1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The code below implements dead store elimination using MemorySSA. It uses 10 // the following general approach: given a MemoryDef, walk upwards to find 11 // clobbering MemoryDefs that may be killed by the starting def. Then check 12 // that there are no uses that may read the location of the original MemoryDef 13 // in between both MemoryDefs. A bit more concretely: 14 // 15 // For all MemoryDefs StartDef: 16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking 17 // upwards. 18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by 19 // checking all uses starting at MaybeDeadAccess and walking until we see 20 // StartDef. 21 // 3. For each found CurrentDef, check that: 22 // 1. There are no barrier instructions between CurrentDef and StartDef (like 23 // throws or stores with ordering constraints). 24 // 2. StartDef is executed whenever CurrentDef is executed. 25 // 3. StartDef completely overwrites CurrentDef. 26 // 4. Erase CurrentDef from the function and MemorySSA. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/MapVector.h" 34 #include "llvm/ADT/PostOrderIterator.h" 35 #include "llvm/ADT/SetVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/ADT/StringRef.h" 40 #include "llvm/Analysis/AliasAnalysis.h" 41 #include "llvm/Analysis/CaptureTracking.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/MemoryBuiltins.h" 45 #include "llvm/Analysis/MemoryLocation.h" 46 #include "llvm/Analysis/MemorySSA.h" 47 #include "llvm/Analysis/MemorySSAUpdater.h" 48 #include "llvm/Analysis/MustExecute.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/TargetLibraryInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/Argument.h" 53 #include "llvm/IR/BasicBlock.h" 54 #include "llvm/IR/Constant.h" 55 #include "llvm/IR/ConstantRangeList.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugInfo.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/IRBuilder.h" 62 #include "llvm/IR/InstIterator.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/DebugCounter.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 78 #include "llvm/Transforms/Utils/BuildLibCalls.h" 79 #include "llvm/Transforms/Utils/Local.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <map> 84 #include <optional> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace PatternMatch; 89 90 #define DEBUG_TYPE "dse" 91 92 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE"); 93 STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); 94 STATISTIC(NumFastStores, "Number of stores deleted"); 95 STATISTIC(NumFastOther, "Number of other instrs removed"); 96 STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); 97 STATISTIC(NumModifiedStores, "Number of stores modified"); 98 STATISTIC(NumCFGChecks, "Number of stores modified"); 99 STATISTIC(NumCFGTries, "Number of stores modified"); 100 STATISTIC(NumCFGSuccess, "Number of stores modified"); 101 STATISTIC(NumGetDomMemoryDefPassed, 102 "Number of times a valid candidate is returned from getDomMemoryDef"); 103 STATISTIC(NumDomMemDefChecks, 104 "Number iterations check for reads in getDomMemoryDef"); 105 106 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa", 107 "Controls which MemoryDefs are eliminated."); 108 109 static cl::opt<bool> 110 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", 111 cl::init(true), cl::Hidden, 112 cl::desc("Enable partial-overwrite tracking in DSE")); 113 114 static cl::opt<bool> 115 EnablePartialStoreMerging("enable-dse-partial-store-merging", 116 cl::init(true), cl::Hidden, 117 cl::desc("Enable partial store merging in DSE")); 118 119 static cl::opt<unsigned> 120 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden, 121 cl::desc("The number of memory instructions to scan for " 122 "dead store elimination (default = 150)")); 123 static cl::opt<unsigned> MemorySSAUpwardsStepLimit( 124 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden, 125 cl::desc("The maximum number of steps while walking upwards to find " 126 "MemoryDefs that may be killed (default = 90)")); 127 128 static cl::opt<unsigned> MemorySSAPartialStoreLimit( 129 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden, 130 cl::desc("The maximum number candidates that only partially overwrite the " 131 "killing MemoryDef to consider" 132 " (default = 5)")); 133 134 static cl::opt<unsigned> MemorySSADefsPerBlockLimit( 135 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden, 136 cl::desc("The number of MemoryDefs we consider as candidates to eliminated " 137 "other stores per basic block (default = 5000)")); 138 139 static cl::opt<unsigned> MemorySSASameBBStepCost( 140 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden, 141 cl::desc( 142 "The cost of a step in the same basic block as the killing MemoryDef" 143 "(default = 1)")); 144 145 static cl::opt<unsigned> 146 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5), 147 cl::Hidden, 148 cl::desc("The cost of a step in a different basic " 149 "block than the killing MemoryDef" 150 "(default = 5)")); 151 152 static cl::opt<unsigned> MemorySSAPathCheckLimit( 153 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden, 154 cl::desc("The maximum number of blocks to check when trying to prove that " 155 "all paths to an exit go through a killing block (default = 50)")); 156 157 // This flags allows or disallows DSE to optimize MemorySSA during its 158 // traversal. Note that DSE optimizing MemorySSA may impact other passes 159 // downstream of the DSE invocation and can lead to issues not being 160 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In 161 // those cases, the flag can be used to check if DSE's MemorySSA optimizations 162 // impact follow-up passes. 163 static cl::opt<bool> 164 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden, 165 cl::desc("Allow DSE to optimize memory accesses.")); 166 167 // TODO: remove this flag. 168 static cl::opt<bool> EnableInitializesImprovement( 169 "enable-dse-initializes-attr-improvement", cl::init(true), cl::Hidden, 170 cl::desc("Enable the initializes attr improvement in DSE")); 171 172 //===----------------------------------------------------------------------===// 173 // Helper functions 174 //===----------------------------------------------------------------------===// 175 using OverlapIntervalsTy = std::map<int64_t, int64_t>; 176 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; 177 178 /// Returns true if the end of this instruction can be safely shortened in 179 /// length. 180 static bool isShortenableAtTheEnd(Instruction *I) { 181 // Don't shorten stores for now 182 if (isa<StoreInst>(I)) 183 return false; 184 185 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 186 switch (II->getIntrinsicID()) { 187 default: return false; 188 case Intrinsic::memset: 189 case Intrinsic::memcpy: 190 case Intrinsic::memcpy_element_unordered_atomic: 191 case Intrinsic::memset_element_unordered_atomic: 192 // Do shorten memory intrinsics. 193 // FIXME: Add memmove if it's also safe to transform. 194 return true; 195 } 196 } 197 198 // Don't shorten libcalls calls for now. 199 200 return false; 201 } 202 203 /// Returns true if the beginning of this instruction can be safely shortened 204 /// in length. 205 static bool isShortenableAtTheBeginning(Instruction *I) { 206 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be 207 // easily done by offsetting the source address. 208 return isa<AnyMemSetInst>(I); 209 } 210 211 static std::optional<TypeSize> getPointerSize(const Value *V, 212 const DataLayout &DL, 213 const TargetLibraryInfo &TLI, 214 const Function *F) { 215 uint64_t Size; 216 ObjectSizeOpts Opts; 217 Opts.NullIsUnknownSize = NullPointerIsDefined(F); 218 219 if (getObjectSize(V, Size, DL, &TLI, Opts)) 220 return TypeSize::getFixed(Size); 221 return std::nullopt; 222 } 223 224 namespace { 225 226 enum OverwriteResult { 227 OW_Begin, 228 OW_Complete, 229 OW_End, 230 OW_PartialEarlierWithFullLater, 231 OW_MaybePartial, 232 OW_None, 233 OW_Unknown 234 }; 235 236 } // end anonymous namespace 237 238 /// Check if two instruction are masked stores that completely 239 /// overwrite one another. More specifically, \p KillingI has to 240 /// overwrite \p DeadI. 241 static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI, 242 const Instruction *DeadI, 243 BatchAAResults &AA) { 244 const auto *KillingII = dyn_cast<IntrinsicInst>(KillingI); 245 const auto *DeadII = dyn_cast<IntrinsicInst>(DeadI); 246 if (KillingII == nullptr || DeadII == nullptr) 247 return OW_Unknown; 248 if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID()) 249 return OW_Unknown; 250 if (KillingII->getIntrinsicID() == Intrinsic::masked_store) { 251 // Type size. 252 VectorType *KillingTy = 253 cast<VectorType>(KillingII->getArgOperand(0)->getType()); 254 VectorType *DeadTy = cast<VectorType>(DeadII->getArgOperand(0)->getType()); 255 if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits()) 256 return OW_Unknown; 257 // Element count. 258 if (KillingTy->getElementCount() != DeadTy->getElementCount()) 259 return OW_Unknown; 260 // Pointers. 261 Value *KillingPtr = KillingII->getArgOperand(1)->stripPointerCasts(); 262 Value *DeadPtr = DeadII->getArgOperand(1)->stripPointerCasts(); 263 if (KillingPtr != DeadPtr && !AA.isMustAlias(KillingPtr, DeadPtr)) 264 return OW_Unknown; 265 // Masks. 266 // TODO: check that KillingII's mask is a superset of the DeadII's mask. 267 if (KillingII->getArgOperand(3) != DeadII->getArgOperand(3)) 268 return OW_Unknown; 269 return OW_Complete; 270 } 271 return OW_Unknown; 272 } 273 274 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely 275 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the 276 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin' 277 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'. 278 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was 279 /// overwritten by a killing (smaller) store which doesn't write outside the big 280 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. 281 /// NOTE: This function must only be called if both \p KillingLoc and \p 282 /// DeadLoc belong to the same underlying object with valid \p KillingOff and 283 /// \p DeadOff. 284 static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc, 285 const MemoryLocation &DeadLoc, 286 int64_t KillingOff, int64_t DeadOff, 287 Instruction *DeadI, 288 InstOverlapIntervalsTy &IOL) { 289 const uint64_t KillingSize = KillingLoc.Size.getValue(); 290 const uint64_t DeadSize = DeadLoc.Size.getValue(); 291 // We may now overlap, although the overlap is not complete. There might also 292 // be other incomplete overlaps, and together, they might cover the complete 293 // dead store. 294 // Note: The correctness of this logic depends on the fact that this function 295 // is not even called providing DepWrite when there are any intervening reads. 296 if (EnablePartialOverwriteTracking && 297 KillingOff < int64_t(DeadOff + DeadSize) && 298 int64_t(KillingOff + KillingSize) >= DeadOff) { 299 300 // Insert our part of the overlap into the map. 301 auto &IM = IOL[DeadI]; 302 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", " 303 << int64_t(DeadOff + DeadSize) << ") KillingLoc [" 304 << KillingOff << ", " << int64_t(KillingOff + KillingSize) 305 << ")\n"); 306 307 // Make sure that we only insert non-overlapping intervals and combine 308 // adjacent intervals. The intervals are stored in the map with the ending 309 // offset as the key (in the half-open sense) and the starting offset as 310 // the value. 311 int64_t KillingIntStart = KillingOff; 312 int64_t KillingIntEnd = KillingOff + KillingSize; 313 314 // Find any intervals ending at, or after, KillingIntStart which start 315 // before KillingIntEnd. 316 auto ILI = IM.lower_bound(KillingIntStart); 317 if (ILI != IM.end() && ILI->second <= KillingIntEnd) { 318 // This existing interval is overlapped with the current store somewhere 319 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing 320 // intervals and adjusting our start and end. 321 KillingIntStart = std::min(KillingIntStart, ILI->second); 322 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 323 ILI = IM.erase(ILI); 324 325 // Continue erasing and adjusting our end in case other previous 326 // intervals are also overlapped with the current store. 