xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp (revision bfa711a970d50c9101c8962609f9aad4f5395825)
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitPHINode function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include <optional>
24 
25 using namespace llvm;
26 using namespace llvm::PatternMatch;
27 
28 #define DEBUG_TYPE "instcombine"
29 
30 static cl::opt<unsigned>
31 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
32            cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
33 
34 STATISTIC(NumPHIsOfInsertValues,
35           "Number of phi-of-insertvalue turned into insertvalue-of-phis");
36 STATISTIC(NumPHIsOfExtractValues,
37           "Number of phi-of-extractvalue turned into extractvalue-of-phi");
38 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
39 
40 /// The PHI arguments will be folded into a single operation with a PHI node
41 /// as input. The debug location of the single operation will be the merged
42 /// locations of the original PHI node arguments.
43 void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
44   auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
45   Inst->setDebugLoc(FirstInst->getDebugLoc());
46   // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
47   // will be inefficient.
48   assert(!isa<CallInst>(Inst));
49 
50   for (Value *V : drop_begin(PN.incoming_values())) {
51     auto *I = cast<Instruction>(V);
52     Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
53   }
54 }
55 
56 /// If the phi is within a phi web, which is formed by the def-use chain
57 /// of phis and all the phis in the web are only used in the other phis.
58 /// In this case, these phis are dead and we will remove all of them.
59 bool InstCombinerImpl::foldDeadPhiWeb(PHINode &PN) {
60   SmallVector<PHINode *, 16> Stack;
61   SmallPtrSet<PHINode *, 16> Visited;
62   Stack.push_back(&PN);
63   while (!Stack.empty()) {
64     PHINode *Phi = Stack.pop_back_val();
65     if (!Visited.insert(Phi).second)
66       continue;
67     // Early stop if the set of PHIs is large
68     if (Visited.size() == 16)
69       return false;
70     for (User *Use : Phi->users()) {
71       if (PHINode *PhiUse = dyn_cast<PHINode>(Use))
72         Stack.push_back(PhiUse);
73       else
74         return false;
75     }
76   }
77   for (PHINode *Phi : Visited)
78     replaceInstUsesWith(*Phi, PoisonValue::get(Phi->getType()));
79   for (PHINode *Phi : Visited)
80     eraseInstFromFunction(*Phi);
81   return true;
82 }
83 
84 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
85 // If there is an existing pointer typed PHI that produces the same value as PN,
86 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
87 // PHI node:
88 //
89 // Case-1:
90 // bb1:
91 //     int_init = PtrToInt(ptr_init)
92 //     br label %bb2
93 // bb2:
94 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
95 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
96 //    ptr_val2 = IntToPtr(int_val)
97 //    ...
98 //    use(ptr_val2)
99 //    ptr_val_inc = ...
100 //    inc_val_inc = PtrToInt(ptr_val_inc)
101 //
102 // ==>
103 // bb1:
104 //     br label %bb2
105 // bb2:
106 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
107 //    ...
108 //    use(ptr_val)
109 //    ptr_val_inc = ...
110 //
111 // Case-2:
112 // bb1:
113 //    int_ptr = BitCast(ptr_ptr)
114 //    int_init = Load(int_ptr)
115 //    br label %bb2
116 // bb2:
117 //    int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
118 //    ptr_val2 = IntToPtr(int_val)
119 //    ...
120 //    use(ptr_val2)
121 //    ptr_val_inc = ...
122 //    inc_val_inc = PtrToInt(ptr_val_inc)
123 // ==>
124 // bb1:
125 //    ptr_init = Load(ptr_ptr)
126 //    br label %bb2
127 // bb2:
128 //    ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
129 //    ...
130 //    use(ptr_val)
131 //    ptr_val_inc = ...
132 //    ...
133 //
134 bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
135   if (!PN.getType()->isIntegerTy())
136     return false;
137   if (!PN.hasOneUse())
138     return false;
139 
140   auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
141   if (!IntToPtr)
142     return false;
143 
144   // Check if the pointer is actually used as pointer:
145   auto HasPointerUse = [](Instruction *IIP) {
146     for (User *U : IIP->users()) {
147       Value *Ptr = nullptr;
148       if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
149         Ptr = LoadI->getPointerOperand();
150       } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
151         Ptr = SI->getPointerOperand();
152       } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
153         Ptr = GI->getPointerOperand();
154       }
155 
156       if (Ptr && Ptr == IIP)
157         return true;
158     }
159     return false;
160   };
161 
162   if (!HasPointerUse(IntToPtr))
163     return false;
164 
165   if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
166       DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
167     return false;
168 
169   SmallVector<Value *, 4> AvailablePtrVals;
170   for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
171     BasicBlock *BB = std::get<0>(Incoming);
172     Value *Arg = std::get<1>(Incoming);
173 
174     // Arg could be a constant, constant expr, etc., which we don't cover here.
175     if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
176       return false;
177 
178     // First look backward:
179     if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
180       AvailablePtrVals.emplace_back(PI->getOperand(0));
181       continue;
182     }
183 
184     // Next look forward:
185     Value *ArgIntToPtr = nullptr;
186     for (User *U : Arg->users()) {
187       if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
188           (DT.dominates(cast<Instruction>(U), BB) ||
189            cast<Instruction>(U)->getParent() == BB)) {
190         ArgIntToPtr = U;
191         break;
192       }
193     }
194 
195     if (ArgIntToPtr) {
196       AvailablePtrVals.emplace_back(ArgIntToPtr);
197       continue;
198     }
199 
200     // If Arg is defined by a PHI, allow it. This will also create
201     // more opportunities iteratively.
202     if (isa<PHINode>(Arg)) {
203       AvailablePtrVals.emplace_back(Arg);
204       continue;
205     }
206 
207     // For a single use integer load:
208     auto *LoadI = dyn_cast<LoadInst>(Arg);
209     if (!LoadI)
210       return false;
211 
212     if (!LoadI->hasOneUse())
213       return false;
214 
215     // Push the integer typed Load instruction into the available
216     // value set, and fix it up later when the pointer typed PHI
217     // is synthesized.
218     AvailablePtrVals.emplace_back(LoadI);
219   }
220 
221   // Now search for a matching PHI
222   auto *BB = PN.getParent();
223   assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
224          "Not enough available ptr typed incoming values");
225   PHINode *MatchingPtrPHI = nullptr;
226   unsigned NumPhis = 0;
227   for (PHINode &PtrPHI : BB->phis()) {
228     // FIXME: consider handling this in AggressiveInstCombine
229     if (NumPhis++ > MaxNumPhis)
230       return false;
231     if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
232       continue;
233     if (any_of(zip(PN.blocks(), AvailablePtrVals),
234                [&](const auto &BlockAndValue) {
235                  BasicBlock *BB = std::get<0>(BlockAndValue);
236                  Value *V = std::get<1>(BlockAndValue);
237                  return PtrPHI.getIncomingValueForBlock(BB) != V;
238                }))
239       continue;
240     MatchingPtrPHI = &PtrPHI;
241     break;
242   }
243 
244   if (MatchingPtrPHI) {
245     assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
246            "Phi's Type does not match with IntToPtr");
247     // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
248     // to make sure another transform can't undo it in the meantime.
