1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/AttributeMask.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/ValueMapper.h" 37 #include <map> 38 #include <optional> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "clone-function" 42 43 /// See comments in Cloning.h. 44 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 45 const Twine &NameSuffix, Function *F, 46 ClonedCodeInfo *CodeInfo, 47 DebugInfoFinder *DIFinder) { 48 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 49 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat; 50 if (BB->hasName()) 51 NewBB->setName(BB->getName() + NameSuffix); 52 53 bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false; 54 Module *TheModule = F ? F->getParent() : nullptr; 55 56 // Loop over all instructions, and copy them over. 57 for (const Instruction &I : *BB) { 58 if (DIFinder && TheModule) 59 DIFinder->processInstruction(*TheModule, I); 60 61 Instruction *NewInst = I.clone(); 62 if (I.hasName()) 63 NewInst->setName(I.getName() + NameSuffix); 64 65 NewInst->insertBefore(*NewBB, NewBB->end()); 66 NewInst->cloneDebugInfoFrom(&I); 67 68 VMap[&I] = NewInst; // Add instruction map to value. 69 70 if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) { 71 hasCalls = true; 72 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof); 73 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_callsite); 74 } 75 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 76 if (!AI->isStaticAlloca()) { 77 hasDynamicAllocas = true; 78 } 79 } 80 } 81 82 if (CodeInfo) { 83 CodeInfo->ContainsCalls |= hasCalls; 84 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; 85 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 86 } 87 return NewBB; 88 } 89 90 // Clone OldFunc into NewFunc, transforming the old arguments into references to 91 // VMap values. 92 // 93 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 94 ValueToValueMapTy &VMap, 95 CloneFunctionChangeType Changes, 96 SmallVectorImpl<ReturnInst *> &Returns, 97 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 98 ValueMapTypeRemapper *TypeMapper, 99 ValueMaterializer *Materializer) { 100 NewFunc->setIsNewDbgInfoFormat(OldFunc->IsNewDbgInfoFormat); 101 assert(NameSuffix && "NameSuffix cannot be null!"); 102 103 #ifndef NDEBUG 104 for (const Argument &I : OldFunc->args()) 105 assert(VMap.count(&I) && "No mapping from source argument specified!"); 106 #endif 107 108 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; 109 110 // Copy all attributes other than those stored in the AttributeList. We need 111 // to remap the parameter indices of the AttributeList. 112 AttributeList NewAttrs = NewFunc->getAttributes(); 113 NewFunc->copyAttributesFrom(OldFunc); 114 NewFunc->setAttributes(NewAttrs); 115 116 const RemapFlags FuncGlobalRefFlags = 117 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; 118 119 // Fix up the personality function that got copied over. 120 if (OldFunc->hasPersonalityFn()) 121 NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap, 122 FuncGlobalRefFlags, TypeMapper, 123 Materializer)); 124 125 if (OldFunc->hasPrefixData()) { 126 NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap, 127 FuncGlobalRefFlags, TypeMapper, 128 Materializer)); 129 } 130 131 if (OldFunc->hasPrologueData()) { 132 NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap, 133 FuncGlobalRefFlags, TypeMapper, 134 Materializer)); 135 } 136 137 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 138 AttributeList OldAttrs = OldFunc->getAttributes(); 139 140 // Clone any argument attributes that are present in the VMap. 141 for (const Argument &OldArg : OldFunc->args()) { 142 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 143 NewArgAttrs[NewArg->getArgNo()] = 144 OldAttrs.getParamAttrs(OldArg.getArgNo()); 145 } 146 } 147 148 NewFunc->setAttributes( 149 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(), 150 OldAttrs.getRetAttrs(), NewArgAttrs)); 151 152 // Everything else beyond this point deals with function instructions, 153 // so if we are dealing with a function declaration, we're done. 154 if (OldFunc->isDeclaration()) 155 return; 156 157 // When we remap instructions within the same module, we want to avoid 158 // duplicating inlined DISubprograms, so record all subprograms we find as we 159 // duplicate instructions and then freeze them in the MD map. We also record 160 // information about dbg.value and dbg.declare to avoid duplicating the 161 // types. 162 std::optional<DebugInfoFinder> DIFinder; 163 164 // Track the subprogram attachment that needs to be cloned to fine-tune the 165 // mapping within the same module. 166 DISubprogram *SPClonedWithinModule = nullptr; 167 if (Changes < CloneFunctionChangeType::DifferentModule) { 168 assert((NewFunc->getParent() == nullptr || 169 NewFunc->getParent() == OldFunc->getParent()) && 170 "Expected NewFunc to have the same parent, or no parent"); 171 172 // Need to find subprograms, types, and compile units. 173 DIFinder.emplace(); 174 175 SPClonedWithinModule = OldFunc->getSubprogram(); 176 if (SPClonedWithinModule) 177 DIFinder->processSubprogram(SPClonedWithinModule); 178 } else { 179 assert((NewFunc->getParent() == nullptr || 180 NewFunc->getParent() != OldFunc->getParent()) && 181 "Expected NewFunc to have different parents, or no parent"); 182 183 if (Changes == CloneFunctionChangeType::DifferentModule) { 184 assert(NewFunc->getParent() && 185 "Need parent of new function to maintain debug info invariants"); 186 187 // Need to find all the compile units. 