xref: /llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/AttributeMask.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstIterator.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #include <map>
38 #include <optional>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "clone-function"
42 
43 /// See comments in Cloning.h.
44 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
45                                   const Twine &NameSuffix, Function *F,
46                                   ClonedCodeInfo *CodeInfo) {
47   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
48   NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
49   if (BB->hasName())
50     NewBB->setName(BB->getName() + NameSuffix);
51 
52   bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
53 
54   // Loop over all instructions, and copy them over.
55   for (const Instruction &I : *BB) {
56     Instruction *NewInst = I.clone();
57     if (I.hasName())
58       NewInst->setName(I.getName() + NameSuffix);
59 
60     NewInst->insertBefore(*NewBB, NewBB->end());
61     NewInst->cloneDebugInfoFrom(&I);
62 
63     VMap[&I] = NewInst; // Add instruction map to value.
64 
65     if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
66       hasCalls = true;
67       hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
68       hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_callsite);
69     }
70     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
71       if (!AI->isStaticAlloca()) {
72         hasDynamicAllocas = true;
73       }
74     }
75   }
76 
77   if (CodeInfo) {
78     CodeInfo->ContainsCalls |= hasCalls;
79     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
80     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
81   }
82   return NewBB;
83 }
84 
85 void llvm::CloneFunctionAttributesInto(Function *NewFunc,
86                                        const Function *OldFunc,
87                                        ValueToValueMapTy &VMap,
88                                        bool ModuleLevelChanges,
89                                        ValueMapTypeRemapper *TypeMapper,
90                                        ValueMaterializer *Materializer) {
91   // Copy all attributes other than those stored in Function's AttributeList
92   // which holds e.g. parameters and return value attributes.
93   AttributeList NewAttrs = NewFunc->getAttributes();
94   NewFunc->copyAttributesFrom(OldFunc);
95   NewFunc->setAttributes(NewAttrs);
96 
97   const RemapFlags FuncGlobalRefFlags =
98       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
99 
100   // Fix up the personality function that got copied over.
101   if (OldFunc->hasPersonalityFn())
102     NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
103                                        FuncGlobalRefFlags, TypeMapper,
104                                        Materializer));
105 
106   if (OldFunc->hasPrefixData()) {
107     NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
108                                     FuncGlobalRefFlags, TypeMapper,
109                                     Materializer));
110   }
111 
112   if (OldFunc->hasPrologueData()) {
113     NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
114                                       FuncGlobalRefFlags, TypeMapper,
115                                       Materializer));
116   }
117 
118   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
119   AttributeList OldAttrs = OldFunc->getAttributes();
120 
121   // Clone any argument attributes that are present in the VMap.
122   for (const Argument &OldArg : OldFunc->args()) {
123     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
124       // Remap the parameter indices.
125       NewArgAttrs[NewArg->getArgNo()] =
126           OldAttrs.getParamAttrs(OldArg.getArgNo());
127     }
128   }
129 
130   NewFunc->setAttributes(
131       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
132                          OldAttrs.getRetAttrs(), NewArgAttrs));
133 }
134 
135 DISubprogram *llvm::CollectDebugInfoForCloning(const Function &F,
136                                                CloneFunctionChangeType Changes,
137                                                DebugInfoFinder &DIFinder) {
138   DISubprogram *SPClonedWithinModule = nullptr;
139   if (Changes < CloneFunctionChangeType::DifferentModule) {
140     SPClonedWithinModule = F.getSubprogram();
141   }
142   if (SPClonedWithinModule)
143     DIFinder.processSubprogram(SPClonedWithinModule);
144 
145   const Module *M = F.getParent();
146   if (Changes != CloneFunctionChangeType::ClonedModule && M) {
147     // Inspect instructions to process e.g. DILexicalBlocks of inlined functions
148     for (const auto &I : instructions(F))
149       DIFinder.processInstruction(*M, I);
150   }
151 
152   return SPClonedWithinModule;
153 }
154 
155 MetadataSetTy
156 llvm::FindDebugInfoToIdentityMap(CloneFunctionChangeType Changes,
157                                  DebugInfoFinder &DIFinder,
158                                  DISubprogram *SPClonedWithinModule) {
159   MetadataSetTy MD;
160 
161   if (Changes < CloneFunctionChangeType::DifferentModule &&
162       DIFinder.subprogram_count() > 0) {
163     // Avoid cloning types, compile units, and (other) subprograms.
164     for (DISubprogram *ISP : DIFinder.subprograms()) {
165       if (ISP != SPClonedWithinModule)
166         MD.insert(ISP);
167     }
168 
169     // If a subprogram isn't going to be cloned skip its lexical blocks as well.
170     for (DIScope *S : DIFinder.scopes()) {
171       auto *LScope = dyn_cast<DILocalScope>(S);
172       if (LScope && LScope->getSubprogram() != SPClonedWithinModule)
173         MD.insert(S);
174     }
175 
176     for (DICompileUnit *CU : DIFinder.compile_units())
177       MD.insert(CU);
178 
179     for (DIType *Type : DIFinder.types())
180       MD.insert(Type);
181   } else {
182     assert(!SPClonedWithinModule &&
183            "Subprogram should be in DIFinder->subprogram_count()...");
184   }
185 
186   return MD;
187 }
188 
189 void llvm::CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc,
190                                      ValueToValueMapTy &VMap,
191                                      RemapFlags RemapFlag,
192                                      ValueMapTypeRemapper *TypeMapper,
193                                      ValueMaterializer *Materializer,
194                                      const MetadataSetTy *IdentityMD) {
195   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
196   OldFunc.getAllMetadata(MDs);
197   for (auto MD : MDs) {
198     NewFunc.addMetadata(MD.first,
199                         *MapMetadata(MD.second, VMap, RemapFlag, TypeMapper,
200                                      Materializer, IdentityMD));
201   }
202 }
203 
204 void llvm::CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc,
205                                  ValueToValueMapTy &VMap, RemapFlags RemapFlag,
206                                  SmallVectorImpl<ReturnInst *> &Returns,
207                                  const char *NameSuffix,
208                                  ClonedCodeInfo *CodeInfo,
209                                  ValueMapTypeRemapper *TypeMapper,
210                                  ValueMaterializer *Materializer,
211                                  const MetadataSetTy *IdentityMD) {
212   if (OldFunc.isDeclaration())
213     return;
214 
215   // Loop over all of the basic blocks in the function, cloning them as
216   // appropriate.  Note that we save BE this way in order to handle cloning of
217   // recursive functions into themselves.