327 // 328 // |--- dead 1 ---| |--- dead 2 ---| 329 // |------- killing---------| 330 // 331 while (ILI != IM.end() && ILI->second <= KillingIntEnd) { 332 assert(ILI->second > KillingIntStart && "Unexpected interval"); 333 KillingIntEnd = std::max(KillingIntEnd, ILI->first); 334 ILI = IM.erase(ILI); 335 } 336 } 337 338 IM[KillingIntEnd] = KillingIntStart; 339 340 ILI = IM.begin(); 341 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) { 342 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc [" 343 << DeadOff << ", " << int64_t(DeadOff + DeadSize) 344 << ") Composite KillingLoc [" << ILI->second << ", " 345 << ILI->first << ")\n"); 346 ++NumCompletePartials; 347 return OW_Complete; 348 } 349 } 350 351 // Check for a dead store which writes to all the memory locations that 352 // the killing store writes to. 353 if (EnablePartialStoreMerging && KillingOff >= DeadOff && 354 int64_t(DeadOff + DeadSize) > KillingOff && 355 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) { 356 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff 357 << ", " << int64_t(DeadOff + DeadSize) 358 << ") by a killing store [" << KillingOff << ", " 359 << int64_t(KillingOff + KillingSize) << ")\n"); 360 // TODO: Maybe come up with a better name? 361 return OW_PartialEarlierWithFullLater; 362 } 363 364 // Another interesting case is if the killing store overwrites the end of the 365 // dead store. 366 // 367 // |--dead--| 368 // |-- killing --| 369 // 370 // In this case we may want to trim the size of dead store to avoid 371 // generating stores to addresses which will definitely be overwritten killing 372 // store. 373 if (!EnablePartialOverwriteTracking && 374 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) && 375 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize))) 376 return OW_End; 377 378 // Finally, we also need to check if the killing store overwrites the 379 // beginning of the dead store. 380 // 381 // |--dead--| 382 // |-- killing --| 383 // 384 // In this case we may want to move the destination address and trim the size 385 // of dead store to avoid generating stores to addresses which will definitely 386 // be overwritten killing store. 387 if (!EnablePartialOverwriteTracking && 388 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) { 389 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) && 390 "Expect to be handled as OW_Complete"); 391 return OW_Begin; 392 } 393 // Otherwise, they don't completely overlap. 394 return OW_Unknown; 395 } 396 397 /// Returns true if the memory which is accessed by the second instruction is not 398 /// modified between the first and the second instruction. 399 /// Precondition: Second instruction must be dominated by the first 400 /// instruction. 401 static bool 402 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI, 403 BatchAAResults &AA, const DataLayout &DL, 404 DominatorTree *DT) { 405 // Do a backwards scan through the CFG from SecondI to FirstI. Look for 406 // instructions which can modify the memory location accessed by SecondI. 407 // 408 // While doing the walk keep track of the address to check. It might be 409 // different in different basic blocks due to PHI translation. 410 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>; 411 SmallVector<BlockAddressPair, 16> WorkList; 412 // Keep track of the address we visited each block with. Bail out if we 413 // visit a block with different addresses. 414 DenseMap<BasicBlock *, Value *> Visited; 415 416 BasicBlock::iterator FirstBBI(FirstI); 417 ++FirstBBI; 418 BasicBlock::iterator SecondBBI(SecondI); 419 BasicBlock *FirstBB = FirstI->getParent(); 420 BasicBlock *SecondBB = SecondI->getParent(); 421 MemoryLocation MemLoc; 422 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI)) 423 MemLoc = MemoryLocation::getForDest(MemSet); 424 else 425 MemLoc = MemoryLocation::get(SecondI); 426 427 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr); 428 429 // Start checking the SecondBB. 430 WorkList.push_back( 431 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr))); 432 bool isFirstBlock = true; 433 434 // Check all blocks going backward until we reach the FirstBB. 435 while (!WorkList.empty()) { 436 BlockAddressPair Current = WorkList.pop_back_val(); 437 BasicBlock *B = Current.first; 438 PHITransAddr &Addr = Current.second; 439 Value *Ptr = Addr.getAddr(); 440 441 // Ignore instructions before FirstI if this is the FirstBB. 442 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); 443 444 BasicBlock::iterator EI; 445 if (isFirstBlock) { 446 // Ignore instructions after SecondI if this is the first visit of SecondBB. 447 assert(B == SecondBB && "first block is not the store block"); 448 EI = SecondBBI; 449 isFirstBlock = false; 450 } else { 451 // It's not SecondBB or (in case of a loop) the second visit of SecondBB. 452 // In this case we also have to look at instructions after SecondI. 453 EI = B->end(); 454 } 455 for (; BI != EI; ++BI) { 456 Instruction *I = &*BI; 457 if (I->mayWriteToMemory() && I != SecondI) 458 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr)))) 459 return false; 460 } 461 if (B != FirstBB) { 462 assert(B != &FirstBB->getParent()->getEntryBlock() && 463 "Should not hit the entry block because SI must be dominated by LI"); 464 for (BasicBlock *Pred : predecessors(B)) { 465 PHITransAddr PredAddr = Addr; 466 if (PredAddr.needsPHITranslationFromBlock(B)) { 467 if (!PredAddr.isPotentiallyPHITranslatable()) 468 return false; 469 if (!PredAddr.translateValue(B, Pred, DT, false)) 470 return false; 471 } 472 Value *TranslatedPtr = PredAddr.getAddr(); 473 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr)); 474 if (!Inserted.second) { 475 // We already visited this block before. If it was with a different 476 // address - bail out! 477 if (TranslatedPtr != Inserted.first->second) 478 return false; 479 // ... otherwise just skip it. 480 continue; 481 } 482 WorkList.push_back(std::make_pair(Pred, PredAddr)); 483 } 484 } 485 } 486 return true; 487 } 488 489 static void shortenAssignment(Instruction *Inst, Value *OriginalDest, 490 uint64_t OldOffsetInBits, uint64_t OldSizeInBits, 491 uint64_t NewSizeInBits, bool IsOverwriteEnd) { 492 const DataLayout &DL = Inst->getDataLayout(); 493 uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits; 494 uint64_t DeadSliceOffsetInBits = 495 OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0); 496 auto SetDeadFragExpr = [](auto *Assign, 497 DIExpression::FragmentInfo DeadFragment) { 498 // createFragmentExpression expects an offset relative to the existing 499 // fragment offset if there is one. 500 uint64_t RelativeOffset = DeadFragment.OffsetInBits - 501 Assign->getExpression() 502 ->getFragmentInfo() 503 .value_or(DIExpression::FragmentInfo(0, 0)) 504 .OffsetInBits; 505 if (auto NewExpr = DIExpression::createFragmentExpression( 506 Assign->getExpression(), RelativeOffset, DeadFragment.SizeInBits)) { 507 Assign->setExpression(*NewExpr); 508 return; 509 } 510 // Failed to create a fragment expression for this so discard the value, 511 // making this a kill location. 512 auto *Expr = *DIExpression::createFragmentExpression( 513 DIExpression::get(Assign->getContext(), {}), DeadFragment.OffsetInBits, 514 DeadFragment.SizeInBits); 515 Assign->setExpression(Expr); 516 Assign->setKillLocation(); 517 }; 518 519 // A DIAssignID to use so that the inserted dbg.assign intrinsics do not 520 // link to any instructions. Created in the loop below (once). 521 DIAssignID *LinkToNothing = nullptr; 522 LLVMContext &Ctx = Inst->getContext(); 523 auto GetDeadLink = [&Ctx, &LinkToNothing]() { 524 if (!LinkToNothing) 525 LinkToNothing = DIAssignID::getDistinct(Ctx); 526 return LinkToNothing; 527 }; 528 529 // Insert an unlinked dbg.assign intrinsic for the dead fragment after each 530 // overlapping dbg.assign intrinsic. The loop invalidates the iterators 531 // returned by getAssignmentMarkers so save a copy of the markers to iterate 532 // over. 533 auto LinkedRange = at::getAssignmentMarkers(Inst); 534 SmallVector<DbgVariableRecord *> LinkedDVRAssigns = 535 at::getDVRAssignmentMarkers(Inst); 536 SmallVector<DbgAssignIntrinsic *> Linked(LinkedRange.begin(), 537 LinkedRange.end()); 538 auto InsertAssignForOverlap = [&](auto *Assign) { 539 std::optional<DIExpression::FragmentInfo> NewFragment; 540 if (!at::calculateFragmentIntersect(DL, OriginalDest, DeadSliceOffsetInBits, 541 DeadSliceSizeInBits, Assign, 542 NewFragment) || 543 !NewFragment) { 544 // We couldn't calculate the intersecting fragment for some reason. Be 545 // cautious and unlink the whole assignment from the store. 546 Assign->setKillAddress(); 547 Assign->setAssignId(GetDeadLink()); 548 return; 549 } 550 // No intersect. 551 if (NewFragment->SizeInBits == 0) 552 return; 553 554 // Fragments overlap: insert a new dbg.assign for this dead part. 555 auto *NewAssign = static_cast<decltype(Assign)>(Assign->clone()); 556 NewAssign->insertAfter(Assign->getIterator()); 557 NewAssign->setAssignId(GetDeadLink()); 558 if (NewFragment) 559 SetDeadFragExpr(NewAssign, *NewFragment); 560 NewAssign->setKillAddress(); 561 }; 562 for_each(Linked, InsertAssignForOverlap); 563 for_each(LinkedDVRAssigns, InsertAssignForOverlap); 564 } 565 566 static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart, 567 uint64_t &DeadSize, int64_t KillingStart, 568 uint64_t KillingSize, bool IsOverwriteEnd) { 569 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(DeadI); 570 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne(); 571 572 // We assume that memet/memcpy operates in chunks of the "largest" native 573 // type size and aligned on the same value. That means optimal start and size 574 // of memset/memcpy should be modulo of preferred alignment of that type. That 575 // is it there is no any sense in trying to reduce store size any further 576 // since any "extra" stores comes for free anyway. 577 // On the other hand, maximum alignment we can achieve is limited by alignment 578 // of initial store. 579 580 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the 581 // "largest" native type. 582 // Note: What is the proper way to get that value? 583 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else? 584 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign); 585 586 int64_t ToRemoveStart = 0; 587 uint64_t ToRemoveSize = 0; 588 // Compute start and size of the region to remove. Make sure 'PrefAlign' is 589 // maintained on the remaining store. 590 if (IsOverwriteEnd) { 591 // Calculate required adjustment for 'KillingStart' in order to keep 592 // remaining store size aligned on 'PerfAlign'. 593 uint64_t Off = 594 offsetToAlignment(uint64_t(KillingStart - DeadStart), PrefAlign); 595 ToRemoveStart = KillingStart + Off; 596 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart)) 597 return false; 598 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart); 599 } else { 600 ToRemoveStart = DeadStart; 601 assert(KillingSize >= uint64_t(DeadStart - KillingStart) && 602 "Not overlapping accesses?"); 603 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart); 604 // Calculate required adjustment for 'ToRemoveSize'in order to keep 605 // start of the remaining store aligned on 'PerfAlign'. 606 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign); 607 if (Off != 0) { 608 if (ToRemoveSize <= (PrefAlign.value() - Off)) 609 return false; 610 ToRemoveSize -= PrefAlign.value() - Off; 611 } 612 assert(isAligned(PrefAlign, ToRemoveSize) && 613 "Should preserve selected alignment"); 614 } 615 616 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove"); 617 assert(DeadSize > ToRemoveSize && "Can't remove more than original size"); 618 619 uint64_t NewSize = DeadSize - ToRemoveSize; 620 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(DeadI)) { 621 // When shortening an atomic memory intrinsic, the newly shortened 622 // length must remain an integer multiple of the element size. 623 const uint32_t ElementSize = AMI->getElementSizeInBytes(); 624 if (0 != NewSize % ElementSize) 625 return false; 626 } 627 628 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " 629 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI 630 << "\n KILLER [" << ToRemoveStart << ", " 631 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n"); 632 633 Value *DeadWriteLength = DeadIntrinsic->getLength(); 634 Value *TrimmedLength = ConstantInt::get(DeadWriteLength->getType(), NewSize); 635 DeadIntrinsic->setLength(TrimmedLength); 636 DeadIntrinsic->setDestAlignment(PrefAlign); 637 638 Value *OrigDest = DeadIntrinsic->getRawDest(); 639 if (!IsOverwriteEnd) { 640 Value *Indices[1] = { 641 ConstantInt::get(DeadWriteLength->getType(), ToRemoveSize)}; 642 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds( 643 Type::getInt8Ty(DeadIntrinsic->getContext()), OrigDest, Indices, "", 644 DeadI->getIterator()); 645 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc()); 646 DeadIntrinsic->setDest(NewDestGEP); 647 } 648 649 // Update attached dbg.assign intrinsics. Assume 8-bit byte. 650 shortenAssignment(DeadI, OrigDest, DeadStart * 8, DeadSize * 8, NewSize * 8, 651 IsOverwriteEnd); 652 653 // Finally update start and size of dead access. 