188 DIFinder.emplace(); 189 } 190 } 191 192 // Loop over all of the basic blocks in the function, cloning them as 193 // appropriate. Note that we save BE this way in order to handle cloning of 194 // recursive functions into themselves. 195 for (const BasicBlock &BB : *OldFunc) { 196 197 // Create a new basic block and copy instructions into it! 198 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 199 DIFinder ? &*DIFinder : nullptr); 200 201 // Add basic block mapping. 202 VMap[&BB] = CBB; 203 204 // It is only legal to clone a function if a block address within that 205 // function is never referenced outside of the function. Given that, we 206 // want to map block addresses from the old function to block addresses in 207 // the clone. (This is different from the generic ValueMapper 208 // implementation, which generates an invalid blockaddress when 209 // cloning a function.) 210 if (BB.hasAddressTaken()) { 211 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), 212 const_cast<BasicBlock *>(&BB)); 213 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 214 } 215 216 // Note return instructions for the caller. 217 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 218 Returns.push_back(RI); 219 } 220 221 if (Changes < CloneFunctionChangeType::DifferentModule && 222 DIFinder->subprogram_count() > 0) { 223 // Turn on module-level changes, since we need to clone (some of) the 224 // debug info metadata. 225 // 226 // FIXME: Metadata effectively owned by a function should be made 227 // local, and only that local metadata should be cloned. 228 ModuleLevelChanges = true; 229 230 auto mapToSelfIfNew = [&VMap](MDNode *N) { 231 // Avoid clobbering an existing mapping. 232 (void)VMap.MD().try_emplace(N, N); 233 }; 234 235 // Avoid cloning types, compile units, and (other) subprograms. 236 SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs; 237 for (DISubprogram *ISP : DIFinder->subprograms()) { 238 if (ISP != SPClonedWithinModule) { 239 mapToSelfIfNew(ISP); 240 MappedToSelfSPs.insert(ISP); 241 } 242 } 243 244 // If a subprogram isn't going to be cloned skip its lexical blocks as well. 245 for (DIScope *S : DIFinder->scopes()) { 246 auto *LScope = dyn_cast<DILocalScope>(S); 247 if (LScope && MappedToSelfSPs.count(LScope->getSubprogram())) 248 mapToSelfIfNew(S); 249 } 250 251 for (DICompileUnit *CU : DIFinder->compile_units()) 252 mapToSelfIfNew(CU); 253 254 for (DIType *Type : DIFinder->types()) 255 mapToSelfIfNew(Type); 256 } else { 257 assert(!SPClonedWithinModule && 258 "Subprogram should be in DIFinder->subprogram_count()..."); 259 } 260 261 const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; 262 // Duplicate the metadata that is attached to the cloned function. 263 // Subprograms/CUs/types that were already mapped to themselves won't be 264 // duplicated. 265 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 266 OldFunc->getAllMetadata(MDs); 267 for (auto MD : MDs) { 268 NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag, 269 TypeMapper, Materializer)); 270 } 271 272 // Loop over all of the instructions in the new function, fixing up operand 273 // references as we go. This uses VMap to do all the hard work. 274 for (Function::iterator 275 BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 276 BE = NewFunc->end(); 277 BB != BE; ++BB) 278 // Loop over all instructions, fixing each one as we find it, and any 279 // attached debug-info records. 280 for (Instruction &II : *BB) { 281 RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer); 282 RemapDbgRecordRange(II.getModule(), II.getDbgRecordRange(), VMap, 283 RemapFlag, TypeMapper, Materializer); 284 } 285 286 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the 287 // same module, the compile unit will already be listed (or not). When 288 // cloning a module, CloneModule() will handle creating the named metadata. 289 if (Changes != CloneFunctionChangeType::DifferentModule) 290 return; 291 292 // Update !llvm.dbg.cu with compile units added to the new module if this 293 // function is being cloned in isolation. 294 // 295 // FIXME: This is making global / module-level changes, which doesn't seem 296 // like the right encapsulation Consider dropping the requirement to update 297 // !llvm.dbg.cu (either obsoleting the node, or restricting it to 298 // non-discardable compile units) instead of discovering compile units by 299 // visiting the metadata attached to global values, which would allow this 300 // code to be deleted. Alternatively, perhaps give responsibility for this 301 // update to CloneFunctionInto's callers. 302 auto *NewModule = NewFunc->getParent(); 303 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 304 // Avoid multiple insertions of the same DICompileUnit to NMD. 305 SmallPtrSet<const void *, 8> Visited; 306 for (auto *Operand : NMD->operands()) 307 Visited.insert(Operand); 308 for (auto *Unit : DIFinder->compile_units()) { 309 MDNode *MappedUnit = 310 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer); 311 if (Visited.insert(MappedUnit).second) 312 NMD->addOperand(MappedUnit); 313 } 314 } 315 316 /// Return a copy of the specified function and add it to that function's 317 /// module. Also, any references specified in the VMap are changed to refer to 318 /// their mapped value instead of the original one. If any of the arguments to 319 /// the function are in the VMap, the arguments are deleted from the resultant 320 /// function. The VMap is updated to include mappings from all of the 321 /// instructions and basicblocks in the function from their old to new values. 