218   for (const BasicBlock &BB : OldFunc) {
219 
220     // Create a new basic block and copy instructions into it!
221     BasicBlock *CBB =
222         CloneBasicBlock(&BB, VMap, NameSuffix, &NewFunc, CodeInfo);
223 
224     // Add basic block mapping.
225     VMap[&BB] = CBB;
226 
227     // It is only legal to clone a function if a block address within that
228     // function is never referenced outside of the function.  Given that, we
229     // want to map block addresses from the old function to block addresses in
230     // the clone. (This is different from the generic ValueMapper
231     // implementation, which generates an invalid blockaddress when
232     // cloning a function.)
233     if (BB.hasAddressTaken()) {
234       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(&OldFunc),
235                                               const_cast<BasicBlock *>(&BB));
236       VMap[OldBBAddr] = BlockAddress::get(&NewFunc, CBB);
237     }
238 
239     // Note return instructions for the caller.
240     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
241       Returns.push_back(RI);
242   }
243 
244   // Loop over all of the instructions in the new function, fixing up operand
245   // references as we go. This uses VMap to do all the hard work.
246   for (Function::iterator
247            BB = cast<BasicBlock>(VMap[&OldFunc.front()])->getIterator(),
248            BE = NewFunc.end();
249        BB != BE; ++BB)
250     // Loop over all instructions, fixing each one as we find it, and any
251     // attached debug-info records.
252     for (Instruction &II : *BB) {
253       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer,
254                        IdentityMD);
255       RemapDbgRecordRange(II.getModule(), II.getDbgRecordRange(), VMap,
256                           RemapFlag, TypeMapper, Materializer, IdentityMD);
257     }
258 }
259 
260 // Clone OldFunc into NewFunc, transforming the old arguments into references to
261 // VMap values.
262 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
263                              ValueToValueMapTy &VMap,
264                              CloneFunctionChangeType Changes,
265                              SmallVectorImpl<ReturnInst *> &Returns,
266                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
267                              ValueMapTypeRemapper *TypeMapper,
268                              ValueMaterializer *Materializer) {
269   NewFunc->setIsNewDbgInfoFormat(OldFunc->IsNewDbgInfoFormat);
270   assert(NameSuffix && "NameSuffix cannot be null!");
271 
272 #ifndef NDEBUG
273   for (const Argument &I : OldFunc->args())
274     assert(VMap.count(&I) && "No mapping from source argument specified!");
275 #endif
276 
277   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
278 
279   CloneFunctionAttributesInto(NewFunc, OldFunc, VMap, ModuleLevelChanges,
280                               TypeMapper, Materializer);
281 
282   // Everything else beyond this point deals with function instructions,
283   // so if we are dealing with a function declaration, we're done.
284   if (OldFunc->isDeclaration())
285     return;
286 
287   // When we remap instructions within the same module, we want to avoid
288   // duplicating inlined DISubprograms, so record all subprograms we find as we
289   // duplicate instructions and then freeze them in the MD map. We also record
290   // information about dbg.value and dbg.declare to avoid duplicating the
291   // types.
292   DebugInfoFinder DIFinder;
293 
294   // Track the subprogram attachment that needs to be cloned to fine-tune the
295   // mapping within the same module.
296   if (Changes < CloneFunctionChangeType::DifferentModule) {
297     // Need to find subprograms, types, and compile units.
298 
299     assert((NewFunc->getParent() == nullptr ||
300             NewFunc->getParent() == OldFunc->getParent()) &&
301            "Expected NewFunc to have the same parent, or no parent");
302   } else {
303     // Need to find all the compile units.
304 
305     assert((NewFunc->getParent() == nullptr ||
306             NewFunc->getParent() != OldFunc->getParent()) &&
307            "Expected NewFunc to have different parents, or no parent");
308 
309     if (Changes == CloneFunctionChangeType::DifferentModule) {
310       assert(NewFunc->getParent() &&
311              "Need parent of new function to maintain debug info invariants");
312     }
313   }
314 
315   DISubprogram *SPClonedWithinModule =
316       CollectDebugInfoForCloning(*OldFunc, Changes, DIFinder);
317 
318   MetadataSetTy IdentityMD =
319       FindDebugInfoToIdentityMap(Changes, DIFinder, SPClonedWithinModule);
320 
321   // Cloning is always a Module level operation, since Metadata needs to be
322   // cloned.
323   const auto RemapFlag = RF_None;
324 
325   CloneFunctionMetadataInto(*NewFunc, *OldFunc, VMap, RemapFlag, TypeMapper,
326                             Materializer, &IdentityMD);
327 
328   CloneFunctionBodyInto(*NewFunc, *OldFunc, VMap, RemapFlag, Returns,
329                         NameSuffix, CodeInfo, TypeMapper, Materializer,
330                         &IdentityMD);
331 
332   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
333   // same module, the compile unit will already be listed (or not). When
334   // cloning a module, CloneModule() will handle creating the named metadata.