249     replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
250     eraseInstFromFunction(*IntToPtr);
251     eraseInstFromFunction(PN);
252     return true;
253   }
254 
255   // If it requires a conversion for every PHI operand, do not do it.
256   if (all_of(AvailablePtrVals, [&](Value *V) {
257         return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
258       }))
259     return false;
260 
261   // If any of the operand that requires casting is a terminator
262   // instruction, do not do it. Similarly, do not do the transform if the value
263   // is PHI in a block with no insertion point, for example, a catchswitch
264   // block, since we will not be able to insert a cast after the PHI.
265   if (any_of(AvailablePtrVals, [&](Value *V) {
266         if (V->getType() == IntToPtr->getType())
267           return false;
268         auto *Inst = dyn_cast<Instruction>(V);
269         if (!Inst)
270           return false;
271         if (Inst->isTerminator())
272           return true;
273         auto *BB = Inst->getParent();
274         if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
275           return true;
276         return false;
277       }))
278     return false;
279 
280   PHINode *NewPtrPHI = PHINode::Create(
281       IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
282 
283   InsertNewInstBefore(NewPtrPHI, PN.getIterator());
284   SmallDenseMap<Value *, Instruction *> Casts;
285   for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
286     auto *IncomingBB = std::get<0>(Incoming);
287     auto *IncomingVal = std::get<1>(Incoming);
288 
289     if (IncomingVal->getType() == IntToPtr->getType()) {
290       NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
291       continue;
292     }
293 
294 #ifndef NDEBUG
295     LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
296     assert((isa<PHINode>(IncomingVal) ||
297             IncomingVal->getType()->isPointerTy() ||
298             (LoadI && LoadI->hasOneUse())) &&
299            "Can not replace LoadInst with multiple uses");
300 #endif
301     // Need to insert a BitCast.
302     // For an integer Load instruction with a single use, the load + IntToPtr
303     // cast will be simplified into a pointer load:
304     // %v = load i64, i64* %a.ip, align 8
305     // %v.cast = inttoptr i64 %v to float **
306     // ==>
307     // %v.ptrp = bitcast i64 * %a.ip to float **
308     // %v.cast = load float *, float ** %v.ptrp, align 8
309     Instruction *&CI = Casts[IncomingVal];
310     if (!CI) {
311       CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
312                                             IncomingVal->getName() + ".ptr");
313       if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
314         BasicBlock::iterator InsertPos(IncomingI);
315         InsertPos++;
316         BasicBlock *BB = IncomingI->getParent();
317         if (isa<PHINode>(IncomingI))
318           InsertPos = BB->getFirstInsertionPt();
319         assert(InsertPos != BB->end() && "should have checked above");
320         InsertNewInstBefore(CI, InsertPos);
321       } else {
322         auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
323         InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt());
324       }
325     }
326     NewPtrPHI->addIncoming(CI, IncomingBB);
327   }
328 
329   // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
330   // to make sure another transform can't undo it in the meantime.
331   replaceInstUsesWith(*IntToPtr, NewPtrPHI);
332   eraseInstFromFunction(*IntToPtr);
333   eraseInstFromFunction(PN);
334   return true;
335 }
336 
337 // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
338 // fold Phi-operand to bitcast.
339 Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
340   // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
341   // Make sure all uses of phi are ptr2int.
342   if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
343     return nullptr;
344 
345   // Iterating over all operands to check presence of target pointers for
346   // optimization.
347   bool OperandWithRoundTripCast = false;
348   for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
349     if (auto *NewOp =
350             simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
351       replaceOperand(PN, OpNum, NewOp);
352       OperandWithRoundTripCast = true;
353     }
354   }
355   if (!OperandWithRoundTripCast)
356     return nullptr;
357   return &PN;
358 }
359 
360 /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
361 /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
362 Instruction *
363 InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
364   auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
365 
366   // Scan to see if all operands are `insertvalue`'s with the same indices,
367   // and all have a single use.
368   for (Value *V : drop_begin(PN.incoming_values())) {
369     auto *I = dyn_cast<InsertValueInst>(V);
370     if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
371       return nullptr;
372   }
373 
374   // For each operand of an `insertvalue`
375   std::array<PHINode *, 2> NewOperands;
376   for (int OpIdx : {0, 1}) {
377     auto *&NewOperand = NewOperands[OpIdx];
378     // Create a new PHI node to receive the values the operand has in each
379     // incoming basic block.
380     NewOperand = PHINode::Create(
381         FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
382         FirstIVI->getOperand(OpIdx)->getName() + ".pn");
383     // And populate each operand's PHI with said values.
384     for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
385       NewOperand->addIncoming(
386           cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
387           std::get<0>(Incoming));
388     InsertNewInstBefore(NewOperand, PN.getIterator());
389   }
390 
391   // And finally, create `insertvalue` over the newly-formed PHI nodes.
392   auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
393                                          FirstIVI->getIndices(), PN.getName());
394 
395   PHIArgMergedDebugLoc(NewIVI, PN);
396   ++NumPHIsOfInsertValues;
397   return NewIVI;
398 }
399 
400 /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
401 /// turn this into a phi[a,b] and a single extractvalue.
402 Instruction *
403 InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
404   auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
405 
406   // Scan to see if all operands are `extractvalue`'s with the same indices,
407   // and all have a single use.
408   for (Value *V : drop_begin(PN.incoming_values())) {
409     auto *I = dyn_cast<ExtractValueInst>(V);
410     if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
411         I->getAggregateOperand()->getType() !=
412             FirstEVI->getAggregateOperand()->getType())
413       return nullptr;
414   }
415 
416   // Create a new PHI node to receive the values the aggregate operand has
417   // in each incoming basic block.
418   auto *NewAggregateOperand = PHINode::Create(
419       FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
420       FirstEVI->getAggregateOperand()->getName() + ".pn");
421   // And populate the PHI with said values.
422   for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
423     NewAggregateOperand->addIncoming(
424         cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
425         std::get<0>(Incoming));
426   InsertNewInstBefore(NewAggregateOperand, PN.getIterator());
427 
428   // And finally, create `extractvalue` over the newly-formed PHI nodes.
429   auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
430                                           FirstEVI->getIndices(), PN.getName());
431 
432   PHIArgMergedDebugLoc(NewEVI, PN);
433   ++NumPHIsOfExtractValues;
434   return NewEVI;
435 }
436 
437 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
438 /// adds all have a single user, turn this into a phi and a single binop.
439 Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
440   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
441   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
442   unsigned Opc = FirstInst->getOpcode();
443   Value *LHSVal = FirstInst->getOperand(0);
444   Value *RHSVal = FirstInst->getOperand(1);
445 
446   Type *LHSType = LHSVal->getType();
447   Type *RHSType = RHSVal->getType();
448 
449   // Scan to see if all operands are the same opcode, and all have one user.
450   for (Value *V : drop_begin(PN.incoming_values())) {
451     Instruction *I = dyn_cast<Instruction>(V);
452     if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
453         // Verify type of the LHS matches so we don't fold cmp's of different
454         // types.