322 /// 323 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 324 ClonedCodeInfo *CodeInfo) { 325 std::vector<Type *> ArgTypes; 326 327 // The user might be deleting arguments to the function by specifying them in 328 // the VMap. If so, we need to not add the arguments to the arg ty vector 329 // 330 for (const Argument &I : F->args()) 331 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 332 ArgTypes.push_back(I.getType()); 333 334 // Create a new function type... 335 FunctionType *FTy = 336 FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes, 337 F->getFunctionType()->isVarArg()); 338 339 // Create the new function... 340 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 341 F->getName(), F->getParent()); 342 NewF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat); 343 344 // Loop over the arguments, copying the names of the mapped arguments over... 345 Function::arg_iterator DestI = NewF->arg_begin(); 346 for (const Argument &I : F->args()) 347 if (VMap.count(&I) == 0) { // Is this argument preserved? 348 DestI->setName(I.getName()); // Copy the name over... 349 VMap[&I] = &*DestI++; // Add mapping to VMap 350 } 351 352 SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned. 353 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, 354 Returns, "", CodeInfo); 355 356 return NewF; 357 } 358 359 namespace { 360 /// This is a private class used to implement CloneAndPruneFunctionInto. 361 struct PruningFunctionCloner { 362 Function *NewFunc; 363 const Function *OldFunc; 364 ValueToValueMapTy &VMap; 365 bool ModuleLevelChanges; 366 const char *NameSuffix; 367 ClonedCodeInfo *CodeInfo; 368 bool HostFuncIsStrictFP; 369 370 Instruction *cloneInstruction(BasicBlock::const_iterator II); 371 372 public: 373 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 374 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 375 const char *nameSuffix, ClonedCodeInfo *codeInfo) 376 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 377 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 378 CodeInfo(codeInfo) { 379 HostFuncIsStrictFP = 380 newFunc->getAttributes().hasFnAttr(Attribute::StrictFP); 381 } 382 383 /// The specified block is found to be reachable, clone it and 384 /// anything that it can reach. 385 void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, 386 std::vector<const BasicBlock *> &ToClone); 387 }; 388 } // namespace 389 390 Instruction * 391 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) { 392 const Instruction &OldInst = *II; 393 Instruction *NewInst = nullptr; 394 if (HostFuncIsStrictFP) { 395 Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst); 396 if (CIID != Intrinsic::not_intrinsic) { 397 // Instead of cloning the instruction, a call to constrained intrinsic 398 // should be created. 399 // Assume the first arguments of constrained intrinsics are the same as 400 // the operands of original instruction. 401 402 // Determine overloaded types of the intrinsic. 403 SmallVector<Type *, 2> TParams; 404 SmallVector<Intrinsic::IITDescriptor, 8> Descriptor; 405 getIntrinsicInfoTableEntries(CIID, Descriptor); 406 for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) { 407 Intrinsic::IITDescriptor Operand = Descriptor[I]; 408 switch (Operand.Kind) { 409 case Intrinsic::IITDescriptor::Argument: 410 if (Operand.getArgumentKind() != 411 Intrinsic::IITDescriptor::AK_MatchType) { 412 if (I == 0) 413 TParams.push_back(OldInst.getType()); 414 else 415 TParams.push_back(OldInst.getOperand(I - 1)->getType()); 416 } 417 break; 418 case Intrinsic::IITDescriptor::SameVecWidthArgument: 419 ++I; 420 break; 421 default: 422 break; 423 } 424 } 425 426 // Create intrinsic call. 427 LLVMContext &Ctx = NewFunc->getContext(); 428 Function *IFn = 429 Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams); 430 SmallVector<Value *, 4> Args; 431 unsigned NumOperands = OldInst.getNumOperands(); 432 if (isa<CallInst>(OldInst)) 433 --NumOperands; 434 for (unsigned I = 0; I < NumOperands; ++I) { 435 Value *Op = OldInst.getOperand(I); 436 Args.push_back(Op); 437 } 438 if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) { 439 FCmpInst::Predicate Pred = CmpI->getPredicate(); 440 StringRef PredName = FCmpInst::getPredicateName(Pred); 441 Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName))); 442 } 443 444 // The last arguments of a constrained intrinsic are metadata that 445 // represent rounding mode (absents in some intrinsics) and exception 446 // behavior. The inlined function uses default settings. 447 if (Intrinsic::hasConstrainedFPRoundingModeOperand(CIID)) 448 Args.push_back( 449 MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest"))); 450 Args.push_back( 451 MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore"))); 452 453 NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict"); 454 } 455 } 456 if (!NewInst) 457 NewInst = II->clone(); 458 return NewInst; 459 } 460 461 /// The specified block is found to be reachable, clone it and 462 /// anything that it can reach. 463 void PruningFunctionCloner::CloneBlock( 464 const BasicBlock *BB, BasicBlock::const_iterator StartingInst, 465 std::vector<const BasicBlock *> &ToClone) { 466 WeakTrackingVH &BBEntry = VMap[BB]; 467 468 // Have we already cloned this block? 469 if (BBEntry) 470 return; 471 472 // Nope, clone it now. 473 BasicBlock *NewBB; 474 Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : ""); 475 BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc); 476 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat; 477 478 // It is only legal to clone a function if a block address within that 479 // function is never referenced outside of the function. Given that, we 480 // want to map block addresses from the old function to block addresses in 481 // the clone. (This is different from the generic ValueMapper 482 // implementation, which generates an invalid blockaddress when 483 // cloning a function.) 