool HostFuncIsStrictFP; 419 420 Instruction *cloneInstruction(BasicBlock::const_iterator II); 421 422 public: 423 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 424 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 425 const char *nameSuffix, ClonedCodeInfo *codeInfo) 426 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 427 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 428 CodeInfo(codeInfo) { 429 HostFuncIsStrictFP = 430 newFunc->getAttributes().hasFnAttr(Attribute::StrictFP); 431 } 432 433 /// The specified block is found to be reachable, clone it and 434 /// anything that it can reach. 435 void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, 436 std::vector<const BasicBlock *> &ToClone); 437 }; 438 } // namespace 439 440 Instruction * 441 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) { 442 const Instruction &OldInst = *II; 443 Instruction *NewInst = nullptr; 444 if (HostFuncIsStrictFP) { 445 Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst); 446 if (CIID != Intrinsic::not_intrinsic) { 447 // Instead of cloning the instruction, a call to constrained intrinsic 448 // should be created. 449 // Assume the first arguments of constrained intrinsics are the same as 450 // the operands of original instruction. 451 452 // Determine overloaded types of the intrinsic. 453 SmallVector<Type *, 2> TParams; 454 SmallVector<Intrinsic::IITDescriptor, 8> Descriptor; 455 getIntrinsicInfoTableEntries(CIID, Descriptor); 456 for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) { 457 Intrinsic::IITDescriptor Operand = Descriptor[I]; 458 switch (Operand.Kind) { 459 case Intrinsic::IITDescriptor::Argument: 460 if (Operand.getArgumentKind() != 461 Intrinsic::IITDescriptor::AK_MatchType) { 462 if (I == 0) 463 TParams.push_back(OldInst.getType()); 464 else 465 TParams.push_back(OldInst.getOperand(I - 1)->getType()); 466 } 467 break; 468 case Intrinsic::IITDescriptor::SameVecWidthArgument: 469 ++I; 470 break; 471 default: 472 break; 473 } 474 } 475 476 // Create intrinsic call. 477 LLVMContext &Ctx = NewFunc->getContext(); 478 Function *IFn = Intrinsic::getOrInsertDeclaration(NewFunc->getParent(), 479 CIID, TParams); 480 SmallVector<Value *, 4> Args; 481 unsigned NumOperands = OldInst.getNumOperands(); 482 if (isa<CallInst>(OldInst)) 483 --NumOperands; 484 for (unsigned I = 0; I < NumOperands; ++I) { 485 Value *Op = OldInst.getOperand(I); 486 Args.push_back(Op); 487 } 488 if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) { 489 FCmpInst::Predicate Pred = CmpI->getPredicate(); 490 StringRef PredName = FCmpInst::getPredicateName(Pred); 491 Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName))); 492 } 493 494 // The last arguments of a constrained intrinsic are metadata that 495 // represent rounding mode (absents in some intrinsics) and exception 496 // behavior. The inlined function uses default settings. 497 if (Intrinsic::hasConstrainedFPRoundingModeOperand(CIID)) 498 Args.push_back( 499 MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest"))); 500 Args.push_back( 501 MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore"))); 502 503 NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict"); 504 } 505 } 506 if (!NewInst) 507 NewInst = II->clone(); 508 return NewInst; 509 } 510 511 /// The specified block is found to be reachable, clone it and 512 /// anything that it can reach. 513 void PruningFunctionCloner::CloneBlock( 514 const BasicBlock *BB, BasicBlock::const_iterator StartingInst, 515 std::vector<const BasicBlock *> &ToClone) { 516 WeakTrackingVH &BBEntry = VMap[BB]; 517 518 // Have we already cloned this block? 519 if (BBEntry) 520 return; 521 522 // Nope, clone it now. 523 BasicBlock *NewBB; 524 Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : ""); 525 BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc); 526 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat; 527 528 // It is only legal to clone a function if a block address within that 529 // function is never referenced outside of the function. Given that, we 530 // want to map block addresses from the old function to block addresses in 531 // the clone. (This is different from the generic ValueMapper 532 // implementation, which generates an invalid blockaddress when 533 // cloning a function.) 