335   if (Changes != CloneFunctionChangeType::DifferentModule)
336     return;
337 
338   // Update !llvm.dbg.cu with compile units added to the new module if this
339   // function is being cloned in isolation.
340   //
341   // FIXME: This is making global / module-level changes, which doesn't seem
342   // like the right encapsulation  Consider dropping the requirement to update
343   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
344   // non-discardable compile units) instead of discovering compile units by
345   // visiting the metadata attached to global values, which would allow this
346   // code to be deleted. Alternatively, perhaps give responsibility for this
347   // update to CloneFunctionInto's callers.
348   auto *NewModule = NewFunc->getParent();
349   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
350   // Avoid multiple insertions of the same DICompileUnit to NMD.
351   SmallPtrSet<const void *, 8> Visited;
352   for (auto *Operand : NMD->operands())
353     Visited.insert(Operand);
354   for (auto *Unit : DIFinder.compile_units()) {
355     MDNode *MappedUnit =
356         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
357     if (Visited.insert(MappedUnit).second)
358       NMD->addOperand(MappedUnit);
359   }
360 }
361 
362 /// Return a copy of the specified function and add it to that function's
363 /// module.  Also, any references specified in the VMap are changed to refer to
364 /// their mapped value instead of the original one.  If any of the arguments to
365 /// the function are in the VMap, the arguments are deleted from the resultant
366 /// function.  The VMap is updated to include mappings from all of the
367 /// instructions and basicblocks in the function from their old to new values.
368 ///
369 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
370                               ClonedCodeInfo *CodeInfo) {
371   std::vector<Type *> ArgTypes;
372 
373   // The user might be deleting arguments to the function by specifying them in
374   // the VMap.  If so, we need to not add the arguments to the arg ty vector
375   //
376   for (const Argument &I : F->args())
377     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
378       ArgTypes.push_back(I.getType());
379 
380   // Create a new function type...
381   FunctionType *FTy =
382       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
383                         F->getFunctionType()->isVarArg());
384 
385   // Create the new function...
386   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
387                                     F->getName(), F->getParent());
388   NewF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat);
389 
390   // Loop over the arguments, copying the names of the mapped arguments over...
391   Function::arg_iterator DestI = NewF->arg_begin();
392   for (const Argument &I : F->args())
393     if (VMap.count(&I) == 0) {     // Is this argument preserved?
394       DestI->setName(I.getName()); // Copy the name over...
395       VMap[&I] = &*DestI++;        // Add mapping to VMap
396     }
397 
398   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
399   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
400                     Returns, "", CodeInfo);
401 
402   return NewF;
403 }
404 
405 namespace {
406 /// This is a private class used to implement CloneAndPruneFunctionInto.
407 struct PruningFunctionCloner {
408   Function *NewFunc;
409   const Function *OldFunc;
410   ValueToValueMapTy &VMap;
411   bool ModuleLevelChanges;
412   const char *NameSuffix;
413   ClonedCodeInfo *CodeInfo;
414   bool HostFuncIsStrictFP;
415 
416   Instruction *cloneInstruction(BasicBlock::const_iterator II);
417 
418 public:
419   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
420                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
421                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
422       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
423         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
424         CodeInfo(codeInfo) {
425     HostFuncIsStrictFP =
426         newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
427   }
428 
429   /// The specified block is found to be reachable, clone it and
430   /// anything that it can reach.
431   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
432                   std::vector<const BasicBlock *> &ToClone);
433 };
434 } // namespace
435 
436 Instruction *
437 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
438   const Instruction &OldInst = *II;
439   Instruction *NewInst = nullptr;
440   if (HostFuncIsStrictFP) {
441     Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
442     if (CIID != Intrinsic::not_intrinsic) {
443       // Instead of cloning the instruction, a call to constrained intrinsic
444       // should be created.
445       // Assume the first arguments of constrained intrinsics are the same as
446       // the operands of original instruction.
447 
448       // Determine overloaded types of the intrinsic.
449       SmallVector<Type *, 2> TParams;
450       SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
451       getIntrinsicInfoTableEntries(CIID, Descriptor);
452       for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
453         Intrinsic::IITDescriptor Operand = Descriptor[I];
454         switch (Operand.Kind) {
455         case Intrinsic::IITDescriptor::Argument:
456           if (Operand.getArgumentKind() !=
457               Intrinsic::IITDescriptor::AK_MatchType) {
458             if (I == 0)
459               TParams.push_back(OldInst.getType());
460             else
461               TParams.push_back(OldInst.getOperand(I - 1)->getType());
462           }
463           break;
464         case Intrinsic::IITDescriptor::SameVecWidthArgument:
465           ++I;
466           break;
467         default:
468           break;
469         }
470       }
471 
472       // Create intrinsic call.
473       LLVMContext &Ctx = NewFunc->getContext();
474       Function *IFn = Intrinsic::getOrInsertDeclaration(NewFunc->getParent(),
475                                                         CIID, TParams);
476       SmallVector<Value *, 4> Args;
477       unsigned NumOperands = OldInst.getNumOperands();
478       if (isa<CallInst>(OldInst))
479         --NumOperands;
480       for (unsigned I = 0; I < NumOperands; ++I) {
481         Value *Op = OldInst.getOperand(I);
482         Args.push_back(Op);
483       }
484       if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
485         FCmpInst::Predicate Pred = CmpI->getPredicate();
486         StringRef PredName = FCmpInst::getPredicateName(Pred);
487         Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
488       }
489 
490       // The last arguments of a constrained intrinsic are metadata that
491       // represent rounding mode (absents in some intrinsics) and exception
492       // behavior. The inlined function uses default settings.