484 // 485 // Note that we don't need to fix the mapping for unreachable blocks; 486 // the default mapping there is safe. 487 if (BB->hasAddressTaken()) { 488 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), 489 const_cast<BasicBlock *>(BB)); 490 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 491 } 492 493 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 494 bool hasMemProfMetadata = false; 495 496 // Keep a cursor pointing at the last place we cloned debug-info records from. 497 BasicBlock::const_iterator DbgCursor = StartingInst; 498 auto CloneDbgRecordsToHere = 499 [NewBB, &DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) { 500 if (!NewBB->IsNewDbgInfoFormat) 501 return; 502 503 // Clone debug-info records onto this instruction. Iterate through any 504 // source-instructions we've cloned and then subsequently optimised 505 // away, so that their debug-info doesn't go missing. 506 for (; DbgCursor != II; ++DbgCursor) 507 NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false); 508 NewInst->cloneDebugInfoFrom(&*II); 509 DbgCursor = std::next(II); 510 }; 511 512 // Loop over all instructions, and copy them over, DCE'ing as we go. This 513 // loop doesn't include the terminator. 514 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE; 515 ++II) { 516 517 // Don't clone fake_use as it may suppress many optimizations 518 // due to inlining, especially SROA. 519 if (auto *IntrInst = dyn_cast<IntrinsicInst>(II)) 520 if (IntrInst->getIntrinsicID() == Intrinsic::fake_use) 521 continue; 522 523 Instruction *NewInst = cloneInstruction(II); 524 NewInst->insertInto(NewBB, NewBB->end()); 525 526 if (HostFuncIsStrictFP) { 527 // All function calls in the inlined function must get 'strictfp' 528 // attribute to prevent undesirable optimizations. 529 if (auto *Call = dyn_cast<CallInst>(NewInst)) 530 Call->addFnAttr(Attribute::StrictFP); 531 } 532 533 // Eagerly remap operands to the newly cloned instruction, except for PHI 534 // nodes for which we defer processing until we update the CFG. Also defer 535 // debug intrinsic processing because they may contain use-before-defs. 536 if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) { 537 RemapInstruction(NewInst, VMap, 538 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 539 540 // Eagerly constant fold the newly cloned instruction. If successful, add 541 // a mapping to the new value. Non-constant operands may be incomplete at 542 // this stage, thus instruction simplification is performed after 543 // processing phi-nodes. 544 if (Value *V = ConstantFoldInstruction( 545 NewInst, BB->getDataLayout())) { 546 if (isInstructionTriviallyDead(NewInst)) { 547 VMap[&*II] = V; 548 NewInst->eraseFromParent(); 549 continue; 550 } 551 } 552 } 553 554 if (II->hasName()) 555 NewInst->setName(II->getName() + NameSuffix); 556 VMap[&*II] = NewInst; // Add instruction map to value. 557 if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) { 558 hasCalls = true; 559 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof); 560 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_callsite); 561 } 562 563 CloneDbgRecordsToHere(NewInst, II); 564 565 if (CodeInfo) { 566 CodeInfo->OrigVMap[&*II] = NewInst; 567 if (auto *CB = dyn_cast<CallBase>(&*II)) 568 if (CB->hasOperandBundles()) 569 CodeInfo->OperandBundleCallSites.push_back(NewInst); 570 } 571 572 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 573 if (isa<ConstantInt>(AI->getArraySize())) 574 hasStaticAllocas = true; 575 else 576 hasDynamicAllocas = true; 577 } 578 } 579 580 // Finally, clone over the terminator. 581 const Instruction *OldTI = BB->getTerminator(); 582 bool TerminatorDone = false; 583 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 584 if (BI->isConditional()) { 585 // If the condition was a known constant in the callee... 586 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 587 // Or is a known constant in the caller... 588 if (!Cond) { 589 Value *V = VMap.lookup(BI->getCondition()); 590 Cond = dyn_cast_or_null<ConstantInt>(V); 591 } 592 593 // Constant fold to uncond branch! 594 if (Cond) { 595 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 596 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 597 ToClone.push_back(Dest); 598 TerminatorDone = true; 599 } 600 } 601 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 602 // If switching on a value known constant in the caller. 603 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 604 if (!Cond) { // Or known constant after constant prop in the callee... 605 Value *V = VMap.lookup(SI->getCondition()); 606 Cond = dyn_cast_or_null<ConstantInt>(V); 607 } 608 if (Cond) { // Constant fold to uncond branch! 609 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 610 BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor()); 611 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 612 ToClone.push_back(Dest); 613 TerminatorDone = true; 614 } 615 } 616 617 if (!TerminatorDone) { 618 Instruction *NewInst = OldTI->clone(); 619 if (OldTI->hasName()) 620 NewInst->setName(OldTI->getName() + NameSuffix); 621 NewInst->insertInto(NewBB, NewBB->end()); 622 623 CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); 624 625 VMap[OldTI] = NewInst; // Add instruction map to value. 626 627 if (CodeInfo) { 628 CodeInfo->OrigVMap[OldTI] = NewInst; 629 if (auto *CB = dyn_cast<CallBase>(OldTI)) 630 if (CB->hasOperandBundles()) 631 CodeInfo->OperandBundleCallSites.push_back(NewInst); 632 } 633 634 // Recursively clone any reachable successor blocks. 