654 if (!IsOverwriteEnd) 655 DeadStart += ToRemoveSize; 656 DeadSize = NewSize; 657 658 return true; 659 } 660 661 static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap, 662 int64_t &DeadStart, uint64_t &DeadSize) { 663 if (IntervalMap.empty() || !isShortenableAtTheEnd(DeadI)) 664 return false; 665 666 OverlapIntervalsTy::iterator OII = --IntervalMap.end(); 667 int64_t KillingStart = OII->second; 668 uint64_t KillingSize = OII->first - KillingStart; 669 670 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 671 672 if (KillingStart > DeadStart && 673 // Note: "KillingStart - KillingStart" is known to be positive due to 674 // preceding check. 675 (uint64_t)(KillingStart - DeadStart) < DeadSize && 676 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to 677 // be non negative due to preceding checks. 678 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) { 679 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 680 true)) { 681 IntervalMap.erase(OII); 682 return true; 683 } 684 } 685 return false; 686 } 687 688 static bool tryToShortenBegin(Instruction *DeadI, 689 OverlapIntervalsTy &IntervalMap, 690 int64_t &DeadStart, uint64_t &DeadSize) { 691 if (IntervalMap.empty() || !isShortenableAtTheBeginning(DeadI)) 692 return false; 693 694 OverlapIntervalsTy::iterator OII = IntervalMap.begin(); 695 int64_t KillingStart = OII->second; 696 uint64_t KillingSize = OII->first - KillingStart; 697 698 assert(OII->first - KillingStart >= 0 && "Size expected to be positive"); 699 700 if (KillingStart <= DeadStart && 701 // Note: "DeadStart - KillingStart" is known to be non negative due to 702 // preceding check. 703 KillingSize > (uint64_t)(DeadStart - KillingStart)) { 704 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to 705 // be positive due to preceding checks. 706 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize && 707 "Should have been handled as OW_Complete"); 708 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize, 709 false)) { 710 IntervalMap.erase(OII); 711 return true; 712 } 713 } 714 return false; 715 } 716 717 static Constant * 718 tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI, 719 int64_t KillingOffset, int64_t DeadOffset, 720 const DataLayout &DL, BatchAAResults &AA, 721 DominatorTree *DT) { 722 723 if (DeadI && isa<ConstantInt>(DeadI->getValueOperand()) && 724 DL.typeSizeEqualsStoreSize(DeadI->getValueOperand()->getType()) && 725 KillingI && isa<ConstantInt>(KillingI->getValueOperand()) && 726 DL.typeSizeEqualsStoreSize(KillingI->getValueOperand()->getType()) && 727 memoryIsNotModifiedBetween(DeadI, KillingI, AA, DL, DT)) { 728 // If the store we find is: 729 // a) partially overwritten by the store to 'Loc' 730 // b) the killing store is fully contained in the dead one and 731 // c) they both have a constant value 732 // d) none of the two stores need padding 733 // Merge the two stores, replacing the dead store's value with a 734 // merge of both values. 735 // TODO: Deal with other constant types (vectors, etc), and probably 736 // some mem intrinsics (if needed) 737 738 APInt DeadValue = cast<ConstantInt>(DeadI->getValueOperand())->getValue(); 739 APInt KillingValue = 740 cast<ConstantInt>(KillingI->getValueOperand())->getValue(); 741 unsigned KillingBits = KillingValue.getBitWidth(); 742 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth()); 743 KillingValue = KillingValue.zext(DeadValue.getBitWidth()); 744 745 // Offset of the smaller store inside the larger store 746 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8; 747 unsigned LShiftAmount = 748 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits 749 : BitOffsetDiff; 750 APInt Mask = APInt::getBitsSet(DeadValue.getBitWidth(), LShiftAmount, 751 LShiftAmount + KillingBits); 752 // Clear the bits we'll be replacing, then OR with the smaller 753 // store, shifted appropriately. 754 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount); 755 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI 756 << "\n Killing: " << *KillingI 757 << "\n Merged Value: " << Merged << '\n'); 758 return ConstantInt::get(DeadI->getValueOperand()->getType(), Merged); 759 } 760 return nullptr; 761 } 762 763 namespace { 764 // Returns true if \p I is an intrinsic that does not read or write memory. 765 bool isNoopIntrinsic(Instruction *I) { 766 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 767 switch (II->getIntrinsicID()) { 768 case Intrinsic::lifetime_start: 769 case Intrinsic::lifetime_end: 770 case Intrinsic::invariant_end: 771 case Intrinsic::launder_invariant_group: 772 case Intrinsic::assume: 773 return true; 774 case Intrinsic::dbg_declare: 775 case Intrinsic::dbg_label: 776 case Intrinsic::dbg_value: 777 llvm_unreachable("Intrinsic should not be modeled in MemorySSA"); 778 default: 779 return false; 780 } 781 } 782 return false; 783 } 784 785 // Check if we can ignore \p D for DSE. 786 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) { 787 Instruction *DI = D->getMemoryInst(); 788 // Calls that only access inaccessible memory cannot read or write any memory 789 // locations we consider for elimination. 790 if (auto *CB = dyn_cast<CallBase>(DI)) 791 if (CB->onlyAccessesInaccessibleMemory()) 792 return true; 793 794 // We can eliminate stores to locations not visible to the caller across 795 // throwing instructions. 796 if (DI->mayThrow() && !DefVisibleToCaller) 797 return true; 798 799 // We can remove the dead stores, irrespective of the fence and its ordering 800 // (release/acquire/seq_cst). Fences only constraints the ordering of 801 // already visible stores, it does not make a store visible to other 802 // threads. So, skipping over a fence does not change a store from being 803 // dead. 804 if (isa<FenceInst>(DI)) 805 return true; 806 807 // Skip intrinsics that do not really read or modify memory. 808 if (isNoopIntrinsic(DI)) 809 return true; 810 811 return false; 812 } 813 814 // A memory location wrapper that represents a MemoryLocation, `MemLoc`, 815 // defined by `MemDef`. 816 struct MemoryLocationWrapper { 817 MemoryLocationWrapper(MemoryLocation MemLoc, MemoryDef *MemDef, 818 bool DefByInitializesAttr) 819 : MemLoc(MemLoc), MemDef(MemDef), 820 DefByInitializesAttr(DefByInitializesAttr) { 821 assert(MemLoc.Ptr && "MemLoc should be not null"); 822 UnderlyingObject = getUnderlyingObject(MemLoc.Ptr); 823 DefInst = MemDef->getMemoryInst(); 824 } 825 826 MemoryLocation MemLoc; 827 const Value *UnderlyingObject; 828 MemoryDef *MemDef; 829 Instruction *DefInst; 830 bool DefByInitializesAttr = false; 831 }; 832 833 // A memory def wrapper that represents a MemoryDef and the MemoryLocation(s) 834 // defined by this MemoryDef. 835 struct MemoryDefWrapper { 836 MemoryDefWrapper(MemoryDef *MemDef, 837 ArrayRef<std::pair<MemoryLocation, bool>> MemLocations) { 838 DefInst = MemDef->getMemoryInst(); 839 for (auto &[MemLoc, DefByInitializesAttr] : MemLocations) 840 DefinedLocations.push_back( 841 MemoryLocationWrapper(MemLoc, MemDef, DefByInitializesAttr)); 842 } 843 Instruction *DefInst; 844 SmallVector<MemoryLocationWrapper, 1> DefinedLocations; 845 }; 846 847 bool hasInitializesAttr(Instruction *I) { 848 CallBase *CB = dyn_cast<CallBase>(I); 849 return CB && CB->getArgOperandWithAttribute(Attribute::Initializes); 850 } 851 852 struct ArgumentInitInfo { 853 unsigned Idx; 854 bool IsDeadOrInvisibleOnUnwind; 855 ConstantRangeList Inits; 856 }; 857 858 // Return the intersected range list of the initializes attributes of "Args". 859 // "Args" are call arguments that alias to each other. 860 // If any argument in "Args" doesn't have dead_on_unwind attr and 861 // "CallHasNoUnwindAttr" is false, return empty. 862 ConstantRangeList getIntersectedInitRangeList(ArrayRef<ArgumentInitInfo> Args, 863 bool CallHasNoUnwindAttr) { 864 if (Args.empty()) 865 return {}; 866 867 // To address unwind, the function should have nounwind attribute or the 868 // arguments have dead or invisible on unwind. Otherwise, return empty. 869 for (const auto &Arg : Args) { 870 if (!CallHasNoUnwindAttr && !Arg.IsDeadOrInvisibleOnUnwind) 871 return {}; 872 if (Arg.Inits.empty()) 873 return {}; 874 } 875 876 ConstantRangeList IntersectedIntervals = Args.front().Inits; 877 for (auto &Arg : Args.drop_front()) 878 IntersectedIntervals = IntersectedIntervals.intersectWith(Arg.Inits); 879 880 return IntersectedIntervals; 881 } 882 883 struct DSEState { 884 Function &F; 885 AliasAnalysis &AA; 886 EarliestEscapeAnalysis EA; 887 888 /// The single BatchAA instance that is used to cache AA queries. It will 889 /// not be invalidated over the whole run. This is safe, because: 890 /// 1. Only memory writes are removed, so the alias cache for memory 891 /// locations remains valid. 892 /// 2. No new instructions are added (only instructions removed), so cached 893 /// information for a deleted value cannot be accessed by a re-used new 894 /// value pointer. 895 BatchAAResults BatchAA; 896 897 MemorySSA &MSSA; 898 DominatorTree &DT; 899 PostDominatorTree &PDT; 900 const TargetLibraryInfo &TLI; 901 const DataLayout &DL; 902 const LoopInfo &LI; 903 904 // Whether the function contains any irreducible control flow, useful for 905 // being accurately able to detect loops. 906 bool ContainsIrreducibleLoops; 907 908 // All MemoryDefs that potentially could kill other MemDefs. 909 SmallVector<MemoryDef *, 64> MemDefs; 910 // Any that should be skipped as they are already deleted 911 SmallPtrSet<MemoryAccess *, 4> SkipStores; 912 // Keep track whether a given object is captured before return or not. 913 DenseMap<const Value *, bool> CapturedBeforeReturn; 914 // Keep track of all of the objects that are invisible to the caller after 915 // the function returns. 916 DenseMap<const Value *, bool> InvisibleToCallerAfterRet; 917 // Keep track of blocks with throwing instructions not modeled in MemorySSA. 918 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks; 919 // Post-order numbers for each basic block. Used to figure out if memory 920 // accesses are executed before another access. 921 DenseMap<BasicBlock *, unsigned> PostOrderNumbers; 922 923 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per 924 /// basic block. 925 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs; 926 // Check if there are root nodes that are terminated by UnreachableInst. 927 // Those roots pessimize post-dominance queries. If there are such roots, 928 // fall back to CFG scan starting from all non-unreachable roots. 929 bool AnyUnreachableExit; 930 931 // Whether or not we should iterate on removing dead stores at the end of the 932 // function due to removing a store causing a previously captured pointer to 933 // no longer be captured. 934 bool ShouldIterateEndOfFunctionDSE; 935 936 /// Dead instructions to be removed at the end of DSE. 937 SmallVector<Instruction *> ToRemove; 938 939 // Class contains self-reference, make sure it's not copied/moved. 940 DSEState(const DSEState &) = delete; 941 DSEState &operator=(const DSEState &) = delete; 942 943 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT, 944 PostDominatorTree &PDT, const TargetLibraryInfo &TLI, 945 const LoopInfo &LI) 946 : F(F), AA(AA), EA(DT, &LI), BatchAA(AA, &EA), MSSA(MSSA), DT(DT), 947 PDT(PDT), TLI(TLI), DL(F.getDataLayout()), LI(LI) { 948 // Collect blocks with throwing instructions not modeled in MemorySSA and 949 // alloc-like objects. 950 unsigned PO = 0; 951 for (BasicBlock *BB : post_order(&F)) { 952 PostOrderNumbers[BB] = PO++; 953 for (Instruction &I : *BB) { 954 MemoryAccess *MA = MSSA.getMemoryAccess(&I); 955 if (I.mayThrow() && !MA) 956 ThrowingBlocks.insert(I.getParent()); 957 958 auto *MD = dyn_cast_or_null<MemoryDef>(MA); 959 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit && 960 (getLocForWrite(&I) || isMemTerminatorInst(&I) || 961 (EnableInitializesImprovement && hasInitializesAttr(&I)))) 962 MemDefs.push_back(MD); 963 } 964 } 965 966 // Treat byval or inalloca arguments the same as Allocas, stores to them are 967 // dead at the end of the function. 968 for (Argument &AI : F.args()) 969 if (AI.hasPassPointeeByValueCopyAttr()) 970 InvisibleToCallerAfterRet.insert({&AI, true}); 971 972 // Collect whether there is any irreducible control flow in the function. 