493       if (Intrinsic::hasConstrainedFPRoundingModeOperand(CIID))
494         Args.push_back(
495             MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
496       Args.push_back(
497           MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
498 
499       NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
500     }
501   }
502   if (!NewInst)
503     NewInst = II->clone();
504   return NewInst;
505 }
506 
507 /// The specified block is found to be reachable, clone it and
508 /// anything that it can reach.
509 void PruningFunctionCloner::CloneBlock(
510     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
511     std::vector<const BasicBlock *> &ToClone) {
512   WeakTrackingVH &BBEntry = VMap[BB];
513 
514   // Have we already cloned this block?
515   if (BBEntry)
516     return;
517 
518   // Nope, clone it now.
519   BasicBlock *NewBB;
520   Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : "");
521   BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc);
522   NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
523 
524   // It is only legal to clone a function if a block address within that
525   // function is never referenced outside of the function.  Given that, we
526   // want to map block addresses from the old function to block addresses in
527   // the clone. (This is different from the generic ValueMapper
528   // implementation, which generates an invalid blockaddress when
529   // cloning a function.)
530   //
531   // Note that we don't need to fix the mapping for unreachable blocks;
532   // the default mapping there is safe.
533   if (BB->hasAddressTaken()) {
534     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
535                                             const_cast<BasicBlock *>(BB));
536     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
537   }
538 
539   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
540   bool hasMemProfMetadata = false;
541 
542   // Keep a cursor pointing at the last place we cloned debug-info records from.
543   BasicBlock::const_iterator DbgCursor = StartingInst;
544   auto CloneDbgRecordsToHere =
545       [NewBB, &DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) {
546         if (!NewBB->IsNewDbgInfoFormat)
547           return;
548 
549         // Clone debug-info records onto this instruction. Iterate through any
550         // source-instructions we've cloned and then subsequently optimised
551         // away, so that their debug-info doesn't go missing.
552         for (; DbgCursor != II; ++DbgCursor)
553           NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false);
554         NewInst->cloneDebugInfoFrom(&*II);
555         DbgCursor = std::next(II);
556       };
557 
558   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
559   // loop doesn't include the terminator.
560   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
561        ++II) {
562 
563     // Don't clone fake_use as it may suppress many optimizations
564     // due to inlining, especially SROA.
565     if (auto *IntrInst = dyn_cast<IntrinsicInst>(II))
566       if (IntrInst->getIntrinsicID() == Intrinsic::fake_use)
567         continue;
568 
569     Instruction *NewInst = cloneInstruction(II);
570     NewInst->insertInto(NewBB, NewBB->end());
571 
572     if (HostFuncIsStrictFP) {
573       // All function calls in the inlined function must get 'strictfp'
574       // attribute to prevent undesirable optimizations.
575       if (auto *Call = dyn_cast<CallInst>(NewInst))
576         Call->addFnAttr(Attribute::StrictFP);
577     }
578 
579     // Eagerly remap operands to the newly cloned instruction, except for PHI
580     // nodes for which we defer processing until we update the CFG. Also defer
581     // debug intrinsic processing because they may contain use-before-defs.
582     if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) {
583       RemapInstruction(NewInst, VMap,
584                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
585 
586       // Eagerly constant fold the newly cloned instruction. If successful, add
587       // a mapping to the new value. Non-constant operands may be incomplete at
588       // this stage, thus instruction simplification is performed after
589       // processing phi-nodes.
590       if (Value *V = ConstantFoldInstruction(
591               NewInst, BB->getDataLayout())) {
592         if (isInstructionTriviallyDead(NewInst)) {
593           VMap[&*II] = V;
594           NewInst->eraseFromParent();
595           continue;
596         }
597       }
598     }
599 
600     if (II->hasName())
601       NewInst->setName(II->getName() + NameSuffix);
602     VMap[&*II] = NewInst; // Add instruction map to value.
603     if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
604       hasCalls = true;
605       hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
606       hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_callsite);
607     }
608 
609     CloneDbgRecordsToHere(NewInst, II);
610 
611     if (CodeInfo) {
612       CodeInfo->OrigVMap[&*II] = NewInst;
613       if (auto *CB = dyn_cast<CallBase>(&*II))
614         if (CB->hasOperandBundles())
615           CodeInfo->OperandBundleCallSites.push_back(NewInst);
616     }
617 
618     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
619       if (isa<ConstantInt>(AI->getArraySize()))
620         hasStaticAllocas = true;
621       else
622         hasDynamicAllocas = true;
623     }
624   }
625 
626   // Finally, clone over the terminator.
627   const Instruction *OldTI = BB->getTerminator();
628   bool TerminatorDone = false;
629   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
630     if (BI->isConditional()) {
631       // If the condition was a known constant in the callee...
632       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
633       // Or is a known constant in the caller...
634       if (!Cond) {
635         Value *V = VMap.lookup(BI->getCondition());
636         Cond = dyn_cast_or_null<ConstantInt>(V);
637       }
638 
639       // Constant fold to uncond branch!
640       if (Cond) {
641         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
642         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
643         ToClone.push_back(Dest);
644         TerminatorDone = true;
645       }
646     }
647   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
648     // If switching on a value known constant in the caller.
649     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
650     if (!Cond) { // Or known constant after constant prop in the callee...
651       Value *V = VMap.lookup(SI->getCondition());
652       Cond = dyn_cast_or_null<ConstantInt>(V);
653     }
654     if (Cond) { // Constant fold to uncond branch!