635 append_range(ToClone, successors(BB->getTerminator())); 636 } else { 637 // If we didn't create a new terminator, clone DbgVariableRecords from the 638 // old terminator onto the new terminator. 639 Instruction *NewInst = NewBB->getTerminator(); 640 assert(NewInst); 641 642 CloneDbgRecordsToHere(NewInst, OldTI->getIterator()); 643 } 644 645 if (CodeInfo) { 646 CodeInfo->ContainsCalls |= hasCalls; 647 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; 648 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 649 CodeInfo->ContainsDynamicAllocas |= 650 hasStaticAllocas && BB != &BB->getParent()->front(); 651 } 652 } 653 654 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 655 /// entire function. Instead it starts at an instruction provided by the caller 656 /// and copies (and prunes) only the code reachable from that instruction. 657 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 658 const Instruction *StartingInst, 659 ValueToValueMapTy &VMap, 660 bool ModuleLevelChanges, 661 SmallVectorImpl<ReturnInst *> &Returns, 662 const char *NameSuffix, 663 ClonedCodeInfo *CodeInfo) { 664 assert(NameSuffix && "NameSuffix cannot be null!"); 665 666 ValueMapTypeRemapper *TypeMapper = nullptr; 667 ValueMaterializer *Materializer = nullptr; 668 669 #ifndef NDEBUG 670 // If the cloning starts at the beginning of the function, verify that 671 // the function arguments are mapped. 672 if (!StartingInst) 673 for (const Argument &II : OldFunc->args()) 674 assert(VMap.count(&II) && "No mapping from source argument specified!"); 675 #endif 676 677 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 678 NameSuffix, CodeInfo); 679 const BasicBlock *StartingBB; 680 if (StartingInst) 681 StartingBB = StartingInst->getParent(); 682 else { 683 StartingBB = &OldFunc->getEntryBlock(); 684 StartingInst = &StartingBB->front(); 685 } 686 687 // Collect debug intrinsics for remapping later. 688 SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics; 689 for (const auto &BB : *OldFunc) { 690 for (const auto &I : BB) { 691 if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I)) 692 DbgIntrinsics.push_back(DVI); 693 } 694 } 695 696 // Clone the entry block, and anything recursively reachable from it. 697 std::vector<const BasicBlock *> CloneWorklist; 698 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 699 while (!CloneWorklist.empty()) { 700 const BasicBlock *BB = CloneWorklist.back(); 701 CloneWorklist.pop_back(); 702 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 703 } 704 705 // Loop over all of the basic blocks in the old function. If the block was 706 // reachable, we have cloned it and the old block is now in the value map: 707 // insert it into the new function in the right order. If not, ignore it. 708 // 709 // Defer PHI resolution until rest of function is resolved. 710 SmallVector<const PHINode *, 16> PHIToResolve; 711 for (const BasicBlock &BI : *OldFunc) { 712 Value *V = VMap.lookup(&BI); 713 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 714 if (!NewBB) 715 continue; // Dead block. 716 717 // Move the new block to preserve the order in the original function. 718 NewBB->moveBefore(NewFunc->end()); 719 720 // Handle PHI nodes specially, as we have to remove references to dead 721 // blocks. 722 for (const PHINode &PN : BI.phis()) { 723 // PHI nodes may have been remapped to non-PHI nodes by the caller or 724 // during the cloning process. 725 if (isa<PHINode>(VMap[&PN])) 726 PHIToResolve.push_back(&PN); 727 else 728 break; 729 } 730 731 // Finally, remap the terminator instructions, as those can't be remapped 732 // until all BBs are mapped. 733 RemapInstruction(NewBB->getTerminator(), VMap, 734 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 735 TypeMapper, Materializer); 736 } 737 738 // Defer PHI resolution until rest of function is resolved, PHI resolution 739 // requires the CFG to be up-to-date. 740 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) { 741 const PHINode *OPN = PHIToResolve[phino]; 742 unsigned NumPreds = OPN->getNumIncomingValues(); 743 const BasicBlock *OldBB = OPN->getParent(); 744 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 745 746 // Map operands for blocks that are live and remove operands for blocks 747 // that are dead. 748 for (; phino != PHIToResolve.size() && 749 PHIToResolve[phino]->getParent() == OldBB; 750 ++phino) { 751 OPN = PHIToResolve[phino]; 752 PHINode *PN = cast<PHINode>(VMap[OPN]); 753 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 754 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 755 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 756 Value *InVal = 757 MapValue(PN->getIncomingValue(pred), VMap, 758 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 759 assert(InVal && "Unknown input value?"); 760 PN->setIncomingValue(pred, InVal); 761 PN->setIncomingBlock(pred, MappedBlock); 762 } else { 763 PN->removeIncomingValue(pred, false); 764 --pred; // Revisit the next entry. 765 --e; 766 } 767 } 768 } 769 770 // The loop above has removed PHI entries for those blocks that are dead 771 // and has updated others. However, if a block is live (i.e. copied over) 772 // but its terminator has been changed to not go to this block, then our 773 // phi nodes will have invalid entries. Update the PHI nodes in this 774 // case. 775 PHINode *PN = cast<PHINode>(NewBB->begin()); 776 NumPreds = pred_size(NewBB); 777 if (NumPreds != PN->getNumIncomingValues()) { 778 assert(NumPreds < PN->getNumIncomingValues()); 779 // Count how many times each predecessor comes to this block. 