455         I->getOperand(0)->getType() != LHSType ||
456         I->getOperand(1)->getType() != RHSType)
457       return nullptr;
458 
459     // If they are CmpInst instructions, check their predicates
460     if (CmpInst *CI = dyn_cast<CmpInst>(I))
461       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
462         return nullptr;
463 
464     // Keep track of which operand needs a phi node.
465     if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
466     if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
467   }
468 
469   // If both LHS and RHS would need a PHI, don't do this transformation,
470   // because it would increase the number of PHIs entering the block,
471   // which leads to higher register pressure. This is especially
472   // bad when the PHIs are in the header of a loop.
473   if (!LHSVal && !RHSVal)
474     return nullptr;
475 
476   // Otherwise, this is safe to transform!
477 
478   Value *InLHS = FirstInst->getOperand(0);
479   Value *InRHS = FirstInst->getOperand(1);
480   PHINode *NewLHS = nullptr, *NewRHS = nullptr;
481   if (!LHSVal) {
482     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
483                              FirstInst->getOperand(0)->getName() + ".pn");
484     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
485     InsertNewInstBefore(NewLHS, PN.getIterator());
486     LHSVal = NewLHS;
487   }
488 
489   if (!RHSVal) {
490     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
491                              FirstInst->getOperand(1)->getName() + ".pn");
492     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
493     InsertNewInstBefore(NewRHS, PN.getIterator());
494     RHSVal = NewRHS;
495   }
496 
497   // Add all operands to the new PHIs.
498   if (NewLHS || NewRHS) {
499     for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
500       BasicBlock *InBB = std::get<0>(Incoming);
501       Value *InVal = std::get<1>(Incoming);
502       Instruction *InInst = cast<Instruction>(InVal);
503       if (NewLHS) {
504         Value *NewInLHS = InInst->getOperand(0);
505         NewLHS->addIncoming(NewInLHS, InBB);
506       }
507       if (NewRHS) {
508         Value *NewInRHS = InInst->getOperand(1);
509         NewRHS->addIncoming(NewInRHS, InBB);
510       }
511     }
512   }
513 
514   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
515     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
516                                      LHSVal, RHSVal);
517     PHIArgMergedDebugLoc(NewCI, PN);
518     return NewCI;
519   }
520 
521   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
522   BinaryOperator *NewBinOp =
523     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
524 
525   NewBinOp->copyIRFlags(PN.getIncomingValue(0));
526 
527   for (Value *V : drop_begin(PN.incoming_values()))
528     NewBinOp->andIRFlags(V);
529 
530   PHIArgMergedDebugLoc(NewBinOp, PN);
531   return NewBinOp;
532 }
533 
534 Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
535   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
536 
537   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
538                                         FirstInst->op_end());
539   // This is true if all GEP bases are allocas and if all indices into them are
540   // constants.
541   bool AllBasePointersAreAllocas = true;
542 
543   // We don't want to replace this phi if the replacement would require
544   // more than one phi, which leads to higher register pressure. This is
545   // especially bad when the PHIs are in the header of a loop.
546   bool NeededPhi = false;
547 
548   // Remember flags of the first phi-operand getelementptr.
549   GEPNoWrapFlags NW = FirstInst->getNoWrapFlags();
550 
551   // Scan to see if all operands are the same opcode, and all have one user.
552   for (Value *V : drop_begin(PN.incoming_values())) {
553     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
554     if (!GEP || !GEP->hasOneUser() ||
555         GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
556         GEP->getNumOperands() != FirstInst->getNumOperands())
557       return nullptr;
558 
559     NW &= GEP->getNoWrapFlags();
560 
561     // Keep track of whether or not all GEPs are of alloca pointers.
562     if (AllBasePointersAreAllocas &&
563         (!isa<AllocaInst>(GEP->getOperand(0)) ||
564          !GEP->hasAllConstantIndices()))
565       AllBasePointersAreAllocas = false;
566 
567     // Compare the operand lists.
568     for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
569       if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
570         continue;
571 
572       // Don't merge two GEPs when two operands differ (introducing phi nodes)
573       // if one of the PHIs has a constant for the index.  The index may be
574       // substantially cheaper to compute for the constants, so making it a
575       // variable index could pessimize the path.  This also handles the case
576       // for struct indices, which must always be constant.
577       if (isa<ConstantInt>(FirstInst->getOperand(Op)) ||
578           isa<ConstantInt>(GEP->getOperand(Op)))
579         return nullptr;
580 
581       if (FirstInst->getOperand(Op)->getType() !=
582           GEP->getOperand(Op)->getType())
583         return nullptr;
584 
585       // If we already needed a PHI for an earlier operand, and another operand
586       // also requires a PHI, we'd be introducing more PHIs than we're
587       // eliminating, which increases register pressure on entry to the PHI's
588       // block.
589       if (NeededPhi)
590         return nullptr;
591 
592       FixedOperands[Op] = nullptr; // Needs a PHI.
593       NeededPhi = true;
594     }
595   }
596 
597   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
598   // bother doing this transformation.  At best, this will just save a bit of
599   // offset calculation, but all the predecessors will have to materialize the
600   // stack address into a register anyway.  We'd actually rather *clone* the
601   // load up into the predecessors so that we have a load of a gep of an alloca,
602   // which can usually all be folded into the load.
603   if (AllBasePointersAreAllocas)
604     return nullptr;
605 
606   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
607   // that is variable.
608   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
609 
610   bool HasAnyPHIs = false;
611   for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
612     if (FixedOperands[I])
613       continue; // operand doesn't need a phi.
614     Value *FirstOp = FirstInst->getOperand(I);
615     PHINode *NewPN =
616         PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
617     InsertNewInstBefore(NewPN, PN.getIterator());
618 
619     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
620     OperandPhis[I] = NewPN;
621     FixedOperands[I] = NewPN;
622     HasAnyPHIs = true;
623   }
624 
625   // Add all operands to the new PHIs.
626   if (HasAnyPHIs) {
627     for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
628       BasicBlock *InBB = std::get<0>(Incoming);
629       Value *InVal = std::get<1>(Incoming);
630       GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
631 
632       for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
633         if (PHINode *OpPhi = OperandPhis[Op])
634           OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
635     }
636   }
637 
638   Value *Base = FixedOperands[0];
639   GetElementPtrInst *NewGEP =
640       GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
641                                 ArrayRef(FixedOperands).slice(1), NW);
642   PHIArgMergedDebugLoc(NewGEP, PN);
643   return NewGEP;
644 }
645 
646 /// Return true if we know that it is safe to sink the load out of the block
647 /// that defines it. This means that it must be obvious the value of the load is
648 /// not changed from the point of the load to the end of the block it is in.
649 ///
650 /// Finally, it is safe, but not profitable, to sink a load targeting a
651 /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
652 /// to a register.
653 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
654   BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
655 
656   for (++BBI; BBI != E; ++BBI)
657     if (BBI->mayWriteToMemory()) {
658       // Calls that only access inaccessible memory do not block sinking the
659       // load.
660       if (auto *CB = dyn_cast<CallBase>(BBI))
661         if (CB->onlyAccessesInaccessibleMemory())
662           continue;
663       return false;
664     }
665 
666   // Check for non-address taken alloca.  If not address-taken already, it isn't
667   // profitable to do this xform.