534 // 535 // Note that we don't need to fix the mapping for unreachable blocks; 536 // the default mapping there is safe. 537 if (BB->hasAddressTaken()) { 538 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), 539 const_cast<BasicBlock *>(BB)); 540 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 541 } 542 543 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 544 bool hasMemProfMetadata = false; 545 546 // Keep a cursor pointing at the last place we cloned debug-info records from. 547 BasicBlock::const_iterator DbgCursor = StartingInst; 548 auto CloneDbgRecordsToHere = 549 [NewBB, &DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) { 550 if (!NewBB->IsNewDbgInfoFormat) 551 return; 552 553 // Clone debug-info records onto this instruction. Iterate through any 554 // source-instructions we've cloned and then subsequently optimised 555 // away, so that their debug-info doesn't go missing. 556 for (; DbgCursor != II; ++DbgCursor) 557 NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false); 558 NewInst->cloneDebugInfoFrom(&*II); 559 DbgCursor = std::next(II); 560 }; 561 562 // Loop over all instructions, and copy them over, DCE'ing as we go. This 563 // loop doesn't include the terminator. 564 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE; 565 ++II) { 566 567 // Don't clone fake_use as it may suppress many optimizations 568 // due to inlining, especially SROA. 569 if (auto *IntrInst = dyn_cast<IntrinsicInst>(II)) 570 if (IntrInst->getIntrinsicID() == Intrinsic::fake_use) 571 continue; 572 573 Instruction *NewInst = cloneInstruction(II); 574 NewInst->insertInto(NewBB, NewBB->end()); 575 576 if (HostFuncIsStrictFP) { 577 // All function calls in the inlined function must get 'strictfp' 578 // attribute to prevent undesirable optimizations. 579 if (auto *Call = dyn_cast<CallInst>(NewInst)) 580 Call->addFnAttr(Attribute::StrictFP); 581 } 582 583 // Eagerly remap operands to the newly cloned instruction, except for PHI 584 // nodes for which we defer processing until we update the CFG. Also defer 585 // debug intrinsic processing because they may contain use-before-defs. 586 if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) { 587 RemapInstruction(NewInst, VMap, 588 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 589 590 // Eagerly constant fold the newly cloned instruction. If successful, add 591 // a mapping to the new value. Non-constant operands may be incomplete at 592 // this stage, thus instruction simplification is performed after 593 // processing phi-nodes. 594 if (Value *V = ConstantFoldInstruction( 595 NewInst, BB->getDataLayout())) { 596 if (isInstructionTriviallyDead(NewInst)) { 597 VMap[&*II] = V; 598 NewInst->eraseFromParent(); 599 continue; 600 } 601 } 602 } 603 604 if (II->hasName()) 605 NewInst->setName(II->getName() + NameSuffix); 606 VMap[&*II] = NewInst; // Add instruction map to value. 607 if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) { 608 hasCalls = true; 609 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof); 610 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_callsite); 611 } 612 613 CloneDbgRecordsToHere(NewInst, II); 614 615 if (CodeInfo) { 616 CodeInfo->OrigVMap[&*II] = NewInst; 617 if (auto *CB = dyn_cast<CallBase>(&*II)) 618 if (CB->hasOperandBundles()) 619 CodeInfo->OperandBundleCallSites.push_back(NewInst); 620 } 621 622 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 623 if (isa<ConstantInt>(AI->getArraySize())) 624 hasStaticAllocas = true; 625 else 626 hasDynamicAllocas = true; 627 } 628 } 629 630 // Finally, clone over the terminator. 631 const Instruction *OldTI = BB->getTerminator(); 632 bool TerminatorDone = false; 633 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 634 if (BI->isConditional()) { 635 // If the condition was a known constant in the callee... 