973 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI); 974 975 AnyUnreachableExit = any_of(PDT.roots(), [](const BasicBlock *E) { 976 return isa<UnreachableInst>(E->getTerminator()); 977 }); 978 } 979 980 static void pushMemUses(MemoryAccess *Acc, 981 SmallVectorImpl<MemoryAccess *> &WorkList, 982 SmallPtrSetImpl<MemoryAccess *> &Visited) { 983 for (Use &U : Acc->uses()) { 984 auto *MA = cast<MemoryAccess>(U.getUser()); 985 if (Visited.insert(MA).second) 986 WorkList.push_back(MA); 987 } 988 }; 989 990 LocationSize strengthenLocationSize(const Instruction *I, 991 LocationSize Size) const { 992 if (auto *CB = dyn_cast<CallBase>(I)) { 993 LibFunc F; 994 if (TLI.getLibFunc(*CB, F) && TLI.has(F) && 995 (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) { 996 // Use the precise location size specified by the 3rd argument 997 // for determining KillingI overwrites DeadLoc if it is a memset_chk 998 // instruction. memset_chk will write either the amount specified as 3rd 999 // argument or the function will immediately abort and exit the program. 1000 // NOTE: AA may determine NoAlias if it can prove that the access size 1001 // is larger than the allocation size due to that being UB. To avoid 1002 // returning potentially invalid NoAlias results by AA, limit the use of 1003 // the precise location size to isOverwrite. 1004 if (const auto *Len = dyn_cast<ConstantInt>(CB->getArgOperand(2))) 1005 return LocationSize::precise(Len->getZExtValue()); 1006 } 1007 } 1008 return Size; 1009 } 1010 1011 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p 1012 /// KillingI instruction) completely overwrites a store to the 'DeadLoc' 1013 /// location (by \p DeadI instruction). 1014 /// Return OW_MaybePartial if \p KillingI does not completely overwrite 1015 /// \p DeadI, but they both write to the same underlying object. In that 1016 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites 1017 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the 1018 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined. 1019 OverwriteResult isOverwrite(const Instruction *KillingI, 1020 const Instruction *DeadI, 1021 const MemoryLocation &KillingLoc, 1022 const MemoryLocation &DeadLoc, 1023 int64_t &KillingOff, int64_t &DeadOff) { 1024 // AliasAnalysis does not always account for loops. Limit overwrite checks 1025 // to dependencies for which we can guarantee they are independent of any 1026 // loops they are in. 1027 if (!isGuaranteedLoopIndependent(DeadI, KillingI, DeadLoc)) 1028 return OW_Unknown; 1029 1030 LocationSize KillingLocSize = 1031 strengthenLocationSize(KillingI, KillingLoc.Size); 1032 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts(); 1033 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts(); 1034 const Value *DeadUndObj = getUnderlyingObject(DeadPtr); 1035 const Value *KillingUndObj = getUnderlyingObject(KillingPtr); 1036 1037 // Check whether the killing store overwrites the whole object, in which 1038 // case the size/offset of the dead store does not matter. 1039 if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise() && 1040 isIdentifiedObject(KillingUndObj)) { 1041 std::optional<TypeSize> KillingUndObjSize = 1042 getPointerSize(KillingUndObj, DL, TLI, &F); 1043 if (KillingUndObjSize && *KillingUndObjSize == KillingLocSize.getValue()) 1044 return OW_Complete; 1045 } 1046 1047 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll 1048 // get imprecise values here, though (except for unknown sizes). 1049 if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) { 1050 // In case no constant size is known, try to an IR values for the number 1051 // of bytes written and check if they match. 1052 const auto *KillingMemI = dyn_cast<MemIntrinsic>(KillingI); 1053 const auto *DeadMemI = dyn_cast<MemIntrinsic>(DeadI); 1054 if (KillingMemI && DeadMemI) { 1055 const Value *KillingV = KillingMemI->getLength(); 1056 const Value *DeadV = DeadMemI->getLength(); 1057 if (KillingV == DeadV && BatchAA.isMustAlias(DeadLoc, KillingLoc)) 1058 return OW_Complete; 1059 } 1060 1061 // Masked stores have imprecise locations, but we can reason about them 1062 // to some extent. 1063 return isMaskedStoreOverwrite(KillingI, DeadI, BatchAA); 1064 } 1065 1066 const TypeSize KillingSize = KillingLocSize.getValue(); 1067 const TypeSize DeadSize = DeadLoc.Size.getValue(); 1068 // Bail on doing Size comparison which depends on AA for now 1069 // TODO: Remove AnyScalable once Alias Analysis deal with scalable vectors 1070 const bool AnyScalable = 1071 DeadSize.isScalable() || KillingLocSize.isScalable(); 1072 1073 if (AnyScalable) 1074 return OW_Unknown; 1075 // Query the alias information 1076 AliasResult AAR = BatchAA.alias(KillingLoc, DeadLoc); 1077 1078 // If the start pointers are the same, we just have to compare sizes to see if 1079 // the killing store was larger than the dead store. 1080 if (AAR == AliasResult::MustAlias) { 1081 // Make sure that the KillingSize size is >= the DeadSize size. 1082 if (KillingSize >= DeadSize) 1083 return OW_Complete; 1084 } 1085 1086 // If we hit a partial alias we may have a full overwrite 1087 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) { 1088 int32_t Off = AAR.getOffset(); 1089 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize) 1090 return OW_Complete; 1091 } 1092 1093 // If we can't resolve the same pointers to the same object, then we can't 1094 // analyze them at all. 1095 if (DeadUndObj != KillingUndObj) { 1096 // Non aliasing stores to different objects don't overlap. Note that 1097 // if the killing store is known to overwrite whole object (out of 1098 // bounds access overwrites whole object as well) then it is assumed to 1099 // completely overwrite any store to the same object even if they don't 1100 // actually alias (see next check). 1101 if (AAR == AliasResult::NoAlias) 1102 return OW_None; 1103 return OW_Unknown; 1104 } 1105 1106 // Okay, we have stores to two completely different pointers. Try to 1107 // decompose the pointer into a "base + constant_offset" form. If the base 1108 // pointers are equal, then we can reason about the two stores. 1109 DeadOff = 0; 1110 KillingOff = 0; 1111 const Value *DeadBasePtr = 1112 GetPointerBaseWithConstantOffset(DeadPtr, DeadOff, DL); 1113 const Value *KillingBasePtr = 1114 GetPointerBaseWithConstantOffset(KillingPtr, KillingOff, DL); 1115 1116 // If the base pointers still differ, we have two completely different 1117 // stores. 1118 if (DeadBasePtr != KillingBasePtr) 1119 return OW_Unknown; 1120 1121 // The killing access completely overlaps the dead store if and only if 1122 // both start and end of the dead one is "inside" the killing one: 1123 // |<->|--dead--|<->| 1124 // |-----killing------| 1125 // Accesses may overlap if and only if start of one of them is "inside" 1126 // another one: 1127 // |<->|--dead--|<-------->| 1128 // |-------killing--------| 1129 // OR 1130 // |-------dead-------| 1131 // |<->|---killing---|<----->| 1132 // 1133 // We have to be careful here as *Off is signed while *.Size is unsigned. 1134 1135 // Check if the dead access starts "not before" the killing one. 1136 if (DeadOff >= KillingOff) { 1137 // If the dead access ends "not after" the killing access then the 1138 // dead one is completely overwritten by the killing one. 1139 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize) 1140 return OW_Complete; 1141 // If start of the dead access is "before" end of the killing access 1142 // then accesses overlap. 1143 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize) 1144 return OW_MaybePartial; 1145 } 1146 // If start of the killing access is "before" end of the dead access then 1147 // accesses overlap. 1148 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) { 1149 return OW_MaybePartial; 1150 } 1151 1152 // Can reach here only if accesses are known not to overlap. 1153 return OW_None; 1154 } 1155 1156 bool isInvisibleToCallerAfterRet(const Value *V) { 1157 if (isa<AllocaInst>(V)) 1158 return true; 1159 auto I = InvisibleToCallerAfterRet.insert({V, false}); 1160 if (I.second) { 1161 if (!isInvisibleToCallerOnUnwind(V)) { 1162 I.first->second = false; 1163 } else if (isNoAliasCall(V)) { 1164 I.first->second = !PointerMayBeCaptured(V, true, false); 1165 } 1166 } 1167 return I.first->second; 1168 } 1169 1170 bool isInvisibleToCallerOnUnwind(const Value *V) { 1171 bool RequiresNoCaptureBeforeUnwind; 1172 if (!isNotVisibleOnUnwind(V, RequiresNoCaptureBeforeUnwind)) 1173 return false; 1174 if (!RequiresNoCaptureBeforeUnwind) 1175 return true; 1176 1177 auto I = CapturedBeforeReturn.insert({V, true}); 1178 if (I.second) 1179 // NOTE: This could be made more precise by PointerMayBeCapturedBefore 1180 // with the killing MemoryDef. But we refrain from doing so for now to 1181 // limit compile-time and this does not cause any changes to the number 1182 // of stores removed on a large test set in practice. 1183 I.first->second = PointerMayBeCaptured(V, false, true); 1184 return !I.first->second; 1185 } 1186 1187 std::optional<MemoryLocation> getLocForWrite(Instruction *I) const { 1188 if (!I->mayWriteToMemory()) 1189 return std::nullopt; 1190 1191 if (auto *CB = dyn_cast<CallBase>(I)) 1192 return MemoryLocation::getForDest(CB, TLI); 1193 1194 return MemoryLocation::getOrNone(I); 1195 } 1196 1197 // Returns a list of <MemoryLocation, bool> pairs written by I. 1198 // The bool means whether the write is from Initializes attr. 1199 SmallVector<std::pair<MemoryLocation, bool>, 1> 1200 getLocForInst(Instruction *I, bool ConsiderInitializesAttr) { 1201 SmallVector<std::pair<MemoryLocation, bool>, 1> Locations; 1202 if (isMemTerminatorInst(I)) { 1203 if (auto Loc = getLocForTerminator(I)) 1204 Locations.push_back(std::make_pair(Loc->first, false)); 1205 return Locations; 1206 } 1207 1208 if (auto Loc = getLocForWrite(I)) 1209 Locations.push_back(std::make_pair(*Loc, false)); 1210 1211 if (ConsiderInitializesAttr) { 1212 for (auto &MemLoc : getInitializesArgMemLoc(I)) { 1213 Locations.push_back(std::make_pair(MemLoc, true)); 1214 } 1215 } 1216 return Locations; 1217 } 1218 1219 /// Assuming this instruction has a dead analyzable write, can we delete 1220 /// this instruction? 1221 bool isRemovable(Instruction *I) { 1222 assert(getLocForWrite(I) && "Must have analyzable write"); 1223 1224 // Don't remove volatile/atomic stores. 1225 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1226 return SI->isUnordered(); 1227 1228 if (auto *CB = dyn_cast<CallBase>(I)) { 1229 // Don't remove volatile memory intrinsics. 1230 if (auto *MI = dyn_cast<MemIntrinsic>(CB)) 1231 return !MI->isVolatile(); 1232 1233 // Never remove dead lifetime intrinsics, e.g. because they are followed 1234 // by a free. 1235 if (CB->isLifetimeStartOrEnd()) 1236 return false; 1237 1238 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() && 1239 !CB->isTerminator(); 1240 } 1241 1242 return false; 1243 } 1244 1245 /// Returns true if \p UseInst completely overwrites \p DefLoc 1246 /// (stored by \p DefInst). 1247 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst, 1248 Instruction *UseInst) { 1249 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a 1250 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a 1251 // MemoryDef. 1252 if (!UseInst->mayWriteToMemory()) 1253 return false; 1254 1255 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1256 if (CB->onlyAccessesInaccessibleMemory()) 1257 return false; 1258 1259 int64_t InstWriteOffset, DepWriteOffset; 1260 if (auto CC = getLocForWrite(UseInst)) 1261 return isOverwrite(UseInst, DefInst, *CC, DefLoc, InstWriteOffset, 1262 DepWriteOffset) == OW_Complete; 1263 return false; 1264 } 1265 1266 /// Returns true if \p Def is not read before returning from the function. 1267 bool isWriteAtEndOfFunction(MemoryDef *Def, const MemoryLocation &DefLoc) { 1268 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " (" 1269 << *Def->getMemoryInst() 1270 << ") is at the end the function \n"); 1271 SmallVector<MemoryAccess *, 4> WorkList; 1272 SmallPtrSet<MemoryAccess *, 8> Visited; 1273 1274 pushMemUses(Def, WorkList, Visited); 1275 for (unsigned I = 0; I < WorkList.size(); I++) { 1276 if (WorkList.size() >= MemorySSAScanLimit) { 1277 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n"); 1278 return false; 1279 } 1280 1281 MemoryAccess *UseAccess = WorkList[I]; 1282 if (isa<MemoryPhi>(UseAccess)) { 1283 // AliasAnalysis does not account for loops. Limit elimination to 1284 // candidates for which we can guarantee they always store to the same 1285 // memory location. 