668   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
669     bool IsAddressTaken = false;
670     for (User *U : AI->users()) {
671       if (isa<LoadInst>(U)) continue;
672       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
673         // If storing TO the alloca, then the address isn't taken.
674         if (SI->getOperand(1) == AI) continue;
675       }
676       IsAddressTaken = true;
677       break;
678     }
679 
680     if (!IsAddressTaken && AI->isStaticAlloca())
681       return false;
682   }
683 
684   // If this load is a load from a GEP with a constant offset from an alloca,
685   // then we don't want to sink it.  In its present form, it will be
686   // load [constant stack offset].  Sinking it will cause us to have to
687   // materialize the stack addresses in each predecessor in a register only to
688   // do a shared load from register in the successor.
689   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
690     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
691       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
692         return false;
693 
694   return true;
695 }
696 
697 Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
698   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
699 
700   // Can't forward swifterror through a phi.
701   if (FirstLI->getOperand(0)->isSwiftError())
702     return nullptr;
703 
704   // FIXME: This is overconservative; this transform is allowed in some cases
705   // for atomic operations.
706   if (FirstLI->isAtomic())
707     return nullptr;
708 
709   // When processing loads, we need to propagate two bits of information to the
710   // sunk load: whether it is volatile, and what its alignment is.
711   bool IsVolatile = FirstLI->isVolatile();
712   Align LoadAlignment = FirstLI->getAlign();
713   const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
714 
715   // We can't sink the load if the loaded value could be modified between the
716   // load and the PHI.
717   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
718       !isSafeAndProfitableToSinkLoad(FirstLI))
719     return nullptr;
720 
721   // If the PHI is of volatile loads and the load block has multiple
722   // successors, sinking it would remove a load of the volatile value from
723   // the path through the other successor.
724   if (IsVolatile &&
725       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
726     return nullptr;
727 
728   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
729     BasicBlock *InBB = std::get<0>(Incoming);
730     Value *InVal = std::get<1>(Incoming);
731     LoadInst *LI = dyn_cast<LoadInst>(InVal);
732     if (!LI || !LI->hasOneUser() || LI->isAtomic())
733       return nullptr;
734 
735     // Make sure all arguments are the same type of operation.
736     if (LI->isVolatile() != IsVolatile ||
737         LI->getPointerAddressSpace() != LoadAddrSpace)
738       return nullptr;
739 
740     // Can't forward swifterror through a phi.
741     if (LI->getOperand(0)->isSwiftError())
742       return nullptr;
743 
744     // We can't sink the load if the loaded value could be modified between
745     // the load and the PHI.
746     if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
747       return nullptr;
748 
749     LoadAlignment = std::min(LoadAlignment, LI->getAlign());
750 
751     // If the PHI is of volatile loads and the load block has multiple
752     // successors, sinking it would remove a load of the volatile value from
753     // the path through the other successor.
754     if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
755       return nullptr;
756   }
757 
758   // Okay, they are all the same operation.  Create a new PHI node of the
759   // correct type, and PHI together all of the LHS's of the instructions.
760   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
761                                    PN.getNumIncomingValues(),
762                                    PN.getName()+".in");
763 
764   Value *InVal = FirstLI->getOperand(0);
765   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
766   LoadInst *NewLI =
767       new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
768   NewLI->copyMetadata(*FirstLI);
769 
770   // Add all operands to the new PHI and combine TBAA metadata.
771   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
772     BasicBlock *BB = std::get<0>(Incoming);
773     Value *V = std::get<1>(Incoming);
774     LoadInst *LI = cast<LoadInst>(V);
775     combineMetadataForCSE(NewLI, LI, true);
776     Value *NewInVal = LI->getOperand(0);
777     if (NewInVal != InVal)
778       InVal = nullptr;
779     NewPN->addIncoming(NewInVal, BB);
780   }
781 
782   if (InVal) {
783     // The new PHI unions all of the same values together.  This is really
784     // common, so we handle it intelligently here for compile-time speed.
785     NewLI->setOperand(0, InVal);
786     delete NewPN;
787   } else {
788     InsertNewInstBefore(NewPN, PN.getIterator());
789   }
790 
791   // If this was a volatile load that we are merging, make sure to loop through
792   // and mark all the input loads as non-volatile.  If we don't do this, we will
793   // insert a new volatile load and the old ones will not be deletable.
794   if (IsVolatile)
795     for (Value *IncValue : PN.incoming_values())
796       cast<LoadInst>(IncValue)->setVolatile(false);
797 
798   PHIArgMergedDebugLoc(NewLI, PN);
799   return NewLI;
800 }
801 
802 /// TODO: This function could handle other cast types, but then it might
803 /// require special-casing a cast from the 'i1' type. See the comment in
804 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
805 Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
806   // We cannot create a new instruction after the PHI if the terminator is an
807   // EHPad because there is no valid insertion point.
808   if (Instruction *TI = Phi.getParent()->getTerminator())
809     if (TI->isEHPad())
810       return nullptr;
811 
812   // Early exit for the common case of a phi with two operands. These are
813   // handled elsewhere. See the comment below where we check the count of zexts
814   // and constants for more details.
815   unsigned NumIncomingValues = Phi.getNumIncomingValues();
816   if (NumIncomingValues < 3)
817     return nullptr;
818 
819   // Find the narrower type specified by the first zext.
820   Type *NarrowType = nullptr;
821   for (Value *V : Phi.incoming_values()) {
822     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
823       NarrowType = Zext->getSrcTy();
824       break;
825     }
826   }
827   if (!NarrowType)
828     return nullptr;
829 
830   // Walk the phi operands checking that we only have zexts or constants that
831   // we can shrink for free. Store the new operands for the new phi.
832   SmallVector<Value *, 4> NewIncoming;
833   unsigned NumZexts = 0;
834   unsigned NumConsts = 0;
835   for (Value *V : Phi.incoming_values()) {
836     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
837       // All zexts must be identical and have one user.
838       if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
839         return nullptr;
840       NewIncoming.push_back(Zext->getOperand(0));
841       NumZexts++;
842     } else if (auto *C = dyn_cast<Constant>(V)) {
843       // Make sure that constants can fit in the new type.
844       Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType);
845       if (!Trunc)
846         return nullptr;
847       NewIncoming.push_back(Trunc);
848       NumConsts++;
849     } else {
850       // If it's not a cast or a constant, bail out.
851       return nullptr;
852     }
853   }
854 
855   // The more common cases of a phi with no constant operands or just one
856   // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
857   // respectively. foldOpIntoPhi() wants to do the opposite transform that is
858   // performed here. It tries to replicate a cast in the phi operand's basic
859   // block to expose other folding opportunities. Thus, InstCombine will
860   // infinite loop without this check.
861   if (NumConsts == 0 || NumZexts < 2)
862     return nullptr;
863 
864   // All incoming values are zexts or constants that are safe to truncate.
865   // Create a new phi node of the narrow type, phi together all of the new
866   // operands, and zext the result back to the original type.