655       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
656       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
657       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
658       ToClone.push_back(Dest);
659       TerminatorDone = true;
660     }
661   }
662 
663   if (!TerminatorDone) {
664     Instruction *NewInst = OldTI->clone();
665     if (OldTI->hasName())
666       NewInst->setName(OldTI->getName() + NameSuffix);
667     NewInst->insertInto(NewBB, NewBB->end());
668 
669     CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
670 
671     VMap[OldTI] = NewInst; // Add instruction map to value.
672 
673     if (CodeInfo) {
674       CodeInfo->OrigVMap[OldTI] = NewInst;
675       if (auto *CB = dyn_cast<CallBase>(OldTI))
676         if (CB->hasOperandBundles())
677           CodeInfo->OperandBundleCallSites.push_back(NewInst);
678     }
679 
680     // Recursively clone any reachable successor blocks.
681     append_range(ToClone, successors(BB->getTerminator()));
682   } else {
683     // If we didn't create a new terminator, clone DbgVariableRecords from the
684     // old terminator onto the new terminator.
685     Instruction *NewInst = NewBB->getTerminator();
686     assert(NewInst);
687 
688     CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
689   }
690 
691   if (CodeInfo) {
692     CodeInfo->ContainsCalls |= hasCalls;
693     CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
694     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
695     CodeInfo->ContainsDynamicAllocas |=
696         hasStaticAllocas && BB != &BB->getParent()->front();
697   }
698 }
699 
700 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
701 /// entire function. Instead it starts at an instruction provided by the caller
702 /// and copies (and prunes) only the code reachable from that instruction.
703 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
704                                      const Instruction *StartingInst,
705                                      ValueToValueMapTy &VMap,
706                                      bool ModuleLevelChanges,
707                                      SmallVectorImpl<ReturnInst *> &Returns,
708                                      const char *NameSuffix,
709                                      ClonedCodeInfo *CodeInfo) {
710   assert(NameSuffix && "NameSuffix cannot be null!");
711 
712   ValueMapTypeRemapper *TypeMapper = nullptr;
713   ValueMaterializer *Materializer = nullptr;
714 
715 #ifndef NDEBUG
716   // If the cloning starts at the beginning of the function, verify that
717   // the function arguments are mapped.
718   if (!StartingInst)
719     for (const Argument &II : OldFunc->args())
720       assert(VMap.count(&II) && "No mapping from source argument specified!");
721 #endif
722 
723   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
724                             NameSuffix, CodeInfo);
725   const BasicBlock *StartingBB;
726   if (StartingInst)
727     StartingBB = StartingInst->getParent();
728   else {
729     StartingBB = &OldFunc->getEntryBlock();
730     StartingInst = &StartingBB->front();
731   }
732 
733   // Collect debug intrinsics for remapping later.
734   SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics;
735   for (const auto &BB : *OldFunc) {
736     for (const auto &I : BB) {
737       if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
738         DbgIntrinsics.push_back(DVI);
739     }
740   }
741 
742   // Clone the entry block, and anything recursively reachable from it.
743   std::vector<const BasicBlock *> CloneWorklist;
744   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
745   while (!CloneWorklist.empty()) {
746     const BasicBlock *BB = CloneWorklist.back();
747     CloneWorklist.pop_back();
748     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
749   }
750 
751   // Loop over all of the basic blocks in the old function.  If the block was
752   // reachable, we have cloned it and the old block is now in the value map:
753   // insert it into the new function in the right order.  If not, ignore it.
754   //
755   // Defer PHI resolution until rest of function is resolved.
756   SmallVector<const PHINode *, 16> PHIToResolve;
757   for (const BasicBlock &BI : *OldFunc) {
758     Value *V = VMap.lookup(&BI);
759     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
760     if (!NewBB)
761       continue; // Dead block.
762 
763     // Move the new block to preserve the order in the original function.
764     NewBB->moveBefore(NewFunc->end());
765 
766     // Handle PHI nodes specially, as we have to remove references to dead
767     // blocks.
768     for (const PHINode &PN : BI.phis()) {
769       // PHI nodes may have been remapped to non-PHI nodes by the caller or
770       // during the cloning process.
771       if (isa<PHINode>(VMap[&PN]))
772         PHIToResolve.push_back(&PN);
773       else
774         break;
775     }
776 
777     // Finally, remap the terminator instructions, as those can't be remapped
778     // until all BBs are mapped.
779     RemapInstruction(NewBB->getTerminator(), VMap,
780                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
781                      TypeMapper, Materializer);
782   }
783 
784   // Defer PHI resolution until rest of function is resolved, PHI resolution
785   // requires the CFG to be up-to-date.
786   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
787     const PHINode *OPN = PHIToResolve[phino];
788     unsigned NumPreds = OPN->getNumIncomingValues();
789     const BasicBlock *OldBB = OPN->getParent();
790     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
791 
792     // Map operands for blocks that are live and remove operands for blocks
793     // that are dead.
794     for (; phino != PHIToResolve.size() &&
795            PHIToResolve[phino]->getParent() == OldBB;
796          ++phino) {
797       OPN = PHIToResolve[phino];
798       PHINode *PN = cast<PHINode>(VMap[OPN]);
799       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
800         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
801         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
802           Value *InVal =
803               MapValue(PN->getIncomingValue(pred), VMap,
804                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
805           assert(InVal && "Unknown input value?");
806           PN->setIncomingValue(pred, InVal);
807           PN->setIncomingBlock(pred, MappedBlock);
808         } else {
809           PN->removeIncomingValue(pred, false);
810           --pred; // Revisit the next entry.