636 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 637 // Or is a known constant in the caller... 638 if (!Cond) { 639 Value *V = VMap.lookup(BI->getCondition()); 640 Cond = dyn_cast_or_null<ConstantInt>(V); 641 } 642 643 // Constant fold to uncond branch! 644 if (Cond) { 645 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 646 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 647 ToClone.push_back(Dest); 648 TerminatorDone = true; 649 } 650 } 651 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 652 // If switching on a value known constant in the caller. 653 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 654 if (!Cond) { // Or known constant after constant prop in the callee... 655 Value *V = VMap.lookup(SI->getCondition()); 656 Cond = dyn_cast_or_null<ConstantInt>(V); 657 } 658 if (Cond) { // Constant fold to uncond branch! 659 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 660 BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor()); 661 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 662 ToClone.push_back(Dest); 663 TerminatorDone = true; 664 } 665 } 666 667 if (!TerminatorDone) { 668 Instruction *NewInst = OldTI->clone(); 669 if (OldTI->hasName()) 670 NewInst->setName(OldTI->getName() + NameSuffix); 671 NewInst->insertInto(NewBB, NewBB->end()); 672 673 CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); 674 675 VMap[OldTI] = NewInst; // Add instruction map to value. 676 677 if (CodeInfo) { 678 CodeInfo->OrigVMap[OldTI] = NewInst; 679 if (auto *CB = dyn_cast<CallBase>(OldTI)) 680 if (CB->hasOperandBundles()) 681 CodeInfo->OperandBundleCallSites.push_back(NewInst); 682 } 683 684 // Recursively clone any reachable successor blocks. 685 append_range(ToClone, successors(BB->getTerminator())); 686 } else { 687 // If we didn't create a new terminator, clone DbgVariableRecords from the 688 // old terminator onto the new terminator. 689 Instruction *NewInst = NewBB->getTerminator(); 690 assert(NewInst); 691 692 CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); 693 } 694 695 if (CodeInfo) { 696 CodeInfo->ContainsCalls |= hasCalls; 697 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; 698 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 699 CodeInfo->ContainsDynamicAllocas |= 700 hasStaticAllocas && BB != &BB->getParent()->front(); 701 } 702 } 703 704 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 705 /// entire function. Instead it starts at an instruction provided by the caller 706 /// and copies (and prunes) only the code reachable from that instruction. 707 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 708 const Instruction *StartingInst, 709 ValueToValueMapTy &VMap, 710 bool ModuleLevelChanges, 711 SmallVectorImpl<ReturnInst *> &Returns, 712 const char *NameSuffix, 713 ClonedCodeInfo *CodeInfo) { 714 assert(NameSuffix && "NameSuffix cannot be null!"); 715 716 ValueMapTypeRemapper *TypeMapper = nullptr; 717 ValueMaterializer *Materializer = nullptr; 718 719 #ifndef NDEBUG 720 // If the cloning starts at the beginning of the function, verify that 721 // the function arguments are mapped. 722 if (!StartingInst) 723 for (const Argument &II : OldFunc->args()) 724 assert(VMap.count(&II) && "No mapping from source argument specified!"); 725 #endif 726 727 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 728 NameSuffix, CodeInfo); 729 const BasicBlock *StartingBB; 730 if (StartingInst) 731 StartingBB = StartingInst->getParent(); 732 else { 733 StartingBB = &OldFunc->getEntryBlock(); 734 StartingInst = &StartingBB->front(); 735 } 736 737 // Collect debug intrinsics for remapping later. 