780 std::map<BasicBlock *, unsigned> PredCount; 781 for (BasicBlock *Pred : predecessors(NewBB)) 782 --PredCount[Pred]; 783 784 // Figure out how many entries to remove from each PHI. 785 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 786 ++PredCount[PN->getIncomingBlock(i)]; 787 788 // At this point, the excess predecessor entries are positive in the 789 // map. Loop over all of the PHIs and remove excess predecessor 790 // entries. 791 BasicBlock::iterator I = NewBB->begin(); 792 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 793 for (const auto &PCI : PredCount) { 794 BasicBlock *Pred = PCI.first; 795 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 796 PN->removeIncomingValue(Pred, false); 797 } 798 } 799 } 800 801 // If the loops above have made these phi nodes have 0 or 1 operand, 802 // replace them with poison or the input value. We must do this for 803 // correctness, because 0-operand phis are not valid. 804 PN = cast<PHINode>(NewBB->begin()); 805 if (PN->getNumIncomingValues() == 0) { 806 BasicBlock::iterator I = NewBB->begin(); 807 BasicBlock::const_iterator OldI = OldBB->begin(); 808 while ((PN = dyn_cast<PHINode>(I++))) { 809 Value *NV = PoisonValue::get(PN->getType()); 810 PN->replaceAllUsesWith(NV); 811 assert(VMap[&*OldI] == PN && "VMap mismatch"); 812 VMap[&*OldI] = NV; 813 PN->eraseFromParent(); 814 ++OldI; 815 } 816 } 817 } 818 819 // Drop all incompatible return attributes that cannot be applied to NewFunc 820 // during cloning, so as to allow instruction simplification to reason on the 821 // old state of the function. The original attributes are restored later. 822 AttributeMask IncompatibleAttrs = 823 AttributeFuncs::typeIncompatible(OldFunc->getReturnType()); 824 AttributeList Attrs = NewFunc->getAttributes(); 825 NewFunc->removeRetAttrs(IncompatibleAttrs); 826 827 // As phi-nodes have been now remapped, allow incremental simplification of 828 // newly-cloned instructions. 829 const DataLayout &DL = NewFunc->getDataLayout(); 830 for (const auto &BB : *OldFunc) { 831 for (const auto &I : BB) { 832 auto *NewI = dyn_cast_or_null<Instruction>(VMap.lookup(&I)); 833 if (!NewI) 834 continue; 835 836 if (Value *V = simplifyInstruction(NewI, DL)) { 837 NewI->replaceAllUsesWith(V); 838 839 if (isInstructionTriviallyDead(NewI)) { 840 NewI->eraseFromParent(); 841 } else { 842 // Did not erase it? Restore the new instruction into VMap previously 843 // dropped by `ValueIsRAUWd`. 844 VMap[&I] = NewI; 845 } 846 } 847 } 848 } 849 850 // Restore attributes. 851 NewFunc->setAttributes(Attrs); 852 853 // Remap debug intrinsic operands now that all values have been mapped. 854 // Doing this now (late) preserves use-before-defs in debug intrinsics. If 855 // we didn't do this, ValueAsMetadata(use-before-def) operands would be 856 // replaced by empty metadata. This would signal later cleanup passes to 857 // remove the debug intrinsics, potentially causing incorrect locations. 858 for (const auto *DVI : DbgIntrinsics) { 859 if (DbgVariableIntrinsic *NewDVI = 860 cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI))) 861 RemapInstruction(NewDVI, VMap, 862 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 863 TypeMapper, Materializer); 864 } 865 866 // Do the same for DbgVariableRecords, touching all the instructions in the 867 // cloned range of blocks. 868 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 869 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) { 870 for (Instruction &I : BB) { 871 RemapDbgRecordRange(I.getModule(), I.getDbgRecordRange(), VMap, 872 ModuleLevelChanges ? RF_None 873 : RF_NoModuleLevelChanges, 874 TypeMapper, Materializer); 875 } 876 } 877 878 // Simplify conditional branches and switches with a constant operand. We try 879 // to prune these out when cloning, but if the simplification required 880 // looking through PHI nodes, those are only available after forming the full 881 // basic block. That may leave some here, and we still want to prune the dead 882 // code as early as possible. 883 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) 884 ConstantFoldTerminator(&BB); 885 886 // Some blocks may have become unreachable as a result. Find and delete them. 887 { 888 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 889 SmallVector<BasicBlock *, 16> Worklist; 890 Worklist.push_back(&*Begin); 891 while (!Worklist.empty()) { 892 BasicBlock *BB = Worklist.pop_back_val(); 893 if (ReachableBlocks.insert(BB).second) 894 append_range(Worklist, successors(BB)); 895 } 896 897 SmallVector<BasicBlock *, 16> UnreachableBlocks; 898 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) 899 if (!ReachableBlocks.contains(&BB)) 900 UnreachableBlocks.push_back(&BB); 901 DeleteDeadBlocks(UnreachableBlocks); 902 } 903 904 // Now that the inlined function body has been fully constructed, go through 905 // and zap unconditional fall-through branches. This happens all the time when 906 // specializing code: code specialization turns conditional branches into 907 // uncond branches, and this code folds them. 908 Function::iterator I = Begin; 909 while (I != NewFunc->end()) { 910 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 911 if (!BI || BI->isConditional()) { 912 ++I; 913 continue; 914 } 915 916 BasicBlock *Dest = BI->getSuccessor(0); 917 if (!Dest->getSinglePredecessor()) { 918 ++I; 919 continue; 920 } 921 922 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 923 // above should have zapped all of them.. 924 assert(!isa<PHINode>(Dest->begin())); 925 926 // We know all single-entry PHI nodes in the inlined function have been 927 // removed, so we just need to splice the blocks. 