1286 if (!isGuaranteedLoopInvariant(DefLoc.Ptr)) 1287 return false; 1288 1289 pushMemUses(cast<MemoryPhi>(UseAccess), WorkList, Visited); 1290 continue; 1291 } 1292 // TODO: Checking for aliasing is expensive. Consider reducing the amount 1293 // of times this is called and/or caching it. 1294 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1295 if (isReadClobber(DefLoc, UseInst)) { 1296 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n"); 1297 return false; 1298 } 1299 1300 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) 1301 pushMemUses(UseDef, WorkList, Visited); 1302 } 1303 return true; 1304 } 1305 1306 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a 1307 /// pair with the MemoryLocation terminated by \p I and a boolean flag 1308 /// indicating whether \p I is a free-like call. 1309 std::optional<std::pair<MemoryLocation, bool>> 1310 getLocForTerminator(Instruction *I) const { 1311 uint64_t Len; 1312 Value *Ptr; 1313 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len), 1314 m_Value(Ptr)))) 1315 return {std::make_pair(MemoryLocation(Ptr, Len), false)}; 1316 1317 if (auto *CB = dyn_cast<CallBase>(I)) { 1318 if (Value *FreedOp = getFreedOperand(CB, &TLI)) 1319 return {std::make_pair(MemoryLocation::getAfter(FreedOp), true)}; 1320 } 1321 1322 return std::nullopt; 1323 } 1324 1325 /// Returns true if \p I is a memory terminator instruction like 1326 /// llvm.lifetime.end or free. 1327 bool isMemTerminatorInst(Instruction *I) const { 1328 auto *CB = dyn_cast<CallBase>(I); 1329 return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end || 1330 getFreedOperand(CB, &TLI) != nullptr); 1331 } 1332 1333 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from 1334 /// instruction \p AccessI. 1335 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI, 1336 Instruction *MaybeTerm) { 1337 std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc = 1338 getLocForTerminator(MaybeTerm); 1339 1340 if (!MaybeTermLoc) 1341 return false; 1342 1343 // If the terminator is a free-like call, all accesses to the underlying 1344 // object can be considered terminated. 1345 if (getUnderlyingObject(Loc.Ptr) != 1346 getUnderlyingObject(MaybeTermLoc->first.Ptr)) 1347 return false; 1348 1349 auto TermLoc = MaybeTermLoc->first; 1350 if (MaybeTermLoc->second) { 1351 const Value *LocUO = getUnderlyingObject(Loc.Ptr); 1352 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO); 1353 } 1354 int64_t InstWriteOffset = 0; 1355 int64_t DepWriteOffset = 0; 1356 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, InstWriteOffset, 1357 DepWriteOffset) == OW_Complete; 1358 } 1359 1360 // Returns true if \p Use may read from \p DefLoc. 1361 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) { 1362 if (isNoopIntrinsic(UseInst)) 1363 return false; 1364 1365 // Monotonic or weaker atomic stores can be re-ordered and do not need to be 1366 // treated as read clobber. 1367 if (auto SI = dyn_cast<StoreInst>(UseInst)) 1368 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic); 1369 1370 if (!UseInst->mayReadFromMemory()) 1371 return false; 1372 1373 if (auto *CB = dyn_cast<CallBase>(UseInst)) 1374 if (CB->onlyAccessesInaccessibleMemory()) 1375 return false; 1376 1377 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc)); 1378 } 1379 1380 /// Returns true if a dependency between \p Current and \p KillingDef is 1381 /// guaranteed to be loop invariant for the loops that they are in. Either 1382 /// because they are known to be in the same block, in the same loop level or 1383 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation 1384 /// during execution of the containing function. 1385 bool isGuaranteedLoopIndependent(const Instruction *Current, 1386 const Instruction *KillingDef, 1387 const MemoryLocation &CurrentLoc) { 1388 // If the dependency is within the same block or loop level (being careful 1389 // of irreducible loops), we know that AA will return a valid result for the 1390 // memory dependency. (Both at the function level, outside of any loop, 1391 // would also be valid but we currently disable that to limit compile time). 1392 if (Current->getParent() == KillingDef->getParent()) 1393 return true; 1394 const Loop *CurrentLI = LI.getLoopFor(Current->getParent()); 1395 if (!ContainsIrreducibleLoops && CurrentLI && 1396 CurrentLI == LI.getLoopFor(KillingDef->getParent())) 1397 return true; 1398 // Otherwise check the memory location is invariant to any loops. 1399 return isGuaranteedLoopInvariant(CurrentLoc.Ptr); 1400 } 1401 1402 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible 1403 /// loop. In particular, this guarantees that it only references a single 1404 /// MemoryLocation during execution of the containing function. 1405 bool isGuaranteedLoopInvariant(const Value *Ptr) { 1406 Ptr = Ptr->stripPointerCasts(); 1407 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) 1408 if (GEP->hasAllConstantIndices()) 1409 Ptr = GEP->getPointerOperand()->stripPointerCasts(); 1410 1411 if (auto *I = dyn_cast<Instruction>(Ptr)) { 1412 return I->getParent()->isEntryBlock() || 1413 (!ContainsIrreducibleLoops && !LI.getLoopFor(I->getParent())); 1414 } 1415 return true; 1416 } 1417 1418 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess, 1419 // with no read access between them or on any other path to a function exit 1420 // block if \p KillingLoc is not accessible after the function returns. If 1421 // there is no such MemoryDef, return std::nullopt. The returned value may not 1422 // (completely) overwrite \p KillingLoc. Currently we bail out when we 1423 // encounter an aliasing MemoryUse (read). 1424 std::optional<MemoryAccess *> 1425 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess, 1426 const MemoryLocation &KillingLoc, const Value *KillingUndObj, 1427 unsigned &ScanLimit, unsigned &WalkerStepLimit, 1428 bool IsMemTerm, unsigned &PartialLimit, 1429 bool IsInitializesAttrMemLoc) { 1430 if (ScanLimit == 0 || WalkerStepLimit == 0) { 1431 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1432 return std::nullopt; 1433 } 1434 1435 MemoryAccess *Current = StartAccess; 1436 Instruction *KillingI = KillingDef->getMemoryInst(); 1437 LLVM_DEBUG(dbgs() << " trying to get dominating access\n"); 1438 1439 // Only optimize defining access of KillingDef when directly starting at its 1440 // defining access. The defining access also must only access KillingLoc. At 1441 // the moment we only support instructions with a single write location, so 1442 // it should be sufficient to disable optimizations for instructions that 1443 // also read from memory. 1444 bool CanOptimize = OptimizeMemorySSA && 1445 KillingDef->getDefiningAccess() == StartAccess && 1446 !KillingI->mayReadFromMemory(); 1447 1448 // Find the next clobbering Mod access for DefLoc, starting at StartAccess. 1449 std::optional<MemoryLocation> CurrentLoc; 1450 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) { 1451 LLVM_DEBUG({ 1452 dbgs() << " visiting " << *Current; 1453 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current)) 1454 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst() 1455 << ")"; 1456 dbgs() << "\n"; 1457 }); 1458 1459 // Reached TOP. 1460 if (MSSA.isLiveOnEntryDef(Current)) { 1461 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n"); 1462 if (CanOptimize && Current != KillingDef->getDefiningAccess()) 1463 // The first clobbering def is... none. 1464 KillingDef->setOptimized(Current); 1465 return std::nullopt; 1466 } 1467 1468 // Cost of a step. Accesses in the same block are more likely to be valid 1469 // candidates for elimination, hence consider them cheaper. 1470 unsigned StepCost = KillingDef->getBlock() == Current->getBlock() 1471 ? MemorySSASameBBStepCost 1472 : MemorySSAOtherBBStepCost; 1473 if (WalkerStepLimit <= StepCost) { 1474 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n"); 1475 return std::nullopt; 1476 } 1477 WalkerStepLimit -= StepCost; 1478 1479 // Return for MemoryPhis. They cannot be eliminated directly and the 1480 // caller is responsible for traversing them. 1481 if (isa<MemoryPhi>(Current)) { 1482 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n"); 1483 return Current; 1484 } 1485 1486 // Below, check if CurrentDef is a valid candidate to be eliminated by 1487 // KillingDef. If it is not, check the next candidate. 1488 MemoryDef *CurrentDef = cast<MemoryDef>(Current); 1489 Instruction *CurrentI = CurrentDef->getMemoryInst(); 1490 1491 if (canSkipDef(CurrentDef, !isInvisibleToCallerOnUnwind(KillingUndObj))) { 1492 CanOptimize = false; 1493 continue; 1494 } 1495 1496 // Before we try to remove anything, check for any extra throwing 1497 // instructions that block us from DSEing 1498 if (mayThrowBetween(KillingI, CurrentI, KillingUndObj)) { 1499 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n"); 1500 return std::nullopt; 1501 } 1502 1503 // Check for anything that looks like it will be a barrier to further 1504 // removal 1505 if (isDSEBarrier(KillingUndObj, CurrentI)) { 1506 LLVM_DEBUG(dbgs() << " ... skip, barrier\n"); 1507 return std::nullopt; 1508 } 1509 1510 // If Current is known to be on path that reads DefLoc or is a read 1511 // clobber, bail out, as the path is not profitable. We skip this check 1512 // for intrinsic calls, because the code knows how to handle memcpy 1513 // intrinsics. 1514 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(KillingLoc, CurrentI)) 1515 return std::nullopt; 1516 1517 // Quick check if there are direct uses that are read-clobbers. 1518 if (any_of(Current->uses(), [this, &KillingLoc, StartAccess](Use &U) { 1519 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser())) 1520 return !MSSA.dominates(StartAccess, UseOrDef) && 1521 isReadClobber(KillingLoc, UseOrDef->getMemoryInst()); 1522 return false; 1523 })) { 1524 LLVM_DEBUG(dbgs() << " ... found a read clobber\n"); 1525 return std::nullopt; 1526 } 1527 1528 // If Current does not have an analyzable write location or is not 1529 // removable, skip it. 1530 CurrentLoc = getLocForWrite(CurrentI); 1531 if (!CurrentLoc || !isRemovable(CurrentI)) { 1532 CanOptimize = false; 1533 continue; 1534 } 1535 1536 // AliasAnalysis does not account for loops. Limit elimination to 1537 // candidates for which we can guarantee they always store to the same 1538 // memory location and not located in different loops. 1539 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) { 1540 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n"); 1541 CanOptimize = false; 1542 continue; 1543 } 1544 1545 if (IsMemTerm) { 1546 // If the killing def is a memory terminator (e.g. lifetime.end), check 1547 // the next candidate if the current Current does not write the same 1548 // underlying object as the terminator. 1549 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI)) { 1550 CanOptimize = false; 1551 continue; 1552 } 1553 } else { 1554 int64_t KillingOffset = 0; 1555 int64_t DeadOffset = 0; 1556 auto OR = isOverwrite(KillingI, CurrentI, KillingLoc, *CurrentLoc, 1557 KillingOffset, DeadOffset); 1558 if (CanOptimize) { 1559 // CurrentDef is the earliest write clobber of KillingDef. Use it as 1560 // optimized access. Do not optimize if CurrentDef is already the 1561 // defining access of KillingDef. 1562 if (CurrentDef != KillingDef->getDefiningAccess() && 1563 (OR == OW_Complete || OR == OW_MaybePartial)) 1564 KillingDef->setOptimized(CurrentDef); 1565 1566 // Once a may-aliasing def is encountered do not set an optimized 1567 // access. 1568 if (OR != OW_None) 1569 CanOptimize = false; 1570 } 1571 1572 // If Current does not write to the same object as KillingDef, check 1573 // the next candidate. 1574 if (OR == OW_Unknown || OR == OW_None) 1575 continue; 1576 else if (OR == OW_MaybePartial) { 1577 // If KillingDef only partially overwrites Current, check the next 1578 // candidate if the partial step limit is exceeded. This aggressively 1579 // limits the number of candidates for partial store elimination, 1580 // which are less likely to be removable in the end. 1581 if (PartialLimit <= 1) { 1582 WalkerStepLimit -= 1; 1583 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n"); 1584 continue; 1585 } 1586 PartialLimit -= 1; 1587 } 1588 } 1589 break; 1590 }; 1591 1592 // Accesses to objects accessible after the function returns can only be 1593 // eliminated if the access is dead along all paths to the exit. Collect 1594 // the blocks with killing (=completely overwriting MemoryDefs) and check if 1595 // they cover all paths from MaybeDeadAccess to any function exit. 1596 SmallPtrSet<Instruction *, 16> KillingDefs; 1597 KillingDefs.insert(KillingDef->getMemoryInst()); 1598 MemoryAccess *MaybeDeadAccess = Current; 1599 MemoryLocation MaybeDeadLoc = *CurrentLoc; 1600 Instruction *MaybeDeadI = cast<MemoryDef>(MaybeDeadAccess)->getMemoryInst(); 1601 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " (" 1602 << *MaybeDeadI << ")\n"); 1603 1604 SmallVector<MemoryAccess *, 32> WorkList; 1605 SmallPtrSet<MemoryAccess *, 32> Visited; 1606 pushMemUses(MaybeDeadAccess, WorkList, Visited); 1607 1608 // Check if DeadDef may be read. 1609 for (unsigned I = 0; I < WorkList.size(); I++) { 1610 MemoryAccess *UseAccess = WorkList[I]; 1611 1612 LLVM_DEBUG(dbgs() << " " << *UseAccess); 1613 // Bail out if the number of accesses to check exceeds the scan limit. 