867   PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
868                                     Phi.getName() + ".shrunk");
869   for (unsigned I = 0; I != NumIncomingValues; ++I)
870     NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
871 
872   InsertNewInstBefore(NewPhi, Phi.getIterator());
873   return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
874 }
875 
876 /// If all operands to a PHI node are the same "unary" operator and they all are
877 /// only used by the PHI, PHI together their inputs, and do the operation once,
878 /// to the result of the PHI.
879 Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
880   // We cannot create a new instruction after the PHI if the terminator is an
881   // EHPad because there is no valid insertion point.
882   if (Instruction *TI = PN.getParent()->getTerminator())
883     if (TI->isEHPad())
884       return nullptr;
885 
886   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
887 
888   if (isa<GetElementPtrInst>(FirstInst))
889     return foldPHIArgGEPIntoPHI(PN);
890   if (isa<LoadInst>(FirstInst))
891     return foldPHIArgLoadIntoPHI(PN);
892   if (isa<InsertValueInst>(FirstInst))
893     return foldPHIArgInsertValueInstructionIntoPHI(PN);
894   if (isa<ExtractValueInst>(FirstInst))
895     return foldPHIArgExtractValueInstructionIntoPHI(PN);
896 
897   // Scan the instruction, looking for input operations that can be folded away.
898   // If all input operands to the phi are the same instruction (e.g. a cast from
899   // the same type or "+42") we can pull the operation through the PHI, reducing
900   // code size and simplifying code.
901   Constant *ConstantOp = nullptr;
902   Type *CastSrcTy = nullptr;
903 
904   if (isa<CastInst>(FirstInst)) {
905     CastSrcTy = FirstInst->getOperand(0)->getType();
906 
907     // Be careful about transforming integer PHIs.  We don't want to pessimize
908     // the code by turning an i32 into an i1293.
909     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
910       if (!shouldChangeType(PN.getType(), CastSrcTy))
911         return nullptr;
912     }
913   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
914     // Can fold binop, compare or shift here if the RHS is a constant,
915     // otherwise call FoldPHIArgBinOpIntoPHI.
916     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
917     if (!ConstantOp)
918       return foldPHIArgBinOpIntoPHI(PN);
919   } else {
920     return nullptr;  // Cannot fold this operation.
921   }
922 
923   // Check to see if all arguments are the same operation.
924   for (Value *V : drop_begin(PN.incoming_values())) {
925     Instruction *I = dyn_cast<Instruction>(V);
926     if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
927       return nullptr;
928     if (CastSrcTy) {
929       if (I->getOperand(0)->getType() != CastSrcTy)
930         return nullptr; // Cast operation must match.
931     } else if (I->getOperand(1) != ConstantOp) {
932       return nullptr;
933     }
934   }
935 
936   // Okay, they are all the same operation.  Create a new PHI node of the
937   // correct type, and PHI together all of the LHS's of the instructions.
938   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
939                                    PN.getNumIncomingValues(),
940                                    PN.getName()+".in");
941 
942   Value *InVal = FirstInst->getOperand(0);
943   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
944 
945   // Add all operands to the new PHI.
946   for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
947     BasicBlock *BB = std::get<0>(Incoming);
948     Value *V = std::get<1>(Incoming);
949     Value *NewInVal = cast<Instruction>(V)->getOperand(0);
950     if (NewInVal != InVal)
951       InVal = nullptr;
952     NewPN->addIncoming(NewInVal, BB);
953   }
954 
955   Value *PhiVal;
956   if (InVal) {
957     // The new PHI unions all of the same values together.  This is really
958     // common, so we handle it intelligently here for compile-time speed.
959     PhiVal = InVal;
960     delete NewPN;
961   } else {
962     InsertNewInstBefore(NewPN, PN.getIterator());
963     PhiVal = NewPN;
964   }
965 
966   // Insert and return the new operation.
967   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
968     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
969                                        PN.getType());
970     PHIArgMergedDebugLoc(NewCI, PN);
971     return NewCI;
972   }
973 
974   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
975     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
976     BinOp->copyIRFlags(PN.getIncomingValue(0));
977 
978     for (Value *V : drop_begin(PN.incoming_values()))
979       BinOp->andIRFlags(V);
980 
981     PHIArgMergedDebugLoc(BinOp, PN);
982     return BinOp;
983   }
984 
985   CmpInst *CIOp = cast<CmpInst>(FirstInst);
986   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
987                                    PhiVal, ConstantOp);
988   PHIArgMergedDebugLoc(NewCI, PN);
989   return NewCI;
990 }
991 
992 /// Return true if this phi node is always equal to NonPhiInVal.
993 /// This happens with mutually cyclic phi nodes like:
994 ///   z = some value; x = phi (y, z); y = phi (x, z)
995 static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal,
996                            SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
997   // See if we already saw this PHI node.
998   if (!ValueEqualPHIs.insert(PN).second)
999     return true;
1000 
1001   // Don't scan crazily complex things.
1002   if (ValueEqualPHIs.size() == 16)
1003     return false;
1004 
1005   // Scan the operands to see if they are either phi nodes or are equal to
1006   // the value.
1007   for (Value *Op : PN->incoming_values()) {
1008     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
1009       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) {
1010         if (NonPhiInVal)
1011           return false;
1012         NonPhiInVal = OpPN;
1013       }
1014     } else if (Op != NonPhiInVal)
1015       return false;
1016   }
1017 
1018   return true;
1019 }
1020 
1021 /// Return an existing non-zero constant if this phi node has one, otherwise
1022 /// return constant 1.
1023 static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
1024   assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
1025   for (Value *V : PN.operands())
1026     if (auto *ConstVA = dyn_cast<ConstantInt>(V))
1027       if (!ConstVA->isZero())
1028         return ConstVA;
1029   return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
1030 }
1031 
1032 namespace {
1033 struct PHIUsageRecord {
1034   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
1035   unsigned Shift;     // The amount shifted.
1036   Instruction *Inst;  // The trunc instruction.
1037 
1038   PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
1039       : PHIId(Pn), Shift(Sh), Inst(User) {}
1040 
1041   bool operator<(const PHIUsageRecord &RHS) const {
1042     if (PHIId < RHS.PHIId) return true;
1043     if (PHIId > RHS.PHIId) return false;
1044     if (Shift < RHS.Shift) return true;
1045     if (Shift > RHS.Shift) return false;
1046     return Inst->getType()->getPrimitiveSizeInBits() <
1047            RHS.Inst->getType()->getPrimitiveSizeInBits();
1048   }
1049 };
1050 
1051 struct LoweredPHIRecord {
1052   PHINode *PN;        // The PHI that was lowered.
1053   unsigned Shift;     // The amount shifted.
1054   unsigned Width;     // The width extracted.
1055 
1056   LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
1057       : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
1058 
1059   // Ctor form used by DenseMap.