738 SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics; 739 for (const auto &BB : *OldFunc) { 740 for (const auto &I : BB) { 741 if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I)) 742 DbgIntrinsics.push_back(DVI); 743 } 744 } 745 746 // Clone the entry block, and anything recursively reachable from it. 747 std::vector<const BasicBlock *> CloneWorklist; 748 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 749 while (!CloneWorklist.empty()) { 750 const BasicBlock *BB = CloneWorklist.back(); 751 CloneWorklist.pop_back(); 752 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 753 } 754 755 // Loop over all of the basic blocks in the old function. If the block was 756 // reachable, we have cloned it and the old block is now in the value map: 757 // insert it into the new function in the right order. If not, ignore it. 758 // 759 // Defer PHI resolution until rest of function is resolved. 760 SmallVector<const PHINode *, 16> PHIToResolve; 761 for (const BasicBlock &BI : *OldFunc) { 762 Value *V = VMap.lookup(&BI); 763 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 764 if (!NewBB) 765 continue; // Dead block. 766 767 // Move the new block to preserve the order in the original function. 768 NewBB->moveBefore(NewFunc->end()); 769 770 // Handle PHI nodes specially, as we have to remove references to dead 771 // blocks. 772 for (const PHINode &PN : BI.phis()) { 773 // PHI nodes may have been remapped to non-PHI nodes by the caller or 774 // during the cloning process. 775 if (isa<PHINode>(VMap[&PN])) 776 PHIToResolve.push_back(&PN); 777 else 778 break; 779 } 780 781 // Finally, remap the terminator instructions, as those can't be remapped 782 // until all BBs are mapped. 783 RemapInstruction(NewBB->getTerminator(), VMap, 784 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 785 TypeMapper, Materializer); 786 } 787 788 // Defer PHI resolution until rest of function is resolved, PHI resolution 789 // requires the CFG to be up-to-date. 790 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) { 791 const PHINode *OPN = PHIToResolve[phino]; 792 unsigned NumPreds = OPN->getNumIncomingValues(); 793 const BasicBlock *OldBB = OPN->getParent(); 794 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 795 796 // Map operands for blocks that are live and remove operands for blocks 797 // that are dead. 798 for (; phino != PHIToResolve.size() && 799 PHIToResolve[phino]->getParent() == OldBB; 800 ++phino) { 801 OPN = PHIToResolve[phino]; 802 PHINode *PN = cast<PHINode>(VMap[OPN]); 803 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 804 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 805 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 806 Value *InVal = 807 MapValue(PN->getIncomingValue(pred), VMap, 808 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 809 assert(InVal && "Unknown input value?"); 810 PN->setIncomingValue(pred, InVal); 811 PN->setIncomingBlock(pred, MappedBlock); 812 } else { 813 PN->removeIncomingValue(pred, false); 814 --pred; // Revisit the next entry. 815 --e; 816 } 817 } 818 } 819 820 // The loop above has removed PHI entries for those blocks that are dead 821 // and has updated others. However, if a block is live (i.e. copied over) 822 // but its terminator has been changed to not go to this block, then our 823 // phi nodes will have invalid entries. Update the PHI nodes in this 824 // case. 825 PHINode *PN = cast<PHINode>(NewBB->begin()); 826 NumPreds = pred_size(NewBB); 827 if (NumPreds != PN->getNumIncomingValues()) { 828 assert(NumPreds < PN->getNumIncomingValues()); 829 // Count how many times each predecessor comes to this block. 830 std::map<BasicBlock *, unsigned> PredCount; 831 for (BasicBlock *Pred : predecessors(NewBB)) 832 --PredCount[Pred]; 833 834 // Figure out how many entries to remove from each PHI. 835 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 836 ++PredCount[PN->getIncomingBlock(i)]; 837 838 // At this point, the excess predecessor entries are positive in the 839 // map. Loop over all of the PHIs and remove excess predecessor 840 // entries. 841 BasicBlock::iterator I = NewBB->begin(); 842 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 843 for (const auto &PCI : PredCount) { 844 BasicBlock *Pred = PCI.first; 845 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 846 PN->removeIncomingValue(Pred, false); 847 } 848 } 849 } 850 851 // If the loops above have made these phi nodes have 0 or 1 operand, 852 // replace them with poison or the input value. We must do this for 853 // correctness, because 0-operand phis are not valid. 