1614 if (ScanLimit < (WorkList.size() - I)) { 1615 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n"); 1616 return std::nullopt; 1617 } 1618 --ScanLimit; 1619 NumDomMemDefChecks++; 1620 1621 if (isa<MemoryPhi>(UseAccess)) { 1622 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) { 1623 return DT.properlyDominates(KI->getParent(), 1624 UseAccess->getBlock()); 1625 })) { 1626 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n"); 1627 continue; 1628 } 1629 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n"); 1630 pushMemUses(UseAccess, WorkList, Visited); 1631 continue; 1632 } 1633 1634 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst(); 1635 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n"); 1636 1637 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) { 1638 return DT.dominates(KI, UseInst); 1639 })) { 1640 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n"); 1641 continue; 1642 } 1643 1644 // A memory terminator kills all preceeding MemoryDefs and all succeeding 1645 // MemoryAccesses. We do not have to check it's users. 1646 if (isMemTerminator(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1647 LLVM_DEBUG( 1648 dbgs() 1649 << " ... skipping, memterminator invalidates following accesses\n"); 1650 continue; 1651 } 1652 1653 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) { 1654 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n"); 1655 pushMemUses(UseAccess, WorkList, Visited); 1656 continue; 1657 } 1658 1659 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) { 1660 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n"); 1661 return std::nullopt; 1662 } 1663 1664 // Uses which may read the original MemoryDef mean we cannot eliminate the 1665 // original MD. Stop walk. 1666 // If KillingDef is a CallInst with "initializes" attribute, the reads in 1667 // the callee would be dominated by initializations, so it should be safe. 1668 bool IsKillingDefFromInitAttr = false; 1669 if (IsInitializesAttrMemLoc) { 1670 if (KillingI == UseInst && 1671 KillingUndObj == getUnderlyingObject(MaybeDeadLoc.Ptr)) 1672 IsKillingDefFromInitAttr = true; 1673 } 1674 1675 if (isReadClobber(MaybeDeadLoc, UseInst) && !IsKillingDefFromInitAttr) { 1676 LLVM_DEBUG(dbgs() << " ... found read clobber\n"); 1677 return std::nullopt; 1678 } 1679 1680 // If this worklist walks back to the original memory access (and the 1681 // pointer is not guarenteed loop invariant) then we cannot assume that a 1682 // store kills itself. 1683 if (MaybeDeadAccess == UseAccess && 1684 !isGuaranteedLoopInvariant(MaybeDeadLoc.Ptr)) { 1685 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n"); 1686 return std::nullopt; 1687 } 1688 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check 1689 // if it reads the memory location. 1690 // TODO: It would probably be better to check for self-reads before 1691 // calling the function. 1692 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) { 1693 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n"); 1694 continue; 1695 } 1696 1697 // Check all uses for MemoryDefs, except for defs completely overwriting 1698 // the original location. Otherwise we have to check uses of *all* 1699 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might 1700 // miss cases like the following 1701 // 1 = Def(LoE) ; <----- DeadDef stores [0,1] 1702 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3] 1703 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3]. 1704 // (The Use points to the *first* Def it may alias) 1705 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias, 1706 // stores [0,1] 1707 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) { 1708 if (isCompleteOverwrite(MaybeDeadLoc, MaybeDeadI, UseInst)) { 1709 BasicBlock *MaybeKillingBlock = UseInst->getParent(); 1710 if (PostOrderNumbers.find(MaybeKillingBlock)->second < 1711 PostOrderNumbers.find(MaybeDeadAccess->getBlock())->second) { 1712 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1713 LLVM_DEBUG(dbgs() 1714 << " ... found killing def " << *UseInst << "\n"); 1715 KillingDefs.insert(UseInst); 1716 } 1717 } else { 1718 LLVM_DEBUG(dbgs() 1719 << " ... found preceeding def " << *UseInst << "\n"); 1720 return std::nullopt; 1721 } 1722 } else 1723 pushMemUses(UseDef, WorkList, Visited); 1724 } 1725 } 1726 1727 // For accesses to locations visible after the function returns, make sure 1728 // that the location is dead (=overwritten) along all paths from 1729 // MaybeDeadAccess to the exit. 1730 if (!isInvisibleToCallerAfterRet(KillingUndObj)) { 1731 SmallPtrSet<BasicBlock *, 16> KillingBlocks; 1732 for (Instruction *KD : KillingDefs) 1733 KillingBlocks.insert(KD->getParent()); 1734 assert(!KillingBlocks.empty() && 1735 "Expected at least a single killing block"); 1736 1737 // Find the common post-dominator of all killing blocks. 1738 BasicBlock *CommonPred = *KillingBlocks.begin(); 1739 for (BasicBlock *BB : llvm::drop_begin(KillingBlocks)) { 1740 if (!CommonPred) 1741 break; 1742 CommonPred = PDT.findNearestCommonDominator(CommonPred, BB); 1743 } 1744 1745 // If the common post-dominator does not post-dominate MaybeDeadAccess, 1746 // there is a path from MaybeDeadAccess to an exit not going through a 1747 // killing block. 1748 if (!PDT.dominates(CommonPred, MaybeDeadAccess->getBlock())) { 1749 if (!AnyUnreachableExit) 1750 return std::nullopt; 1751 1752 // Fall back to CFG scan starting at all non-unreachable roots if not 1753 // all paths to the exit go through CommonPred. 1754 CommonPred = nullptr; 1755 } 1756 1757 // If CommonPred itself is in the set of killing blocks, we're done. 1758 if (KillingBlocks.count(CommonPred)) 1759 return {MaybeDeadAccess}; 1760 1761 SetVector<BasicBlock *> WorkList; 1762 // If CommonPred is null, there are multiple exits from the function. 1763 // They all have to be added to the worklist. 1764 if (CommonPred) 1765 WorkList.insert(CommonPred); 1766 else 1767 for (BasicBlock *R : PDT.roots()) { 1768 if (!isa<UnreachableInst>(R->getTerminator())) 1769 WorkList.insert(R); 1770 } 1771 1772 NumCFGTries++; 1773 // Check if all paths starting from an exit node go through one of the 1774 // killing blocks before reaching MaybeDeadAccess. 1775 for (unsigned I = 0; I < WorkList.size(); I++) { 1776 NumCFGChecks++; 1777 BasicBlock *Current = WorkList[I]; 1778 if (KillingBlocks.count(Current)) 1779 continue; 1780 if (Current == MaybeDeadAccess->getBlock()) 1781 return std::nullopt; 1782 1783 // MaybeDeadAccess is reachable from the entry, so we don't have to 1784 // explore unreachable blocks further. 1785 if (!DT.isReachableFromEntry(Current)) 1786 continue; 1787 1788 for (BasicBlock *Pred : predecessors(Current)) 1789 WorkList.insert(Pred); 1790 1791 if (WorkList.size() >= MemorySSAPathCheckLimit) 1792 return std::nullopt; 1793 } 1794 NumCFGSuccess++; 1795 } 1796 1797 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is 1798 // potentially dead. 1799 return {MaybeDeadAccess}; 1800 } 1801 1802 /// Delete dead memory defs and recursively add their operands to ToRemove if 1803 /// they became dead. 1804 void 1805 deleteDeadInstruction(Instruction *SI, 1806 SmallPtrSetImpl<MemoryAccess *> *Deleted = nullptr) { 1807 MemorySSAUpdater Updater(&MSSA); 1808 SmallVector<Instruction *, 32> NowDeadInsts; 1809 NowDeadInsts.push_back(SI); 1810 --NumFastOther; 1811 1812 while (!NowDeadInsts.empty()) { 1813 Instruction *DeadInst = NowDeadInsts.pop_back_val(); 1814 ++NumFastOther; 1815 1816 // Try to preserve debug information attached to the dead instruction. 1817 salvageDebugInfo(*DeadInst); 1818 salvageKnowledge(DeadInst); 1819 1820 // Remove the Instruction from MSSA. 1821 MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst); 1822 bool IsMemDef = MA && isa<MemoryDef>(MA); 1823 if (MA) { 1824 if (IsMemDef) { 1825 auto *MD = cast<MemoryDef>(MA); 1826 SkipStores.insert(MD); 1827 if (Deleted) 1828 Deleted->insert(MD); 1829 if (auto *SI = dyn_cast<StoreInst>(MD->getMemoryInst())) { 1830 if (SI->getValueOperand()->getType()->isPointerTy()) { 1831 const Value *UO = getUnderlyingObject(SI->getValueOperand()); 1832 if (CapturedBeforeReturn.erase(UO)) 1833 ShouldIterateEndOfFunctionDSE = true; 1834 InvisibleToCallerAfterRet.erase(UO); 1835 } 1836 } 1837 } 1838 1839 Updater.removeMemoryAccess(MA); 1840 } 1841 1842 auto I = IOLs.find(DeadInst->getParent()); 1843 if (I != IOLs.end()) 1844 I->second.erase(DeadInst); 1845 // Remove its operands 1846 for (Use &O : DeadInst->operands()) 1847 if (Instruction *OpI = dyn_cast<Instruction>(O)) { 1848 O.set(PoisonValue::get(O->getType())); 1849 if (isInstructionTriviallyDead(OpI, &TLI)) 1850 NowDeadInsts.push_back(OpI); 1851 } 1852 1853 EA.removeInstruction(DeadInst); 1854 // Remove memory defs directly if they don't produce results, but only 1855 // queue other dead instructions for later removal. They may have been 1856 // used as memory locations that have been cached by BatchAA. Removing 1857 // them here may lead to newly created instructions to be allocated at the 1858 // same address, yielding stale cache entries. 1859 if (IsMemDef && DeadInst->getType()->isVoidTy()) 1860 DeadInst->eraseFromParent(); 1861 else 1862 ToRemove.push_back(DeadInst); 1863 } 1864 } 1865 1866 // Check for any extra throws between \p KillingI and \p DeadI that block 1867 // DSE. This only checks extra maythrows (those that aren't MemoryDef's). 1868 // MemoryDef that may throw are handled during the walk from one def to the 1869 // next. 1870 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI, 1871 const Value *KillingUndObj) { 1872 // First see if we can ignore it by using the fact that KillingI is an 1873 // alloca/alloca like object that is not visible to the caller during 1874 // execution of the function. 1875 if (KillingUndObj && isInvisibleToCallerOnUnwind(KillingUndObj)) 1876 return false; 1877 1878 if (KillingI->getParent() == DeadI->getParent()) 1879 return ThrowingBlocks.count(KillingI->getParent()); 1880 return !ThrowingBlocks.empty(); 1881 } 1882 1883 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following 1884 // instructions act as barriers: 1885 // * A memory instruction that may throw and \p KillingI accesses a non-stack 1886 // object. 1887 // * Atomic stores stronger that monotonic. 1888 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) { 1889 // If DeadI may throw it acts as a barrier, unless we are to an 1890 // alloca/alloca like object that does not escape. 1891 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj)) 1892 return true; 1893 1894 // If DeadI is an atomic load/store stronger than monotonic, do not try to 1895 // eliminate/reorder it. 1896 if (DeadI->isAtomic()) { 1897 if (auto *LI = dyn_cast<LoadInst>(DeadI)) 1898 return isStrongerThanMonotonic(LI->getOrdering()); 1899 if (auto *SI = dyn_cast<StoreInst>(DeadI)) 1900 return isStrongerThanMonotonic(SI->getOrdering()); 1901 if (auto *ARMW = dyn_cast<AtomicRMWInst>(DeadI)) 1902 return isStrongerThanMonotonic(ARMW->getOrdering()); 1903 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(DeadI)) 1904 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) || 1905 isStrongerThanMonotonic(CmpXchg->getFailureOrdering()); 1906 llvm_unreachable("other instructions should be skipped in MemorySSA"); 1907 } 1908 return false; 1909 } 1910 1911 /// Eliminate writes to objects that are not visible in the caller and are not 1912 /// accessed before returning from the function. 1913 bool eliminateDeadWritesAtEndOfFunction() { 1914 bool MadeChange = false; 1915 LLVM_DEBUG( 1916 dbgs() 1917 << "Trying to eliminate MemoryDefs at the end of the function\n"); 1918 do { 1919 ShouldIterateEndOfFunctionDSE = false; 1920 for (MemoryDef *Def : llvm::reverse(MemDefs)) { 1921 if (SkipStores.contains(Def)) 1922 continue; 1923 1924 Instruction *DefI = Def->getMemoryInst(); 1925 auto DefLoc = getLocForWrite(DefI); 1926 if (!DefLoc || !isRemovable(DefI)) { 1927 LLVM_DEBUG(dbgs() << " ... could not get location for write or " 1928 "instruction not removable.\n"); 1929 continue; 1930 } 1931 1932 // NOTE: Currently eliminating writes at the end of a function is 1933 // limited to MemoryDefs with a single underlying object, to save 1934 // compile-time. In practice it appears the case with multiple 1935 // underlying objects is very uncommon. If it turns out to be important, 1936 // we can use getUnderlyingObjects here instead. 