928 BI->eraseFromParent(); 929 930 // Make all PHI nodes that referred to Dest now refer to I as their source. 931 Dest->replaceAllUsesWith(&*I); 932 933 // Move all the instructions in the succ to the pred. 934 I->splice(I->end(), Dest); 935 936 // Remove the dest block. 937 Dest->eraseFromParent(); 938 939 // Do not increment I, iteratively merge all things this block branches to. 940 } 941 942 // Make a final pass over the basic blocks from the old function to gather 943 // any return instructions which survived folding. We have to do this here 944 // because we can iteratively remove and merge returns above. 945 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 946 E = NewFunc->end(); 947 I != E; ++I) 948 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 949 Returns.push_back(RI); 950 } 951 952 /// This works exactly like CloneFunctionInto, 953 /// except that it does some simple constant prop and DCE on the fly. The 954 /// effect of this is to copy significantly less code in cases where (for 955 /// example) a function call with constant arguments is inlined, and those 956 /// constant arguments cause a significant amount of code in the callee to be 957 /// dead. Since this doesn't produce an exact copy of the input, it can't be 958 /// used for things like CloneFunction or CloneModule. 959 void llvm::CloneAndPruneFunctionInto( 960 Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, 961 bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns, 962 const char *NameSuffix, ClonedCodeInfo *CodeInfo) { 963 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 964 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 965 } 966 967 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 968 void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks, 969 ValueToValueMapTy &VMap) { 970 // Rewrite the code to refer to itself. 971 for (auto *BB : Blocks) { 972 for (auto &Inst : *BB) { 973 RemapDbgRecordRange(Inst.getModule(), Inst.getDbgRecordRange(), VMap, 974 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 975 RemapInstruction(&Inst, VMap, 976 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 977 } 978 } 979 } 980 981 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 982 /// Blocks. 983 /// 984 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 985 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 986 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 987 Loop *OrigLoop, ValueToValueMapTy &VMap, 988 const Twine &NameSuffix, LoopInfo *LI, 989 DominatorTree *DT, 990 SmallVectorImpl<BasicBlock *> &Blocks) { 991 Function *F = OrigLoop->getHeader()->getParent(); 992 Loop *ParentLoop = OrigLoop->getParentLoop(); 993 DenseMap<Loop *, Loop *> LMap; 994 995 Loop *NewLoop = LI->AllocateLoop(); 996 LMap[OrigLoop] = NewLoop; 997 if (ParentLoop) 998 ParentLoop->addChildLoop(NewLoop); 999 else 1000 LI->addTopLevelLoop(NewLoop); 1001 1002 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 1003 assert(OrigPH && "No preheader"); 1004 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 1005 // To rename the loop PHIs. 1006 VMap[OrigPH] = NewPH; 1007 Blocks.push_back(NewPH); 1008 1009 // Update LoopInfo. 1010 if (ParentLoop) 1011 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 1012 1013 // Update DominatorTree. 1014 DT->addNewBlock(NewPH, LoopDomBB); 1015 1016 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 1017 Loop *&NewLoop = LMap[CurLoop]; 1018 if (!NewLoop) { 1019 NewLoop = LI->AllocateLoop(); 1020 1021 // Establish the parent/child relationship. 1022 Loop *OrigParent = CurLoop->getParentLoop(); 1023 assert(OrigParent && "Could not find the original parent loop"); 1024 Loop *NewParentLoop = LMap[OrigParent]; 1025 assert(NewParentLoop && "Could not find the new parent loop"); 1026 1027 NewParentLoop->addChildLoop(NewLoop); 1028 } 1029 } 1030 1031 for (BasicBlock *BB : OrigLoop->getBlocks()) { 1032 Loop *CurLoop = LI->getLoopFor(BB); 1033 Loop *&NewLoop = LMap[CurLoop]; 1034 assert(NewLoop && "Expecting new loop to be allocated"); 1035 1036 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 1037 VMap[BB] = NewBB; 1038 1039 // Update LoopInfo. 1040 NewLoop->addBasicBlockToLoop(NewBB, *LI); 1041 1042 // Add DominatorTree node. After seeing all blocks, update to correct 1043 // IDom. 1044 DT->addNewBlock(NewBB, NewPH); 1045 1046 Blocks.push_back(NewBB); 1047 } 1048 1049 for (BasicBlock *BB : OrigLoop->getBlocks()) { 1050 // Update loop headers. 1051 Loop *CurLoop = LI->getLoopFor(BB); 1052 if (BB == CurLoop->getHeader()) 1053 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); 1054 1055 // Update DominatorTree. 1056 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 1057 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 1058 cast<BasicBlock>(VMap[IDomBB])); 1059 } 1060 1061 // Move them physically from the end of the block list. 1062 F->splice(Before->getIterator(), F, NewPH->getIterator()); 1063 F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(), 1064 F->end()); 1065 1066 return NewLoop; 1067 } 1068 1069 /// Duplicate non-Phi instructions from the beginning of block up to 1070 /// StopAt instruction into a split block between BB and its predecessor. 1071 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 1072 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 1073 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 1074 1075 assert(count(successors(PredBB), BB) == 1 && 1076 "There must be a single edge between PredBB and BB!"); 1077 // We are going to have to map operands from the original BB block to the new 1078 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1079 // account for entry from PredBB. 