854 PN = cast<PHINode>(NewBB->begin()); 855 if (PN->getNumIncomingValues() == 0) { 856 BasicBlock::iterator I = NewBB->begin(); 857 BasicBlock::const_iterator OldI = OldBB->begin(); 858 while ((PN = dyn_cast<PHINode>(I++))) { 859 Value *NV = PoisonValue::get(PN->getType()); 860 PN->replaceAllUsesWith(NV); 861 assert(VMap[&*OldI] == PN && "VMap mismatch"); 862 VMap[&*OldI] = NV; 863 PN->eraseFromParent(); 864 ++OldI; 865 } 866 } 867 } 868 869 // Drop all incompatible return attributes that cannot be applied to NewFunc 870 // during cloning, so as to allow instruction simplification to reason on the 871 // old state of the function. The original attributes are restored later. 872 AttributeList Attrs = NewFunc->getAttributes(); 873 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible( 874 OldFunc->getReturnType(), Attrs.getRetAttrs()); 875 NewFunc->removeRetAttrs(IncompatibleAttrs); 876 877 // As phi-nodes have been now remapped, allow incremental simplification of 878 // newly-cloned instructions. 879 const DataLayout &DL = NewFunc->getDataLayout(); 880 for (const auto &BB : *OldFunc) { 881 for (const auto &I : BB) { 882 auto *NewI = dyn_cast_or_null<Instruction>(VMap.lookup(&I)); 883 if (!NewI) 884 continue; 885 886 if (Value *V = simplifyInstruction(NewI, DL)) { 887 NewI->replaceAllUsesWith(V); 888 889 if (isInstructionTriviallyDead(NewI)) { 890 NewI->eraseFromParent(); 891 } else { 892 // Did not erase it? Restore the new instruction into VMap previously 893 // dropped by `ValueIsRAUWd`. 894 VMap[&I] = NewI; 895 } 896 } 897 } 898 } 899 900 // Restore attributes. 901 NewFunc->setAttributes(Attrs); 902 903 // Remap debug intrinsic operands now that all values have been mapped. 904 // Doing this now (late) preserves use-before-defs in debug intrinsics. If 905 // we didn't do this, ValueAsMetadata(use-before-def) operands would be 906 // replaced by empty metadata. This would signal later cleanup passes to 907 // remove the debug intrinsics, potentially causing incorrect locations. 908 for (const auto *DVI : DbgIntrinsics) { 909 if (DbgVariableIntrinsic *NewDVI = 910 cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI))) 911 RemapInstruction(NewDVI, VMap, 912 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 913 TypeMapper, Materializer); 914 } 915 916 // Do the same for DbgVariableRecords, touching all the instructions in the 917 // cloned range of blocks. 918 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 919 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) { 920 for (Instruction &I : BB) { 921 RemapDbgRecordRange(I.getModule(), I.getDbgRecordRange(), VMap, 922 ModuleLevelChanges ? RF_None 923 : RF_NoModuleLevelChanges, 924 TypeMapper, Materializer); 925 } 926 } 927 928 // Simplify conditional branches and switches with a constant operand. We try 929 // to prune these out when cloning, but if the simplification required 930 // looking through PHI nodes, those are only available after forming the full 931 // basic block. That may leave some here, and we still want to prune the dead 932 // code as early as possible. 933 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) 934 ConstantFoldTerminator(&BB); 935 936 // Some blocks may have become unreachable as a result. Find and delete them. 937 { 938 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 939 SmallVector<BasicBlock *, 16> Worklist; 940 Worklist.push_back(&*Begin); 941 while (!Worklist.empty()) { 942 BasicBlock *BB = Worklist.pop_back_val(); 943 if (ReachableBlocks.insert(BB).second) 944 append_range(Worklist, successors(BB)); 945 } 946 947 SmallVector<BasicBlock *, 16> UnreachableBlocks; 948 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) 949 if (!ReachableBlocks.contains(&BB)) 950 UnreachableBlocks.push_back(&BB); 951 DeleteDeadBlocks(UnreachableBlocks); 952 } 953 954 // Now that