1060   LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
1061 };
1062 } // namespace
1063 
1064 namespace llvm {
1065   template<>
1066   struct DenseMapInfo<LoweredPHIRecord> {
1067     static inline LoweredPHIRecord getEmptyKey() {
1068       return LoweredPHIRecord(nullptr, 0);
1069     }
1070     static inline LoweredPHIRecord getTombstoneKey() {
1071       return LoweredPHIRecord(nullptr, 1);
1072     }
1073     static unsigned getHashValue(const LoweredPHIRecord &Val) {
1074       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
1075              (Val.Width>>3);
1076     }
1077     static bool isEqual(const LoweredPHIRecord &LHS,
1078                         const LoweredPHIRecord &RHS) {
1079       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
1080              LHS.Width == RHS.Width;
1081     }
1082   };
1083 } // namespace llvm
1084 
1085 
1086 /// This is an integer PHI and we know that it has an illegal type: see if it is
1087 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
1088 /// the various pieces being extracted. This sort of thing is introduced when
1089 /// SROA promotes an aggregate to large integer values.
1090 ///
1091 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
1092 /// inttoptr.  We should produce new PHIs in the right type.
1093 ///
1094 Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
1095   // PHIUsers - Keep track of all of the truncated values extracted from a set
1096   // of PHIs, along with their offset.  These are the things we want to rewrite.
1097   SmallVector<PHIUsageRecord, 16> PHIUsers;
1098 
1099   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
1100   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
1101   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
1102   // check the uses of (to ensure they are all extracts).
1103   SmallVector<PHINode*, 8> PHIsToSlice;
1104   SmallPtrSet<PHINode*, 8> PHIsInspected;
1105 
1106   PHIsToSlice.push_back(&FirstPhi);
1107   PHIsInspected.insert(&FirstPhi);
1108 
1109   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
1110     PHINode *PN = PHIsToSlice[PHIId];
1111 
1112     // Scan the input list of the PHI.  If any input is an invoke, and if the
1113     // input is defined in the predecessor, then we won't be split the critical
1114     // edge which is required to insert a truncate.  Because of this, we have to
1115     // bail out.
1116     for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1117       BasicBlock *BB = std::get<0>(Incoming);
1118       Value *V = std::get<1>(Incoming);
1119       InvokeInst *II = dyn_cast<InvokeInst>(V);
1120       if (!II)
1121         continue;
1122       if (II->getParent() != BB)
1123         continue;
1124 
1125       // If we have a phi, and if it's directly in the predecessor, then we have
1126       // a critical edge where we need to put the truncate.  Since we can't
1127       // split the edge in instcombine, we have to bail out.
1128       return nullptr;
1129     }
1130 
1131     // If the incoming value is a PHI node before a catchswitch, we cannot
1132     // extract the value within that BB because we cannot insert any non-PHI
1133     // instructions in the BB.
1134     for (auto *Pred : PN->blocks())
1135       if (Pred->getFirstInsertionPt() == Pred->end())
1136         return nullptr;
1137 
1138     for (User *U : PN->users()) {
1139       Instruction *UserI = cast<Instruction>(U);
1140 
1141       // If the user is a PHI, inspect its uses recursively.
1142       if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
1143         if (PHIsInspected.insert(UserPN).second)
1144           PHIsToSlice.push_back(UserPN);
1145         continue;
1146       }
1147 
1148       // Truncates are always ok.
1149       if (isa<TruncInst>(UserI)) {
1150         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
1151         continue;
1152       }
1153 
1154       // Otherwise it must be a lshr which can only be used by one trunc.
1155       if (UserI->getOpcode() != Instruction::LShr ||
1156           !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1157           !isa<ConstantInt>(UserI->getOperand(1)))
1158         return nullptr;
1159 
1160       // Bail on out of range shifts.
1161       unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1162       if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1163         return nullptr;
1164 
1165       unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1166       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1167     }
1168   }
1169 
1170   // If we have no users, they must be all self uses, just nuke the PHI.
1171   if (PHIUsers.empty())
1172     return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
1173 
1174   // If this phi node is transformable, create new PHIs for all the pieces
1175   // extracted out of it.  First, sort the users by their offset and size.
1176   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1177 
1178   LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1179              for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
1180              << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
1181 
1182   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
1183   // hoisted out here to avoid construction/destruction thrashing.
1184   DenseMap<BasicBlock*, Value*> PredValues;
1185 
1186   // ExtractedVals - Each new PHI we introduce is saved here so we don't
1187   // introduce redundant PHIs.
1188   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1189 
1190   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1191     unsigned PHIId = PHIUsers[UserI].PHIId;
1192     PHINode *PN = PHIsToSlice[PHIId];
1193     unsigned Offset = PHIUsers[UserI].Shift;
1194     Type *Ty = PHIUsers[UserI].Inst->getType();
1195 
1196     PHINode *EltPHI;
1197 
1198     // If we've already lowered a user like this, reuse the previously lowered
1199     // value.
1200     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1201 
1202       // Otherwise, Create the new PHI node for this user.
1203       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1204                                PN->getName() + ".off" + Twine(Offset),
1205                                PN->getIterator());
1206       assert(EltPHI->getType() != PN->getType() &&
1207              "Truncate didn't shrink phi?");
1208 
1209       for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1210         BasicBlock *Pred = std::get<0>(Incoming);
1211         Value *InVal = std::get<1>(Incoming);
1212         Value *&PredVal = PredValues[Pred];
1213 
1214         // If we already have a value for this predecessor, reuse it.
1215         if (PredVal) {
1216           EltPHI->addIncoming(PredVal, Pred);
1217           continue;
1218         }
1219 
1220         // Handle the PHI self-reuse case.
1221         if (InVal == PN) {
1222           PredVal = EltPHI;
1223           EltPHI->addIncoming(PredVal, Pred);
1224           continue;
1225         }
1226 
1227         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1228           // If the incoming value was a PHI, and if it was one of the PHIs we
1229           // already rewrote it, just use the lowered value.
1230           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1231             PredVal = Res;
1232             EltPHI->addIncoming(PredVal, Pred);
1233             continue;
1234           }
1235         }
1236 
1237         // Otherwise, do an extract in the predecessor.
1238         Builder.SetInsertPoint(Pred->getTerminator());
1239         Value *Res = InVal;
1240         if (Offset)
1241           Res = Builder.CreateLShr(
1242               Res, ConstantInt::get(InVal->getType(), Offset), "extract");
1243         Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1244         PredVal = Res;
1245         EltPHI->addIncoming(Res, Pred);
1246 
1247         // If the incoming value was a PHI, and if it was one of the PHIs we are
1248         // rewriting, we will ultimately delete the code we inserted.  This
1249         // means we need to revisit that PHI to make sure we extract out the
1250         // needed piece.
1251         if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
1252           if (PHIsInspected.count(OldInVal)) {
1253             unsigned RefPHIId =
1254                 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1255             PHIUsers.push_back(
1256                 PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
1257             ++UserE;
1258           }
1259       }
1260       PredValues.clear();
1261 
1262       LLVM_DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
1263                         << *EltPHI << '\n');
1264       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1265     }
1266 
1267     // Replace the use of this piece with the PHI node.
1268     replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1269   }
1270 
1271   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1272   // with poison.
1273   Value *Poison = PoisonValue::get(FirstPhi.getType());
1274   for (PHINode *PHI : drop_begin(PHIsToSlice))
1275     replaceInstUsesWith(*PHI, Poison);
1276   return replaceInstUsesWith(FirstPhi, Poison);
1277 }
1278 
1279 static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
1280                                        const DominatorTree &DT) {
1281   // Simplify the following patterns:
1282   //       if (cond)
1283   //       /       \
1284   //      ...      ...