811           --e;
812         }
813       }
814     }
815 
816     // The loop above has removed PHI entries for those blocks that are dead
817     // and has updated others.  However, if a block is live (i.e. copied over)
818     // but its terminator has been changed to not go to this block, then our
819     // phi nodes will have invalid entries.  Update the PHI nodes in this
820     // case.
821     PHINode *PN = cast<PHINode>(NewBB->begin());
822     NumPreds = pred_size(NewBB);
823     if (NumPreds != PN->getNumIncomingValues()) {
824       assert(NumPreds < PN->getNumIncomingValues());
825       // Count how many times each predecessor comes to this block.
826       std::map<BasicBlock *, unsigned> PredCount;
827       for (BasicBlock *Pred : predecessors(NewBB))
828         --PredCount[Pred];
829 
830       // Figure out how many entries to remove from each PHI.
831       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
832         ++PredCount[PN->getIncomingBlock(i)];
833 
834       // At this point, the excess predecessor entries are positive in the
835       // map.  Loop over all of the PHIs and remove excess predecessor
836       // entries.
837       BasicBlock::iterator I = NewBB->begin();
838       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
839         for (const auto &PCI : PredCount) {
840           BasicBlock *Pred = PCI.first;
841           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
842             PN->removeIncomingValue(Pred, false);
843         }
844       }
845     }
846 
847     // If the loops above have made these phi nodes have 0 or 1 operand,
848     // replace them with poison or the input value.  We must do this for
849     // correctness, because 0-operand phis are not valid.
850     PN = cast<PHINode>(NewBB->begin());
851     if (PN->getNumIncomingValues() == 0) {
852       BasicBlock::iterator I = NewBB->begin();
853       BasicBlock::const_iterator OldI = OldBB->begin();
854       while ((PN = dyn_cast<PHINode>(I++))) {
855         Value *NV = PoisonValue::get(PN->getType());
856         PN->replaceAllUsesWith(NV);
857         assert(VMap[&*OldI] == PN && "VMap mismatch");
858         VMap[&*OldI] = NV;
859         PN->eraseFromParent();
860         ++OldI;
861       }
862     }
863   }
864 
865   // Drop all incompatible return attributes that cannot be applied to NewFunc
866   // during cloning, so as to allow instruction simplification to reason on the
867   // old state of the function. The original attributes are restored later.
868   AttributeList Attrs = NewFunc->getAttributes();
869   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
870       OldFunc->getReturnType(), Attrs.getRetAttrs());
871   NewFunc->removeRetAttrs(IncompatibleAttrs);
872 
873   // As phi-nodes have been now remapped, allow incremental simplification of
874   // newly-cloned instructions.
875   const DataLayout &DL = NewFunc->getDataLayout();
876   for (const auto &BB : *OldFunc) {
877     for (const auto &I : BB) {
878       auto *NewI = dyn_cast_or_null<Instruction>(VMap.lookup(&I));
879       if (!NewI)
880         continue;
881 
882       if (Value *V = simplifyInstruction(NewI, DL)) {
883         NewI->replaceAllUsesWith(V);
884 
885         if (isInstructionTriviallyDead(NewI)) {
886           NewI->eraseFromParent();
887         } else {
888           // Did not erase it? Restore the new instruction into VMap previously
889           // dropped by `ValueIsRAUWd`.
890           VMap[&I] = NewI;
891         }
892       }
893     }
894   }
895 
896   // Restore attributes.
897   NewFunc->setAttributes(Attrs);
898 
899   // Remap debug intrinsic operands now that all values have been mapped.
900   // Doing this now (late) preserves use-before-defs in debug intrinsics. If
901   // we didn't do this, ValueAsMetadata(use-before-def) operands would be
902   // replaced by empty metadata. This would signal later cleanup passes to
903   // remove the debug intrinsics, potentially causing incorrect locations.
904   for (const auto *DVI : DbgIntrinsics) {
905     if (DbgVariableIntrinsic *NewDVI =
906             cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI)))
907       RemapInstruction(NewDVI, VMap,
908                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
909                        TypeMapper, Materializer);
910   }
911 
912   // Do the same for DbgVariableRecords, touching all the instructions in the
913   // cloned range of blocks.
914   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
915   for (BasicBlock &BB : make_range(Begin, NewFunc->end())) {
916     for (Instruction &I : BB) {
917       RemapDbgRecordRange(I.getModule(), I.getDbgRecordRange(), VMap,
918                           ModuleLevelChanges ? RF_None
919                                              : RF_NoModuleLevelChanges,
920                           TypeMapper, Materializer);
921     }
922   }
923 
924   // Simplify conditional branches and switches with a constant operand. We try
925   // to prune these out when cloning, but if the simplification required
926   // looking through PHI nodes, those are only available after forming the full
927   // basic block. That may leave some here, and we still want to prune the dead
928   // code as early as possible.
929   for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
930     ConstantFoldTerminator(&BB);
931 
932   // Some blocks may have become unreachable as a result. Find and delete them.
933   {
934     SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
935     SmallVector<BasicBlock *, 16> Worklist;
936     Worklist.push_back(&*Begin);
937     while (!Worklist.empty()) {
938       BasicBlock *BB = Worklist.pop_back_val();
939       if (ReachableBlocks.insert(BB).second)
940         append_range(Worklist, successors(BB));
941     }
942 
943     SmallVector<BasicBlock *, 16> UnreachableBlocks;
944     for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
945       if (!ReachableBlocks.contains(&BB))
946         UnreachableBlocks.push_back(&BB);
947     DeleteDeadBlocks(UnreachableBlocks);
948   }
949 
950   // Now that the inlined function body has been fully constructed, go through
951   // and zap unconditional fall-through branches. This happens all the time when
952   // specializing code: code specialization turns conditional branches into
953   // uncond branches, and this code folds them.