the inlined function body has been fully constructed, go through 955 // and zap unconditional fall-through branches. This happens all the time when 956 // specializing code: code specialization turns conditional branches into 957 // uncond branches, and this code folds them. 958 Function::iterator I = Begin; 959 while (I != NewFunc->end()) { 960 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 961 if (!BI || BI->isConditional()) { 962 ++I; 963 continue; 964 } 965 966 BasicBlock *Dest = BI->getSuccessor(0); 967 if (!Dest->getSinglePredecessor()) { 968 ++I; 969 continue; 970 } 971 972 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 973 // above should have zapped all of them.. 974 assert(!isa<PHINode>(Dest->begin())); 975 976 // We know all single-entry PHI nodes in the inlined function have been 977 // removed, so we just need to splice the blocks. 978 BI->eraseFromParent(); 979 980 // Make all PHI nodes that referred to Dest now refer to I as their source. 981 Dest->replaceAllUsesWith(&*I); 982 983 // Move all the instructions in the succ to the pred. 984 I->splice(I->end(), Dest); 985 986 // Remove the dest block. 987 Dest->eraseFromParent(); 988 989 // Do not increment I, iteratively merge all things this block branches to. 990 } 991 992 // Make a final pass over the basic blocks from the old function to gather 993 // any return instructions which survived folding. We have to do this here 994 // because we can iteratively remove and merge returns above. 995 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 996 E = NewFunc->end(); 997 I != E; ++I) 998 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 999 Returns.push_back(RI); 1000 } 1001 1002 /// This works exactly like CloneFunctionInto, 1003 /// except that it does some simple constant prop and DCE on the fly. The 1004 /// effect of this is to copy significantly less code in cases where (for 1005 /// example) a function call with constant arguments is inlined, and those 1006 /// constant arguments cause a significant amount of code in the callee to be 1007 /// dead. Since this doesn't produce an exact copy of the input, it can't be 1008 /// used for things like CloneFunction or CloneModule. 1009 void llvm::CloneAndPruneFunctionInto( 1010 Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, 1011 bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns, 1012 const char *NameSuffix, ClonedCodeInfo *CodeInfo) { 1013 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 1014 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 1015 } 1016 1017 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 1018 void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks, 1019 ValueToValueMapTy &VMap) { 1020 // Rewrite the code to refer to itself. 1021 for (auto *BB : Blocks) { 1022 for (auto &Inst : *BB) { 1023 RemapDbgRecordRange(Inst.getModule(), Inst.getDbgRecordRange(), VMap, 1024 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1025 RemapInstruction(&Inst, VMap, 1026 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1027 } 1028 } 1029 } 1030 1031 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 1032 /// Blocks. 1033 /// 1034 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 1035 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 1036 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 1037 Loop *OrigLoop, ValueToValueMapTy &VMap, 1038 const Twine &NameSuffix, LoopInfo *LI, 1039 DominatorTree *DT, 1040 SmallVectorImpl<BasicBlock *> &Blocks) { 1041 Function *F = OrigLoop->getHeader()->getParent(); 1042 Loop *ParentLoop = OrigLoop->getParentLoop(); 1043 DenseMap<Loop *, Loop *> LMap; 1044 1045 Loop *NewLoop = LI->AllocateLoop(); 1046 LMap[OrigLoop] = NewLoop; 1047 if (ParentLoop) 1048 ParentLoop->addChildLoop(NewLoop); 1049 else 1050 LI->addTopLevelLoop(NewLoop); 1051 1052 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 1053 assert(OrigPH && "No preheader"); 1054 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 1055 // To rename the loop PHIs. 1056 VMap[OrigPH] = NewPH; 1057 Blocks.push_back(NewPH); 1058 1059 // Update LoopInfo. 