1285   //       \       /
1286   //    phi [true] [false]
1287   // and
1288   //        switch (cond)
1289   // case v1: /       \ case v2:
1290   //         ...      ...
1291   //          \       /
1292   //       phi [v1] [v2]
1293   // Make sure all inputs are constants.
1294   if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
1295     return nullptr;
1296 
1297   BasicBlock *BB = PN.getParent();
1298   // Do not bother with unreachable instructions.
1299   if (!DT.isReachableFromEntry(BB))
1300     return nullptr;
1301 
1302   // Determine which value the condition of the idom has for which successor.
1303   LLVMContext &Context = PN.getContext();
1304   auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
1305   Value *Cond;
1306   SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
1307   SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
1308   auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
1309     SuccForValue[C] = Succ;
1310     ++SuccCount[Succ];
1311   };
1312   if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
1313     if (BI->isUnconditional())
1314       return nullptr;
1315 
1316     Cond = BI->getCondition();
1317     AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
1318     AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
1319   } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
1320     Cond = SI->getCondition();
1321     ++SuccCount[SI->getDefaultDest()];
1322     for (auto Case : SI->cases())
1323       AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
1324   } else {
1325     return nullptr;
1326   }
1327 
1328   if (Cond->getType() != PN.getType())
1329     return nullptr;
1330 
1331   // Check that edges outgoing from the idom's terminators dominate respective
1332   // inputs of the Phi.
1333   std::optional<bool> Invert;
1334   for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
1335     auto *Input = cast<ConstantInt>(std::get<0>(Pair));
1336     BasicBlock *Pred = std::get<1>(Pair);
1337     auto IsCorrectInput = [&](ConstantInt *Input) {
1338       // The input needs to be dominated by the corresponding edge of the idom.
1339       // This edge cannot be a multi-edge, as that would imply that multiple
1340       // different condition values follow the same edge.
1341       auto It = SuccForValue.find(Input);
1342       return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
1343              DT.dominates(BasicBlockEdge(IDom, It->second),
1344                           BasicBlockEdge(Pred, BB));
1345     };
1346 
1347     // Depending on the constant, the condition may need to be inverted.
1348     bool NeedsInvert;
1349     if (IsCorrectInput(Input))
1350       NeedsInvert = false;
1351     else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
1352       NeedsInvert = true;
1353     else
1354       return nullptr;
1355 
1356     // Make sure the inversion requirement is always the same.
1357     if (Invert && *Invert != NeedsInvert)
1358       return nullptr;
1359 
1360     Invert = NeedsInvert;
1361   }
1362 
1363   if (!*Invert)
1364     return Cond;
1365 
1366   // This Phi is actually opposite to branching condition of IDom. We invert
1367   // the condition that will potentially open up some opportunities for
1368   // sinking.
1369   auto InsertPt = BB->getFirstInsertionPt();
1370   if (InsertPt != BB->end()) {
1371     Self.Builder.SetInsertPoint(&*BB, InsertPt);
1372     return Self.Builder.CreateNot(Cond);
1373   }
1374 
1375   return nullptr;
1376 }
1377 
1378 // Fold  iv = phi(start, iv.next = iv2.next op start)
1379 // where iv2 = phi(iv2.start, iv2.next = iv2 + iv2.step)
1380 // and   iv2.start op start = start
1381 // to    iv = iv2 op start
1382 static Value *foldDependentIVs(PHINode &PN, IRBuilderBase &Builder) {
1383   BasicBlock *BB = PN.getParent();
1384   if (PN.getNumIncomingValues() != 2)
1385     return nullptr;
1386 
1387   Value *Start;
1388   Instruction *IvNext;
1389   BinaryOperator *Iv2Next;
1390   auto MatchOuterIV = [&](Value *V1, Value *V2) {
1391     if (match(V2, m_c_BinOp(m_Specific(V1), m_BinOp(Iv2Next))) ||
1392         match(V2, m_GEP(m_Specific(V1), m_BinOp(Iv2Next)))) {
1393       Start = V1;
1394       IvNext = cast<Instruction>(V2);
1395       return true;
1396     }
1397     return false;
1398   };
1399 
1400   if (!MatchOuterIV(PN.getIncomingValue(0), PN.getIncomingValue(1)) &&
1401       !MatchOuterIV(PN.getIncomingValue(1), PN.getIncomingValue(0)))
1402     return nullptr;
1403 
1404   PHINode *Iv2;
1405   Value *Iv2Start, *Iv2Step;
1406   if (!matchSimpleRecurrence(Iv2Next, Iv2, Iv2Start, Iv2Step) ||
1407       Iv2->getParent() != BB)
1408     return nullptr;
1409 
1410   auto *BO = dyn_cast<BinaryOperator>(IvNext);
1411   Constant *Identity =
1412       BO ? ConstantExpr::getBinOpIdentity(BO->getOpcode(), Iv2Start->getType())
1413          : Constant::getNullValue(Iv2Start->getType());
1414   if (Iv2Start != Identity)
1415     return nullptr;
1416 
1417   Builder.SetInsertPoint(&*BB, BB->getFirstInsertionPt());
1418   if (!BO) {
1419     auto *GEP = cast<GEPOperator>(IvNext);
1420     return Builder.CreateGEP(GEP->getSourceElementType(), Start, Iv2, "",
1421                              cast<GEPOperator>(IvNext)->getNoWrapFlags());
1422   }
1423 
1424   assert(BO->isCommutative() && "Must be commutative");
1425   Value *Res = Builder.CreateBinOp(BO->getOpcode(), Iv2, Start);
1426   cast<Instruction>(Res)->copyIRFlags(BO);
1427   return Res;
1428 }
1429 
1430 // PHINode simplification
1431 //
1432 Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
1433   if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1434     return replaceInstUsesWith(PN, V);
1435 
1436   if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
1437     return Result;
1438 
1439   if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
1440     return Result;
1441 
1442   // If all PHI operands are the same operation, pull them through the PHI,
1443   // reducing code size.
1444   auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
1445   auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
1446   if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
1447       Inst0->hasOneUser())
1448     if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
1449       return Result;
1450 
1451   // If the incoming values are pointer casts of the same original value,
1452   // replace the phi with a single cast iff we can insert a non-PHI instruction.
1453   if (PN.getType()->isPointerTy() &&
1454       PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
1455     Value *IV0 = PN.getIncomingValue(0);
1456     Value *IV0Stripped = IV0->stripPointerCasts();
1457     // Set to keep track of values known to be equal to IV0Stripped after
1458     // stripping pointer casts.
1459     SmallPtrSet<Value *, 4> CheckedIVs;
1460     CheckedIVs.insert(IV0);
1461     if (IV0 != IV0Stripped &&
1462         all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
1463           return !CheckedIVs.insert(IV).second ||
1464                  IV0Stripped == IV->stripPointerCasts();
1465         })) {
1466       return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
1467     }
1468   }
1469 
1470   if (foldDeadPhiWeb(PN))
1471     return nullptr;
1472 
1473   // Optimization when the phi only has one use
1474   if (PN.hasOneUse()) {
1475     if (foldIntegerTypedPHI(PN))
1476       return nullptr;
1477 
1478     // If this phi has a single use, and if that use just computes a value for
1479     // the next iteration of a loop, delete the phi.  This occurs with unused
1480     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
1481     // common case here is good because the only other things that catch this
1482     // are induction variable analysis (sometimes) and ADCE, which is only run
1483     // late.