954   Function::iterator I = Begin;
955   while (I != NewFunc->end()) {
956     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
957     if (!BI || BI->isConditional()) {
958       ++I;
959       continue;
960     }
961 
962     BasicBlock *Dest = BI->getSuccessor(0);
963     if (!Dest->getSinglePredecessor()) {
964       ++I;
965       continue;
966     }
967 
968     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
969     // above should have zapped all of them..
970     assert(!isa<PHINode>(Dest->begin()));
971 
972     // We know all single-entry PHI nodes in the inlined function have been
973     // removed, so we just need to splice the blocks.
974     BI->eraseFromParent();
975 
976     // Make all PHI nodes that referred to Dest now refer to I as their source.
977     Dest->replaceAllUsesWith(&*I);
978 
979     // Move all the instructions in the succ to the pred.
980     I->splice(I->end(), Dest);
981 
982     // Remove the dest block.
983     Dest->eraseFromParent();
984 
985     // Do not increment I, iteratively merge all things this block branches to.
986   }
987 
988   // Make a final pass over the basic blocks from the old function to gather
989   // any return instructions which survived folding. We have to do this here
990   // because we can iteratively remove and merge returns above.
991   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
992                           E = NewFunc->end();
993        I != E; ++I)
994     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
995       Returns.push_back(RI);
996 }
997 
998 /// This works exactly like CloneFunctionInto,
999 /// except that it does some simple constant prop and DCE on the fly.  The
1000 /// effect of this is to copy significantly less code in cases where (for
1001 /// example) a function call with constant arguments is inlined, and those
1002 /// constant arguments cause a significant amount of code in the callee to be
1003 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
1004 /// used for things like CloneFunction or CloneModule.
1005 void llvm::CloneAndPruneFunctionInto(
1006     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
1007     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
1008     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
1009   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
1010                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
1011 }
1012 
1013 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
1014 void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
1015                                      ValueToValueMapTy &VMap) {
1016   // Rewrite the code to refer to itself.
1017   for (auto *BB : Blocks) {
1018     for (auto &Inst : *BB) {
1019       RemapDbgRecordRange(Inst.getModule(), Inst.getDbgRecordRange(), VMap,
1020                           RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1021       RemapInstruction(&Inst, VMap,
1022                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1023     }
1024   }
1025 }
1026 
1027 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
1028 /// Blocks.
1029 ///
1030 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
1031 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
1032 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
1033                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
1034                                    const Twine &NameSuffix, LoopInfo *LI,
1035                                    DominatorTree *DT,
1036                                    SmallVectorImpl<BasicBlock *> &Blocks) {
1037   Function *F = OrigLoop->getHeader()->getParent();
1038   Loop *ParentLoop = OrigLoop->getParentLoop();
1039   DenseMap<Loop *, Loop *> LMap;
1040 
1041   Loop *NewLoop = LI->AllocateLoop();
1042   LMap[OrigLoop] = NewLoop;
1043   if (ParentLoop)
1044     ParentLoop->addChildLoop(NewLoop);
1045   else
1046     LI->addTopLevelLoop(NewLoop);
1047 
1048   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
1049   assert(OrigPH && "No preheader");
1050   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
1051   // To rename the loop PHIs.
1052   VMap[OrigPH] = NewPH;
1053   Blocks.push_back(NewPH);
1054 
1055   // Update LoopInfo.
1056   if (ParentLoop)
1057     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
1058 
1059   // Update DominatorTree.
1060   DT->addNewBlock(NewPH, LoopDomBB);
1061 
1062   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
1063     Loop *&NewLoop = LMap[CurLoop];
1064     if (!NewLoop) {
1065       NewLoop = LI->AllocateLoop();
1066 
1067       // Establish the parent/child relationship.
1068       Loop *OrigParent = CurLoop->getParentLoop();
1069       assert(OrigParent && "Could not find the original parent loop");
1070       Loop *NewParentLoop = LMap[OrigParent];
1071       assert(NewParentLoop && "Could not find the new parent loop");
1072 
1073       NewParentLoop->addChildLoop(NewLoop);
1074     }
1075   }
1076 
1077   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1078     Loop *CurLoop = LI->getLoopFor(BB);
1079     Loop *&NewLoop = LMap[CurLoop];
1080     assert(NewLoop && "Expecting new loop to be allocated");
1081 
1082     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
1083     VMap[BB] = NewBB;
1084 
1085     // Update LoopInfo.
1086     NewLoop->addBasicBlockToLoop(NewBB, *LI);
1087 
1088     // Add DominatorTree node. After seeing all blocks, update to correct
1089     // IDom.
1090     DT->addNewBlock(NewBB, NewPH);
1091 
1092     Blocks.push_back(NewBB);
1093   }
1094 
1095   for (BasicBlock *BB : OrigLoop->getBlocks()) {
1096     // Update loop headers.
1097     Loop *CurLoop = LI->getLoopFor(BB);
1098     if (BB == CurLoop->getHeader())
1099       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
1100 
1101     // Update DominatorTree.
1102     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
1103     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
1104                                  cast<BasicBlock>(VMap[IDomBB]));
1105   }
1106 
1107   // Move them physically from the end of the block list.
1108   F->splice(Before->getIterator(), F, NewPH->getIterator());
1109   F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
1110             F->end());
1111 
1112   return NewLoop;
1113 }
1114 
1115 /// Duplicate non-Phi instructions from the beginning of block up to
1116 /// StopAt instruction into a split block between BB and its predecessor.