1080 BasicBlock::iterator BI = BB->begin(); 1081 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1082 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1083 1084 BasicBlock *NewBB = SplitEdge(PredBB, BB); 1085 NewBB->setName(PredBB->getName() + ".split"); 1086 Instruction *NewTerm = NewBB->getTerminator(); 1087 1088 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 1089 // in the update set here. 1090 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 1091 {DominatorTree::Insert, PredBB, NewBB}, 1092 {DominatorTree::Insert, NewBB, BB}}); 1093 1094 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1095 // mapping and using it to remap operands in the cloned instructions. 1096 // Stop once we see the terminator too. This covers the case where BB's 1097 // terminator gets replaced and StopAt == BB's terminator. 1098 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 1099 Instruction *New = BI->clone(); 1100 New->setName(BI->getName()); 1101 New->insertBefore(NewTerm); 1102 New->cloneDebugInfoFrom(&*BI); 1103 ValueMapping[&*BI] = New; 1104 1105 // Remap operands to patch up intra-block references. 1106 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1107 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1108 auto I = ValueMapping.find(Inst); 1109 if (I != ValueMapping.end()) 1110 New->setOperand(i, I->second); 1111 } 1112 1113 // Remap debug variable operands. 1114 remapDebugVariable(ValueMapping, New); 1115 } 1116 1117 return NewBB; 1118 } 1119 1120 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1121 DenseMap<MDNode *, MDNode *> &ClonedScopes, 1122 StringRef Ext, LLVMContext &Context) { 1123 MDBuilder MDB(Context); 1124 1125 for (auto *ScopeList : NoAliasDeclScopes) { 1126 for (const auto &MDOperand : ScopeList->operands()) { 1127 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) { 1128 AliasScopeNode SNANode(MD); 1129 1130 std::string Name; 1131 auto ScopeName = SNANode.getName(); 1132 if (!ScopeName.empty()) 1133 Name = (Twine(ScopeName) + ":" + Ext).str(); 1134 else 1135 Name = std::string(Ext); 1136 1137 MDNode *NewScope = MDB.createAnonymousAliasScope( 1138 const_cast<MDNode *>(SNANode.getDomain()), Name); 1139 ClonedScopes.insert(std::make_pair(MD, NewScope)); 1140 } 1141 } 1142 } 1143 } 1144 1145 void llvm::adaptNoAliasScopes(Instruction *I, 1146 const DenseMap<MDNode *, MDNode *> &ClonedScopes, 1147 LLVMContext &Context) { 1148 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { 1149 bool NeedsReplacement = false; 1150 SmallVector<Metadata *, 8> NewScopeList; 1151 for (const auto &MDOp : ScopeList->operands()) { 1152 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) { 1153 if (auto *NewMD = ClonedScopes.lookup(MD)) { 1154 NewScopeList.push_back(NewMD); 1155 NeedsReplacement = true; 1156 continue; 1157 } 1158 NewScopeList.push_back(MD); 1159 } 1160 } 1161 if (NeedsReplacement) 1162 return MDNode::get(Context, NewScopeList); 1163 return nullptr; 1164 }; 1165 1166 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) 1167 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) 1168 Decl->setScopeList(NewScopeList); 1169 1170 auto replaceWhenNeeded = [&](unsigned MD_ID) { 1171 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID)) 1172 if (auto *NewScopeList = CloneScopeList(CSNoAlias)) 1173 I->setMetadata(MD_ID, NewScopeList); 1174 }; 1175 replaceWhenNeeded(LLVMContext::MD_noalias); 1176 replaceWhenNeeded(LLVMContext::MD_alias_scope); 1177 } 1178 1179 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1180 ArrayRef<BasicBlock *> NewBlocks, 1181 LLVMContext &Context, StringRef Ext) { 1182 if (NoAliasDeclScopes.empty()) 1183 return; 1184 1185 DenseMap<MDNode *, MDNode *> ClonedScopes; 1186 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1187 << NoAliasDeclScopes.size() << " node(s)\n"); 1188 1189 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1190 // Identify instructions using metadata that needs adaptation 1191 for (BasicBlock *NewBlock : NewBlocks) 1192 for (Instruction &I : *NewBlock) 1193 adaptNoAliasScopes(&I, ClonedScopes, Context); 1194 } 1195 1196 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, 1197 Instruction *IStart, Instruction *IEnd, 1198 LLVMContext &Context, StringRef Ext) { 1199 if (NoAliasDeclScopes.empty()) 1200 return; 1201 1202 DenseMap<MDNode *, MDNode *> ClonedScopes; 1203 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1204 << NoAliasDeclScopes.size() << " node(s)\n"); 1205 1206 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1207 // Identify instructions using metadata that needs adaptation 1208 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?"); 1209 auto ItStart = IStart->getIterator(); 1210 auto ItEnd = IEnd->getIterator(); 1211 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range 1212 for (auto &I : llvm::make_range(ItStart, ItEnd)) 1213 adaptNoAliasScopes(&I, ClonedScopes, Context); 1214 } 1215 1216 void llvm::identifyNoAliasScopesToClone( 1217 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1218 for (BasicBlock *BB : BBs) 1219 for (Instruction &I : *BB) 1220 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1221 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1222 } 1223 1224 void llvm::identifyNoAliasScopesToClone( 1225 BasicBlock::iterator Start, BasicBlock::iterator End, 1226 SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1227 for (Instruction &I : make_range(Start, End)) 1228 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1229 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1230 } 1231