1484     Instruction *PHIUser = cast<Instruction>(PN.user_back());
1485     if (PHIUser->hasOneUse() &&
1486         (isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) ||
1487          isa<GetElementPtrInst>(PHIUser)) &&
1488         PHIUser->user_back() == &PN) {
1489       return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1490     }
1491   }
1492 
1493   // When a PHI is used only to be compared with zero, it is safe to replace
1494   // an incoming value proved as known nonzero with any non-zero constant.
1495   // For example, in the code below, the incoming value %v can be replaced
1496   // with any non-zero constant based on the fact that the PHI is only used to
1497   // be compared with zero and %v is a known non-zero value:
1498   // %v = select %cond, 1, 2
1499   // %p = phi [%v, BB] ...
1500   //      icmp eq, %p, 0
1501   // FIXME: To be simple, handle only integer type for now.
1502   // This handles a small number of uses to keep the complexity down, and an
1503   // icmp(or(phi)) can equally be replaced with any non-zero constant as the
1504   // "or" will only add bits.
1505   if (!PN.hasNUsesOrMore(3)) {
1506     SmallVector<Instruction *> DropPoisonFlags;
1507     bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) {
1508       auto *CmpInst = dyn_cast<ICmpInst>(U);
1509       if (!CmpInst) {
1510         // This is always correct as OR only add bits and we are checking
1511         // against 0.
1512         if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) {
1513           DropPoisonFlags.push_back(cast<Instruction>(U));
1514           CmpInst = dyn_cast<ICmpInst>(U->user_back());
1515         }
1516       }
1517       if (!CmpInst || !isa<IntegerType>(PN.getType()) ||
1518           !CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) {
1519         return false;
1520       }
1521       return true;
1522     });
1523     // All uses of PHI results in a compare with zero.
1524     if (AllUsesOfPhiEndsInCmp) {
1525       ConstantInt *NonZeroConst = nullptr;
1526       bool MadeChange = false;
1527       for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1528         Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
1529         Value *VA = PN.getIncomingValue(I);
1530         if (isKnownNonZero(VA, getSimplifyQuery().getWithInstruction(CtxI))) {
1531           if (!NonZeroConst)
1532             NonZeroConst = getAnyNonZeroConstInt(PN);
1533           if (NonZeroConst != VA) {
1534             replaceOperand(PN, I, NonZeroConst);
1535             // The "disjoint" flag may no longer hold after the transform.
1536             for (Instruction *I : DropPoisonFlags)
1537               I->dropPoisonGeneratingFlags();
1538             MadeChange = true;
1539           }
1540         }
1541       }
1542       if (MadeChange)
1543         return &PN;
1544     }
1545   }
1546 
1547   // We sometimes end up with phi cycles that non-obviously end up being the
1548   // same value, for example:
1549   //   z = some value; x = phi (y, z); y = phi (x, z)
1550   // where the phi nodes don't necessarily need to be in the same block.  Do a
1551   // quick check to see if the PHI node only contains a single non-phi value, if
1552   // so, scan to see if the phi cycle is actually equal to that value. If the
1553   // phi has no non-phi values then allow the "NonPhiInVal" to be set later if
1554   // one of the phis itself does not have a single input.
1555   {
1556     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1557     // Scan for the first non-phi operand.
1558     while (InValNo != NumIncomingVals &&
1559            isa<PHINode>(PN.getIncomingValue(InValNo)))
1560       ++InValNo;
1561 
1562     Value *NonPhiInVal =
1563         InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr;
1564 
1565     // Scan the rest of the operands to see if there are any conflicts, if so
1566     // there is no need to recursively scan other phis.
1567     if (NonPhiInVal)
1568       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1569         Value *OpVal = PN.getIncomingValue(InValNo);
1570         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1571           break;
1572       }
1573 
1574     // If we scanned over all operands, then we have one unique value plus
1575     // phi values.  Scan PHI nodes to see if they all merge in each other or
1576     // the value.
1577     if (InValNo == NumIncomingVals) {
1578       SmallPtrSet<PHINode *, 16> ValueEqualPHIs;
1579       if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1580         return replaceInstUsesWith(PN, NonPhiInVal);
1581     }
1582   }
1583 
1584   // If there are multiple PHIs, sort their operands so that they all list
1585   // the blocks in the same order. This will help identical PHIs be eliminated
1586   // by other passes. Other passes shouldn't depend on this for correctness
1587   // however.
1588   auto Res = PredOrder.try_emplace(PN.getParent());
1589   if (!Res.second) {
1590     const auto &Preds = Res.first->second;
1591     for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1592       BasicBlock *BBA = PN.getIncomingBlock(I);
1593       BasicBlock *BBB = Preds[I];
1594       if (BBA != BBB) {
1595         Value *VA = PN.getIncomingValue(I);
1596         unsigned J = PN.getBasicBlockIndex(BBB);
1597         Value *VB = PN.getIncomingValue(J);
1598         PN.setIncomingBlock(I, BBB);
1599         PN.setIncomingValue(I, VB);
1600         PN.setIncomingBlock(J, BBA);
1601         PN.setIncomingValue(J, VA);
1602         // NOTE: Instcombine normally would want us to "return &PN" if we
1603         // modified any of the operands of an instruction.  However, since we
1604         // aren't adding or removing uses (just rearranging them) we don't do
1605         // this in this case.
1606       }
1607     }
1608   } else {
1609     // Remember the block order of the first encountered phi node.
1610     append_range(Res.first->second, PN.blocks());
1611   }
1612 
1613   // Is there an identical PHI node in this basic block?
1614   for (PHINode &IdenticalPN : PN.getParent()->phis()) {
1615     // Ignore the PHI node itself.
1616     if (&IdenticalPN == &PN)
1617       continue;
1618     // Note that even though we've just canonicalized this PHI, due to the
1619     // worklist visitation order, there are no guarantess that *every* PHI
1620     // has been canonicalized, so we can't just compare operands ranges.
1621     if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
1622       continue;
1623     // Just use that PHI instead then.
1624     ++NumPHICSEs;
1625     return replaceInstUsesWith(PN, &IdenticalPN);
1626   }
1627 
1628   // If this is an integer PHI and we know that it has an illegal type, see if
1629   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
1630   // PHI into the various pieces being extracted.  This sort of thing is
1631   // introduced when SROA promotes an aggregate to a single large integer type.
1632   if (PN.getType()->isIntegerTy() &&
1633       !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1634     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1635       return Res;
1636 
1637   // Ultimately, try to replace this Phi with a dominating condition.
1638   if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
1639     return replaceInstUsesWith(PN, V);
1640 
1641   if (Value *Res = foldDependentIVs(PN, Builder))
1642     return replaceInstUsesWith(PN, Res);
1643 
1644   return nullptr;
1645 }
1646