1060 if (ParentLoop) 1061 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 1062 1063 // Update DominatorTree. 1064 DT->addNewBlock(NewPH, LoopDomBB); 1065 1066 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 1067 Loop *&NewLoop = LMap[CurLoop]; 1068 if (!NewLoop) { 1069 NewLoop = LI->AllocateLoop(); 1070 1071 // Establish the parent/child relationship. 1072 Loop *OrigParent = CurLoop->getParentLoop(); 1073 assert(OrigParent && "Could not find the original parent loop"); 1074 Loop *NewParentLoop = LMap[OrigParent]; 1075 assert(NewParentLoop && "Could not find the new parent loop"); 1076 1077 NewParentLoop->addChildLoop(NewLoop); 1078 } 1079 } 1080 1081 for (BasicBlock *BB : OrigLoop->getBlocks()) { 1082 Loop *CurLoop = LI->getLoopFor(BB); 1083 Loop *&NewLoop = LMap[CurLoop]; 1084 assert(NewLoop && "Expecting new loop to be allocated"); 1085 1086 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 1087 VMap[BB] = NewBB; 1088 1089 // Update LoopInfo. 1090 NewLoop->addBasicBlockToLoop(NewBB, *LI); 1091 1092 // Add DominatorTree node. After seeing all blocks, update to correct 1093 // IDom. 1094 DT->addNewBlock(NewBB, NewPH); 1095 1096 Blocks.push_back(NewBB); 1097 } 1098 1099 for (BasicBlock *BB : OrigLoop->getBlocks()) { 1100 // Update loop headers. 1101 Loop *CurLoop = LI->getLoopFor(BB); 1102 if (BB == CurLoop->getHeader()) 1103 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); 1104 1105 // Update DominatorTree. 1106 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 1107 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 1108 cast<BasicBlock>(VMap[IDomBB])); 1109 } 1110 1111 // Move them physically from the end of the block list. 1112 F->splice(Before->getIterator(), F, NewPH->getIterator()); 1113 F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(), 1114 F->end()); 1115 1116 return NewLoop; 1117 } 1118 1119 /// Duplicate non-Phi instructions from the beginning of block up to 1120 /// StopAt instruction into a split block between BB and its predecessor. 1121 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 1122 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 1123 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 1124 1125 assert(count(successors(PredBB), BB) == 1 && 1126 "There must be a single edge between PredBB and BB!"); 1127 // We are going to have to map operands from the original BB block to the new 1128 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1129 // account for entry from PredBB. 1130 BasicBlock::iterator BI = BB->begin(); 1131 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1132 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1133 1134 BasicBlock *NewBB = SplitEdge(PredBB, BB); 1135 NewBB->setName(PredBB->getName() + ".split"); 1136 Instruction *NewTerm = NewBB->getTerminator(); 1137 1138 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 1139 // in the update set here. 1140 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 1141 {DominatorTree::Insert, PredBB, NewBB}, 1142 {DominatorTree::Insert, NewBB, BB}}); 1143 1144 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1145 // mapping and using it to remap operands in the cloned instructions. 1146 // Stop once we see the terminator too. This covers the case where BB's 1147 // terminator gets replaced and StopAt == BB's terminator. 1148 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 1149 Instruction *New = BI->clone(); 1150 New->setName(BI->getName()); 1151 New->insertBefore(NewTerm); 1152 New->cloneDebugInfoFrom(&*BI); 1153 ValueMapping[&*BI] = New; 1154 1155 // Remap operands to patch up intra-block references. 1156 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1157 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1158 auto I = ValueMapping.find(Inst); 1159 if (I != ValueMapping.end()) 1160 New->setOperand(i, I->second); 1161 } 1162 1163 // Remap debug variable operands. 