1937 const Value *UO = getUnderlyingObject(DefLoc->Ptr); 1938 if (!isInvisibleToCallerAfterRet(UO)) 1939 continue; 1940 1941 if (isWriteAtEndOfFunction(Def, *DefLoc)) { 1942 // See through pointer-to-pointer bitcasts 1943 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end " 1944 "of the function\n"); 1945 deleteDeadInstruction(DefI); 1946 ++NumFastStores; 1947 MadeChange = true; 1948 } 1949 } 1950 } while (ShouldIterateEndOfFunctionDSE); 1951 return MadeChange; 1952 } 1953 1954 /// If we have a zero initializing memset following a call to malloc, 1955 /// try folding it into a call to calloc. 1956 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) { 1957 Instruction *DefI = Def->getMemoryInst(); 1958 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 1959 if (!MemSet) 1960 // TODO: Could handle zero store to small allocation as well. 1961 return false; 1962 Constant *StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 1963 if (!StoredConstant || !StoredConstant->isNullValue()) 1964 return false; 1965 1966 if (!isRemovable(DefI)) 1967 // The memset might be volatile.. 1968 return false; 1969 1970 if (F.hasFnAttribute(Attribute::SanitizeMemory) || 1971 F.hasFnAttribute(Attribute::SanitizeAddress) || 1972 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 1973 F.getName() == "calloc") 1974 return false; 1975 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUO)); 1976 if (!Malloc) 1977 return false; 1978 auto *InnerCallee = Malloc->getCalledFunction(); 1979 if (!InnerCallee) 1980 return false; 1981 LibFunc Func; 1982 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 1983 Func != LibFunc_malloc) 1984 return false; 1985 // Gracefully handle malloc with unexpected memory attributes. 1986 auto *MallocDef = dyn_cast_or_null<MemoryDef>(MSSA.getMemoryAccess(Malloc)); 1987 if (!MallocDef) 1988 return false; 1989 1990 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) { 1991 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end 1992 // of malloc block 1993 auto *MallocBB = Malloc->getParent(), 1994 *MemsetBB = Memset->getParent(); 1995 if (MallocBB == MemsetBB) 1996 return true; 1997 auto *Ptr = Memset->getArgOperand(0); 1998 auto *TI = MallocBB->getTerminator(); 1999 BasicBlock *TrueBB, *FalseBB; 2000 if (!match(TI, m_Br(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(Ptr), 2001 m_Zero()), 2002 TrueBB, FalseBB))) 2003 return false; 2004 if (MemsetBB != FalseBB) 2005 return false; 2006 return true; 2007 }; 2008 2009 if (Malloc->getOperand(0) != MemSet->getLength()) 2010 return false; 2011 if (!shouldCreateCalloc(Malloc, MemSet) || 2012 !DT.dominates(Malloc, MemSet) || 2013 !memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) 2014 return false; 2015 IRBuilder<> IRB(Malloc); 2016 Type *SizeTTy = Malloc->getArgOperand(0)->getType(); 2017 auto *Calloc = 2018 emitCalloc(ConstantInt::get(SizeTTy, 1), Malloc->getArgOperand(0), IRB, 2019 TLI, Malloc->getType()->getPointerAddressSpace()); 2020 if (!Calloc) 2021 return false; 2022 2023 MemorySSAUpdater Updater(&MSSA); 2024 auto *NewAccess = 2025 Updater.createMemoryAccessAfter(cast<Instruction>(Calloc), nullptr, 2026 MallocDef); 2027 auto *NewAccessMD = cast<MemoryDef>(NewAccess); 2028 Updater.insertDef(NewAccessMD, /*RenameUses=*/true); 2029 Malloc->replaceAllUsesWith(Calloc); 2030 deleteDeadInstruction(Malloc); 2031 return true; 2032 } 2033 2034 // Check if there is a dominating condition, that implies that the value 2035 // being stored in a ptr is already present in the ptr. 2036 bool dominatingConditionImpliesValue(MemoryDef *Def) { 2037 auto *StoreI = cast<StoreInst>(Def->getMemoryInst()); 2038 BasicBlock *StoreBB = StoreI->getParent(); 2039 Value *StorePtr = StoreI->getPointerOperand(); 2040 Value *StoreVal = StoreI->getValueOperand(); 2041 2042 DomTreeNode *IDom = DT.getNode(StoreBB)->getIDom(); 2043 if (!IDom) 2044 return false; 2045 2046 auto *BI = dyn_cast<BranchInst>(IDom->getBlock()->getTerminator()); 2047 if (!BI || !BI->isConditional()) 2048 return false; 2049 2050 // In case both blocks are the same, it is not possible to determine 2051 // if optimization is possible. (We would not want to optimize a store 2052 // in the FalseBB if condition is true and vice versa.) 2053 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 2054 return false; 2055 2056 Instruction *ICmpL; 2057 CmpPredicate Pred; 2058 if (!match(BI->getCondition(), 2059 m_c_ICmp(Pred, 2060 m_CombineAnd(m_Load(m_Specific(StorePtr)), 2061 m_Instruction(ICmpL)), 2062 m_Specific(StoreVal))) || 2063 !ICmpInst::isEquality(Pred)) 2064 return false; 2065 2066 // In case the else blocks also branches to the if block or the other way 2067 // around it is not possible to determine if the optimization is possible. 2068 if (Pred == ICmpInst::ICMP_EQ && 2069 !DT.dominates(BasicBlockEdge(BI->getParent(), BI->getSuccessor(0)), 2070 StoreBB)) 2071 return false; 2072 2073 if (Pred == ICmpInst::ICMP_NE && 2074 !DT.dominates(BasicBlockEdge(BI->getParent(), BI->getSuccessor(1)), 2075 StoreBB)) 2076 return false; 2077 2078 MemoryAccess *LoadAcc = MSSA.getMemoryAccess(ICmpL); 2079 MemoryAccess *ClobAcc = 2080 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA); 2081 2082 return MSSA.dominates(ClobAcc, LoadAcc); 2083 } 2084 2085 /// \returns true if \p Def is a no-op store, either because it 2086 /// directly stores back a loaded value or stores zero to a calloced object. 2087 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) { 2088 Instruction *DefI = Def->getMemoryInst(); 2089 StoreInst *Store = dyn_cast<StoreInst>(DefI); 2090 MemSetInst *MemSet = dyn_cast<MemSetInst>(DefI); 2091 Constant *StoredConstant = nullptr; 2092 if (Store) 2093 StoredConstant = dyn_cast<Constant>(Store->getOperand(0)); 2094 else if (MemSet) 2095 StoredConstant = dyn_cast<Constant>(MemSet->getValue()); 2096 else 2097 return false; 2098 2099 if (!isRemovable(DefI)) 2100 return false; 2101 2102 if (StoredConstant) { 2103 Constant *InitC = 2104 getInitialValueOfAllocation(DefUO, &TLI, StoredConstant->getType()); 2105 // If the clobbering access is LiveOnEntry, no instructions between them 2106 // can modify the memory location. 2107 if (InitC && InitC == StoredConstant) 2108 return MSSA.isLiveOnEntryDef( 2109 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, BatchAA)); 2110 } 2111 2112 if (!Store) 2113 return false; 2114 2115 if (dominatingConditionImpliesValue(Def)) 2116 return true; 2117 2118 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) { 2119 if (LoadI->getPointerOperand() == Store->getOperand(1)) { 2120 // Get the defining access for the load. 2121 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess(); 2122 // Fast path: the defining accesses are the same. 2123 if (LoadAccess == Def->getDefiningAccess()) 2124 return true; 2125 2126 // Look through phi accesses. Recursively scan all phi accesses by 2127 // adding them to a worklist. Bail when we run into a memory def that 2128 // does not match LoadAccess. 2129 SetVector<MemoryAccess *> ToCheck; 2130 MemoryAccess *Current = 2131 MSSA.getWalker()->getClobberingMemoryAccess(Def, BatchAA); 2132 // We don't want to bail when we run into the store memory def. But, 2133 // the phi access may point to it. So, pretend like we've already 2134 // checked it. 2135 ToCheck.insert(Def); 2136 ToCheck.insert(Current); 2137 // Start at current (1) to simulate already having checked Def. 2138 for (unsigned I = 1; I < ToCheck.size(); ++I) { 2139 Current = ToCheck[I]; 2140 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) { 2141 // Check all the operands. 2142 for (auto &Use : PhiAccess->incoming_values()) 2143 ToCheck.insert(cast<MemoryAccess>(&Use)); 2144 continue; 2145 } 2146 2147 // If we found a memory def, bail. This happens when we have an 2148 // unrelated write in between an otherwise noop store. 2149 assert(isa<MemoryDef>(Current) && 2150 "Only MemoryDefs should reach here."); 2151 // TODO: Skip no alias MemoryDefs that have no aliasing reads. 2152 // We are searching for the definition of the store's destination. 2153 // So, if that is the same definition as the load, then this is a 2154 // noop. Otherwise, fail. 2155 if (LoadAccess != Current) 2156 return false; 2157 } 2158 return true; 2159 } 2160 } 2161 2162 return false; 2163 } 2164 2165 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) { 2166 bool Changed = false; 2167 for (auto OI : IOL) { 2168 Instruction *DeadI = OI.first; 2169 MemoryLocation Loc = *getLocForWrite(DeadI); 2170 assert(isRemovable(DeadI) && "Expect only removable instruction"); 2171 2172 const Value *Ptr = Loc.Ptr->stripPointerCasts(); 2173 int64_t DeadStart = 0; 2174 uint64_t DeadSize = Loc.Size.getValue(); 2175 GetPointerBaseWithConstantOffset(Ptr, DeadStart, DL); 2176 OverlapIntervalsTy &IntervalMap = OI.second; 2177 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize); 2178 if (IntervalMap.empty()) 2179 continue; 2180 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize); 2181 } 2182 return Changed; 2183 } 2184 2185 /// Eliminates writes to locations where the value that is being written 2186 /// is already stored at the same location. 2187 bool eliminateRedundantStoresOfExistingValues() { 2188 bool MadeChange = false; 2189 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the " 2190 "already existing value\n"); 2191 for (auto *Def : MemDefs) { 2192 if (SkipStores.contains(Def) || MSSA.isLiveOnEntryDef(Def)) 2193 continue; 2194 2195 Instruction *DefInst = Def->getMemoryInst(); 2196 auto MaybeDefLoc = getLocForWrite(DefInst); 2197 if (!MaybeDefLoc || !isRemovable(DefInst)) 2198 continue; 2199 2200 MemoryDef *UpperDef; 2201 // To conserve compile-time, we avoid walking to the next clobbering def. 2202 // Instead, we just try to get the optimized access, if it exists. DSE 2203 // will try to optimize defs during the earlier traversal. 2204 if (Def->isOptimized()) 2205 UpperDef = dyn_cast<MemoryDef>(Def->getOptimized()); 2206 else 2207 UpperDef = dyn_cast<MemoryDef>(Def->getDefiningAccess()); 2208 if (!UpperDef || MSSA.isLiveOnEntryDef(UpperDef)) 2209 continue; 2210 2211 Instruction *UpperInst = UpperDef->getMemoryInst(); 2212 auto IsRedundantStore = [&]() { 2213 if (DefInst->isIdenticalTo(UpperInst)) 2214 return true; 2215 if (auto *MemSetI = dyn_cast<MemSetInst>(UpperInst)) { 2216 if (auto *SI = dyn_cast<StoreInst>(DefInst)) { 2217 // MemSetInst must have a write location. 2218 auto UpperLoc = getLocForWrite(UpperInst); 2219 if (!UpperLoc) 2220 return false; 2221 int64_t InstWriteOffset = 0; 2222 int64_t DepWriteOffset = 0; 2223 auto OR = isOverwrite(UpperInst, DefInst, *UpperLoc, *MaybeDefLoc, 2224 InstWriteOffset, DepWriteOffset); 2225 Value *StoredByte = isBytewiseValue(SI->getValueOperand(), DL); 2226 return StoredByte && StoredByte == MemSetI->getOperand(1) && 2227 OR == OW_Complete; 2228 } 2229 } 2230 return false; 2231 }; 2232 2233 if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc, DefInst)) 2234 continue; 2235 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst 2236 << '\n'); 2237 deleteDeadInstruction(DefInst); 2238 NumRedundantStores++; 2239 MadeChange = true; 2240 } 2241 return MadeChange; 2242 } 2243 2244 // Return the locations written by the initializes attribute. 2245 // Note that this function considers: 2246 // 1. Unwind edge: use "initializes" attribute only if the callee has 2247 // "nounwind" attribute, or the argument has "dead_on_unwind" attribute, 2248 // or the argument is invisible to caller on unwind. That is, we don't 2249 // perform incorrect DSE on unwind edges in the current function. 2250 // 2. Argument alias: for aliasing arguments, the "initializes" attribute is 2251 // the intersected range list of their "initializes" attributes. 2252 SmallVector<MemoryLocation, 1> getInitializesArgMemLoc(const Instruction *I); 2253 2254 // Try to eliminate dead defs that access `KillingLocWrapper.MemLoc` and are 2255 // killed by `KillingLocWrapper.MemDef`. Return whether 2256 // any changes were made, and whether `KillingLocWrapper.DefInst` was deleted. 2257 std::pair<bool, bool> 2258 eliminateDeadDefs(const MemoryLocationWrapper &KillingLocWrapper); 2259 2260 // Try to eliminate dead defs killed by `KillingDefWrapper` and return the 2261 // change state: whether make any change. 2262 bool eliminateDeadDefs(const MemoryDefWrapper &KillingDefWrapper); 2263 }; 2264 2265 // Return true if "Arg" is function local and isn't captured before "CB". 2266 bool isFuncLocalAndNotCaptured(Value *Arg, const CallBase *CB, 2267 EarliestEscapeAnalysis &EA) { 2268 const Value *UnderlyingObj = getUnderlyingObject(Arg); 2269 return isIdentifiedFunctionLocal(UnderlyingObj) && 2270 EA.isNotCapturedBefore(UnderlyingObj, CB, /*OrAt*/ true); 2271 } 2272 2273 SmallVector<MemoryLocation, 1> 2274 DSEState::getInitializesArgMemLoc(const Instruction *I) { 2275 const CallBase *CB = dyn_cast<CallBase>(I); 2276 if (!CB) 2277 return {}; 2278 2279 // Collect aliasing arguments and their initializes ranges. 