1117 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
1118     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
1119     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
1120 
1121   assert(count(successors(PredBB), BB) == 1 &&
1122          "There must be a single edge between PredBB and BB!");
1123   // We are going to have to map operands from the original BB block to the new
1124   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1125   // account for entry from PredBB.
1126   BasicBlock::iterator BI = BB->begin();
1127   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1128     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1129 
1130   BasicBlock *NewBB = SplitEdge(PredBB, BB);
1131   NewBB->setName(PredBB->getName() + ".split");
1132   Instruction *NewTerm = NewBB->getTerminator();
1133 
1134   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
1135   //        in the update set here.
1136   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
1137                     {DominatorTree::Insert, PredBB, NewBB},
1138                     {DominatorTree::Insert, NewBB, BB}});
1139 
1140   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1141   // mapping and using it to remap operands in the cloned instructions.
1142   // Stop once we see the terminator too. This covers the case where BB's
1143   // terminator gets replaced and StopAt == BB's terminator.
1144   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
1145     Instruction *New = BI->clone();
1146     New->setName(BI->getName());
1147     New->insertBefore(NewTerm->getIterator());
1148     New->cloneDebugInfoFrom(&*BI);
1149     ValueMapping[&*BI] = New;
1150 
1151     // Remap operands to patch up intra-block references.
1152     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1153       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1154         auto I = ValueMapping.find(Inst);
1155         if (I != ValueMapping.end())
1156           New->setOperand(i, I->second);
1157       }
1158 
1159     // Remap debug variable operands.
1160     remapDebugVariable(ValueMapping, New);
1161   }
1162 
1163   return NewBB;
1164 }
1165 
1166 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1167                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
1168                               StringRef Ext, LLVMContext &Context) {
1169   MDBuilder MDB(Context);
1170 
1171   for (auto *ScopeList : NoAliasDeclScopes) {
1172     for (const auto &MDOperand : ScopeList->operands()) {
1173       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
1174         AliasScopeNode SNANode(MD);
1175 
1176         std::string Name;
1177         auto ScopeName = SNANode.getName();
1178         if (!ScopeName.empty())
1179           Name = (Twine(ScopeName) + ":" + Ext).str();
1180         else
1181           Name = std::string(Ext);
1182 
1183         MDNode *NewScope = MDB.createAnonymousAliasScope(
1184             const_cast<MDNode *>(SNANode.getDomain()), Name);
1185         ClonedScopes.insert(std::make_pair(MD, NewScope));
1186       }
1187     }
1188   }
1189 }
1190 
1191 void llvm::adaptNoAliasScopes(Instruction *I,
1192                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
1193                               LLVMContext &Context) {
1194   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
1195     bool NeedsReplacement = false;
1196     SmallVector<Metadata *, 8> NewScopeList;
1197     for (const auto &MDOp : ScopeList->operands()) {
1198       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
1199         if (auto *NewMD = ClonedScopes.lookup(MD)) {
1200           NewScopeList.push_back(NewMD);
1201           NeedsReplacement = true;
1202           continue;
1203         }
1204         NewScopeList.push_back(MD);
1205       }
1206     }
1207     if (NeedsReplacement)
1208       return MDNode::get(Context, NewScopeList);
1209     return nullptr;
1210   };
1211 
1212   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
1213     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
1214       Decl->setScopeList(NewScopeList);
1215 
1216   auto replaceWhenNeeded = [&](unsigned MD_ID) {
1217     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
1218       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
1219         I->setMetadata(MD_ID, NewScopeList);
1220   };
1221   replaceWhenNeeded(LLVMContext::MD_noalias);
1222   replaceWhenNeeded(LLVMContext::MD_alias_scope);
1223 }
1224 
1225 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1226                                       ArrayRef<BasicBlock *> NewBlocks,
1227                                       LLVMContext &Context, StringRef Ext) {
1228   if (NoAliasDeclScopes.empty())
1229     return;
1230 
1231   DenseMap<MDNode *, MDNode *> ClonedScopes;
1232   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1233                     << NoAliasDeclScopes.size() << " node(s)\n");
1234 
1235   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1236   // Identify instructions using metadata that needs adaptation
1237   for (BasicBlock *NewBlock : NewBlocks)
1238     for (Instruction &I : *NewBlock)
1239       adaptNoAliasScopes(&I, ClonedScopes, Context);
1240 }
1241 
1242 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1243                                       Instruction *IStart, Instruction *IEnd,
1244                                       LLVMContext &Context, StringRef Ext) {
1245   if (NoAliasDeclScopes.empty())
1246     return;
1247 
1248   DenseMap<MDNode *, MDNode *> ClonedScopes;
1249   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1250                     << NoAliasDeclScopes.size() << " node(s)\n");
1251 
1252   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1253   // Identify instructions using metadata that needs adaptation
1254   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1255   auto ItStart = IStart->getIterator();
1256   auto ItEnd = IEnd->getIterator();
1257   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1258   for (auto &I : llvm::make_range(ItStart, ItEnd))
1259     adaptNoAliasScopes(&I, ClonedScopes, Context);
1260 }
1261 
1262 void llvm::identifyNoAliasScopesToClone(
1263     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1264   for (BasicBlock *BB : BBs)
1265     for (Instruction &I : *BB)
1266       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1267         NoAliasDeclScopes.push_back(Decl->getScopeList());
1268 }
1269 
1270 void llvm::identifyNoAliasScopesToClone(
1271     BasicBlock::iterator Start, BasicBlock::iterator End,
1272     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1273   for (Instruction &I : make_range(Start, End))
1274     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1275       NoAliasDeclScopes.push_back(Decl->getScopeList());
1276 }
1277