1164 remapDebugVariable(ValueMapping, New); 1165 } 1166 1167 return NewBB; 1168 } 1169 1170 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1171 DenseMap<MDNode *, MDNode *> &ClonedScopes, 1172 StringRef Ext, LLVMContext &Context) { 1173 MDBuilder MDB(Context); 1174 1175 for (auto *ScopeList : NoAliasDeclScopes) { 1176 for (const auto &MDOperand : ScopeList->operands()) { 1177 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) { 1178 AliasScopeNode SNANode(MD); 1179 1180 std::string Name; 1181 auto ScopeName = SNANode.getName(); 1182 if (!ScopeName.empty()) 1183 Name = (Twine(ScopeName) + ":" + Ext).str(); 1184 else 1185 Name = std::string(Ext); 1186 1187 MDNode *NewScope = MDB.createAnonymousAliasScope( 1188 const_cast<MDNode *>(SNANode.getDomain()), Name); 1189 ClonedScopes.insert(std::make_pair(MD, NewScope)); 1190 } 1191 } 1192 } 1193 } 1194 1195 void llvm::adaptNoAliasScopes(Instruction *I, 1196 const DenseMap<MDNode *, MDNode *> &ClonedScopes, 1197 LLVMContext &Context) { 1198 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { 1199 bool NeedsReplacement = false; 1200 SmallVector<Metadata *, 8> NewScopeList; 1201 for (const auto &MDOp : ScopeList->operands()) { 1202 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) { 1203 if (auto *NewMD = ClonedScopes.lookup(MD)) { 1204 NewScopeList.push_back(NewMD); 1205 NeedsReplacement = true; 1206 continue; 1207 } 1208 NewScopeList.push_back(MD); 1209 } 1210 } 1211 if (NeedsReplacement) 1212 return MDNode::get(Context, NewScopeList); 1213 return nullptr; 1214 }; 1215 1216 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) 1217 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) 1218 Decl->setScopeList(NewScopeList); 1219 1220 auto replaceWhenNeeded = [&](unsigned MD_ID) { 1221 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID)) 1222 if (auto *NewScopeList = CloneScopeList(CSNoAlias)) 1223 I->setMetadata(MD_ID, NewScopeList); 1224 }; 1225 replaceWhenNeeded(LLVMContext::MD_noalias); 1226 replaceWhenNeeded(LLVMContext::MD_alias_scope); 1227 } 1228 1229 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1230 ArrayRef<BasicBlock *> NewBlocks, 1231 LLVMContext &Context, StringRef Ext) { 1232 if (NoAliasDeclScopes.empty()) 1233 return; 1234 1235 DenseMap<MDNode *, MDNode *> ClonedScopes; 1236 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1237 << NoAliasDeclScopes.size() << " node(s)\n"); 1238 1239 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1240 // Identify instructions using metadata that needs adaptation 1241 for (BasicBlock *NewBlock : NewBlocks) 1242 for (Instruction &I : *NewBlock) 1243 adaptNoAliasScopes(&I, ClonedScopes, Context); 1244 } 1245 1246 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1247 Instruction *IStart, Instruction *IEnd, 1248 LLVMContext &Context, StringRef Ext) { 1249 if (NoAliasDeclScopes.empty()) 1250 return; 1251 1252 DenseMap<MDNode *, MDNode *> ClonedScopes; 1253 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1254 << NoAliasDeclScopes.size() << " node(s)\n"); 1255 1256 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1257 // Identify instructions using metadata that needs adaptation 1258 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?"); 1259 auto ItStart = IStart->getIterator(); 1260 auto ItEnd = IEnd->getIterator(); 1261 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range 1262 for (auto &I : llvm::make_range(ItStart, ItEnd)) 1263 adaptNoAliasScopes(&I, ClonedScopes, Context); 1264 } 1265 1266 void llvm::identifyNoAliasScopesToClone( 1267 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1268 for (BasicBlock *BB : BBs) 1269 for (Instruction &I : *BB) 1270 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1271 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1272 } 1273 1274 void llvm::identifyNoAliasScopesToClone( 1275 BasicBlock::iterator Start, BasicBlock::iterator End, 1276 SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1277 for (Instruction &I : make_range(Start, End)) 1278 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1279 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1280 } 1281