2280 SmallMapVector<Value *, SmallVector<ArgumentInitInfo, 2>, 2> Arguments; 2281 for (unsigned Idx = 0, Count = CB->arg_size(); Idx < Count; ++Idx) { 2282 ConstantRangeList Inits; 2283 Attribute InitializesAttr = CB->getParamAttr(Idx, Attribute::Initializes); 2284 if (InitializesAttr.isValid()) 2285 Inits = InitializesAttr.getValueAsConstantRangeList(); 2286 2287 Value *CurArg = CB->getArgOperand(Idx); 2288 // Check whether "CurArg" could alias with global variables. We require 2289 // either it's function local and isn't captured before or the "CB" only 2290 // accesses arg or inaccessible mem. 2291 if (!Inits.empty() && !CB->onlyAccessesInaccessibleMemOrArgMem() && 2292 !isFuncLocalAndNotCaptured(CurArg, CB, EA)) 2293 Inits = ConstantRangeList(); 2294 2295 // We don't perform incorrect DSE on unwind edges in the current function, 2296 // and use the "initializes" attribute to kill dead stores if: 2297 // - The call does not throw exceptions, "CB->doesNotThrow()". 2298 // - Or the callee parameter has "dead_on_unwind" attribute. 2299 // - Or the argument is invisible to caller on unwind, and there are no 2300 // unwind edges from this call in the current function (e.g. `CallInst`). 2301 bool IsDeadOrInvisibleOnUnwind = 2302 CB->paramHasAttr(Idx, Attribute::DeadOnUnwind) || 2303 (isa<CallInst>(CB) && isInvisibleToCallerOnUnwind(CurArg)); 2304 ArgumentInitInfo InitInfo{Idx, IsDeadOrInvisibleOnUnwind, Inits}; 2305 bool FoundAliasing = false; 2306 for (auto &[Arg, AliasList] : Arguments) { 2307 auto AAR = BatchAA.alias(MemoryLocation::getBeforeOrAfter(Arg), 2308 MemoryLocation::getBeforeOrAfter(CurArg)); 2309 if (AAR == AliasResult::NoAlias) { 2310 continue; 2311 } else if (AAR == AliasResult::MustAlias) { 2312 FoundAliasing = true; 2313 AliasList.push_back(InitInfo); 2314 } else { 2315 // For PartialAlias and MayAlias, there is an offset or may be an 2316 // unknown offset between the arguments and we insert an empty init 2317 // range to discard the entire initializes info while intersecting. 2318 FoundAliasing = true; 2319 AliasList.push_back(ArgumentInitInfo{Idx, IsDeadOrInvisibleOnUnwind, 2320 ConstantRangeList()}); 2321 } 2322 } 2323 if (!FoundAliasing) 2324 Arguments[CurArg] = {InitInfo}; 2325 } 2326 2327 SmallVector<MemoryLocation, 1> Locations; 2328 for (const auto &[_, Args] : Arguments) { 2329 auto IntersectedRanges = 2330 getIntersectedInitRangeList(Args, CB->doesNotThrow()); 2331 if (IntersectedRanges.empty()) 2332 continue; 2333 2334 for (const auto &Arg : Args) { 2335 for (const auto &Range : IntersectedRanges) { 2336 int64_t Start = Range.getLower().getSExtValue(); 2337 int64_t End = Range.getUpper().getSExtValue(); 2338 // For now, we only handle locations starting at offset 0. 2339 if (Start == 0) 2340 Locations.push_back(MemoryLocation(CB->getArgOperand(Arg.Idx), 2341 LocationSize::precise(End - Start), 2342 CB->getAAMetadata())); 2343 } 2344 } 2345 } 2346 return Locations; 2347 } 2348 2349 std::pair<bool, bool> 2350 DSEState::eliminateDeadDefs(const MemoryLocationWrapper &KillingLocWrapper) { 2351 bool Changed = false; 2352 bool DeletedKillingLoc = false; 2353 unsigned ScanLimit = MemorySSAScanLimit; 2354 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit; 2355 unsigned PartialLimit = MemorySSAPartialStoreLimit; 2356 // Worklist of MemoryAccesses that may be killed by 2357 // "KillingLocWrapper.MemDef". 2358 SmallSetVector<MemoryAccess *, 8> ToCheck; 2359 // Track MemoryAccesses that have been deleted in the loop below, so we can 2360 // skip them. Don't use SkipStores for this, which may contain reused 2361 // MemoryAccess addresses. 2362 SmallPtrSet<MemoryAccess *, 8> Deleted; 2363 [[maybe_unused]] unsigned OrigNumSkipStores = SkipStores.size(); 2364 ToCheck.insert(KillingLocWrapper.MemDef->getDefiningAccess()); 2365 2366 // Check if MemoryAccesses in the worklist are killed by 2367 // "KillingLocWrapper.MemDef". 2368 for (unsigned I = 0; I < ToCheck.size(); I++) { 2369 MemoryAccess *Current = ToCheck[I]; 2370 if (Deleted.contains(Current)) 2371 continue; 2372 std::optional<MemoryAccess *> MaybeDeadAccess = getDomMemoryDef( 2373 KillingLocWrapper.MemDef, Current, KillingLocWrapper.MemLoc, 2374 KillingLocWrapper.UnderlyingObject, ScanLimit, WalkerStepLimit, 2375 isMemTerminatorInst(KillingLocWrapper.DefInst), PartialLimit, 2376 KillingLocWrapper.DefByInitializesAttr); 2377 2378 if (!MaybeDeadAccess) { 2379 LLVM_DEBUG(dbgs() << " finished walk\n"); 2380 continue; 2381 } 2382 MemoryAccess *DeadAccess = *MaybeDeadAccess; 2383 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess); 2384 if (isa<MemoryPhi>(DeadAccess)) { 2385 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n"); 2386 for (Value *V : cast<MemoryPhi>(DeadAccess)->incoming_values()) { 2387 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V); 2388 BasicBlock *IncomingBlock = IncomingAccess->getBlock(); 2389 BasicBlock *PhiBlock = DeadAccess->getBlock(); 2390 2391 // We only consider incoming MemoryAccesses that come before the 2392 // MemoryPhi. Otherwise we could discover candidates that do not 2393 // strictly dominate our starting def. 2394 if (PostOrderNumbers[IncomingBlock] > PostOrderNumbers[PhiBlock]) 2395 ToCheck.insert(IncomingAccess); 2396 } 2397 continue; 2398 } 2399 // We cannot apply the initializes attribute to DeadAccess/DeadDef. 2400 // It would incorrectly consider a call instruction as redundant store 2401 // and remove this call instruction. 2402 // TODO: this conflates the existence of a MemoryLocation with being able 2403 // to delete the instruction. Fix isRemovable() to consider calls with 2404 // side effects that cannot be removed, e.g. calls with the initializes 2405 // attribute, and remove getLocForInst(ConsiderInitializesAttr = false). 2406 MemoryDefWrapper DeadDefWrapper( 2407 cast<MemoryDef>(DeadAccess), 2408 getLocForInst(cast<MemoryDef>(DeadAccess)->getMemoryInst(), 2409 /*ConsiderInitializesAttr=*/false)); 2410 assert(DeadDefWrapper.DefinedLocations.size() == 1); 2411 MemoryLocationWrapper &DeadLocWrapper = 2412 DeadDefWrapper.DefinedLocations.front(); 2413 LLVM_DEBUG(dbgs() << " (" << *DeadLocWrapper.DefInst << ")\n"); 2414 ToCheck.insert(DeadLocWrapper.MemDef->getDefiningAccess()); 2415 NumGetDomMemoryDefPassed++; 2416 2417 if (!DebugCounter::shouldExecute(MemorySSACounter)) 2418 continue; 2419 if (isMemTerminatorInst(KillingLocWrapper.DefInst)) { 2420 if (KillingLocWrapper.UnderlyingObject != DeadLocWrapper.UnderlyingObject) 2421 continue; 2422 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " 2423 << *DeadLocWrapper.DefInst << "\n KILLER: " 2424 << *KillingLocWrapper.DefInst << '\n'); 2425 deleteDeadInstruction(DeadLocWrapper.DefInst, &Deleted); 2426 ++NumFastStores; 2427 Changed = true; 2428 } else { 2429 // Check if DeadI overwrites KillingI. 2430 int64_t KillingOffset = 0; 2431 int64_t DeadOffset = 0; 2432 OverwriteResult OR = 2433 isOverwrite(KillingLocWrapper.DefInst, DeadLocWrapper.DefInst, 2434 KillingLocWrapper.MemLoc, DeadLocWrapper.MemLoc, 2435 KillingOffset, DeadOffset); 2436 if (OR == OW_MaybePartial) { 2437 auto &IOL = IOLs[DeadLocWrapper.DefInst->getParent()]; 2438 OR = isPartialOverwrite(KillingLocWrapper.MemLoc, DeadLocWrapper.MemLoc, 2439 KillingOffset, DeadOffset, 2440 DeadLocWrapper.DefInst, IOL); 2441 } 2442 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) { 2443 auto *DeadSI = dyn_cast<StoreInst>(DeadLocWrapper.DefInst); 2444 auto *KillingSI = dyn_cast<StoreInst>(KillingLocWrapper.DefInst); 2445 // We are re-using tryToMergePartialOverlappingStores, which requires 2446 // DeadSI to dominate KillingSI. 2447 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA. 2448 if (DeadSI && KillingSI && DT.dominates(DeadSI, KillingSI)) { 2449 if (Constant *Merged = tryToMergePartialOverlappingStores( 2450 KillingSI, DeadSI, KillingOffset, DeadOffset, DL, BatchAA, 2451 &DT)) { 2452 2453 // Update stored value of earlier store to merged constant. 2454 DeadSI->setOperand(0, Merged); 2455 ++NumModifiedStores; 2456 Changed = true; 2457 DeletedKillingLoc = true; 2458 2459 // Remove killing store and remove any outstanding overlap 2460 // intervals for the updated store. 2461 deleteDeadInstruction(KillingSI, &Deleted); 2462 auto I = IOLs.find(DeadSI->getParent()); 2463 if (I != IOLs.end()) 2464 I->second.erase(DeadSI); 2465 break; 2466 } 2467 } 2468 } 2469 if (OR == OW_Complete) { 2470 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " 2471 << *DeadLocWrapper.DefInst << "\n KILLER: " 2472 << *KillingLocWrapper.DefInst << '\n'); 2473 deleteDeadInstruction(DeadLocWrapper.DefInst, &Deleted); 2474 ++NumFastStores; 2475 Changed = true; 2476 } 2477 } 2478 } 2479 2480 assert(SkipStores.size() - OrigNumSkipStores == Deleted.size() && 2481 "SkipStores and Deleted out of sync?"); 2482 2483 return {Changed, DeletedKillingLoc}; 2484 } 2485 2486 bool DSEState::eliminateDeadDefs(const MemoryDefWrapper &KillingDefWrapper) { 2487 if (KillingDefWrapper.DefinedLocations.empty()) { 2488 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for " 2489 << *KillingDefWrapper.DefInst << "\n"); 2490 return false; 2491 } 2492 2493 bool MadeChange = false; 2494 for (auto &KillingLocWrapper : KillingDefWrapper.DefinedLocations) { 2495 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by " 2496 << *KillingLocWrapper.MemDef << " (" 2497 << *KillingLocWrapper.DefInst << ")\n"); 2498 auto [Changed, DeletedKillingLoc] = eliminateDeadDefs(KillingLocWrapper); 2499 MadeChange |= Changed; 2500 2501 // Check if the store is a no-op. 2502 if (!DeletedKillingLoc && storeIsNoop(KillingLocWrapper.MemDef, 2503 KillingLocWrapper.UnderlyingObject)) { 2504 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " 2505 << *KillingLocWrapper.DefInst << '\n'); 2506 deleteDeadInstruction(KillingLocWrapper.DefInst); 2507 NumRedundantStores++; 2508 MadeChange = true; 2509 continue; 2510 } 2511 // Can we form a calloc from a memset/malloc pair? 2512 if (!DeletedKillingLoc && 2513 tryFoldIntoCalloc(KillingLocWrapper.MemDef, 2514 KillingLocWrapper.UnderlyingObject)) { 2515 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n" 2516 << " DEAD: " << *KillingLocWrapper.DefInst << '\n'); 2517 deleteDeadInstruction(KillingLocWrapper.DefInst); 2518 MadeChange = true; 2519 continue; 2520 } 2521 } 2522 return MadeChange; 2523 } 2524 2525 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, 2526 DominatorTree &DT, PostDominatorTree &PDT, 2527 const TargetLibraryInfo &TLI, 2528 const LoopInfo &LI) { 2529 bool MadeChange = false; 2530 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI); 2531 // For each store: 2532 for (unsigned I = 0; I < State.MemDefs.size(); I++) { 2533 MemoryDef *KillingDef = State.MemDefs[I]; 2534 if (State.SkipStores.count(KillingDef)) 2535 continue; 2536 2537 MemoryDefWrapper KillingDefWrapper( 2538 KillingDef, State.getLocForInst(KillingDef->getMemoryInst(), 2539 EnableInitializesImprovement)); 2540 MadeChange |= State.eliminateDeadDefs(KillingDefWrapper); 2541 } 2542 2543 if (EnablePartialOverwriteTracking) 2544 for (auto &KV : State.IOLs) 2545 MadeChange |= State.removePartiallyOverlappedStores(KV.second); 2546 2547 MadeChange |= State.eliminateRedundantStoresOfExistingValues(); 2548 MadeChange |= State.eliminateDeadWritesAtEndOfFunction(); 2549 2550 while (!State.ToRemove.empty()) { 2551 Instruction *DeadInst = State.ToRemove.pop_back_val(); 2552 DeadInst->eraseFromParent(); 2553 } 2554 2555 return MadeChange; 2556 } 2557 } // end anonymous namespace 2558 2559 //===----------------------------------------------------------------------===// 2560 // DSE Pass 2561 //===----------------------------------------------------------------------===// 2562 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { 2563 AliasAnalysis &AA = AM.getResult<AAManager>(F); 2564 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F); 2565 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 2566 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2567 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 2568 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 2569 2570 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI); 2571 2572 #ifdef LLVM_ENABLE_STATS 2573 if (AreStatisticsEnabled()) 2574 for (auto &I : instructions(F)) 2575 NumRemainingStores += isa<StoreInst>(&I); 2576 #endif 2577 2578 if (!Changed) 2579 return PreservedAnalyses::all(); 2580 2581 PreservedAnalyses PA; 2582 PA.preserveSet<CFGAnalyses>(); 2583 PA.preserve<MemorySSAAnalysis>(); 2584 PA.preserve<LoopAnalysis>(); 2585 return PA; 2586 } 2587