1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumeBundleQueries.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/AttributeMask.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/IntrinsicsAArch64.h" 47 #include "llvm/IR/IntrinsicsAMDGPU.h" 48 #include "llvm/IR/IntrinsicsARM.h" 49 #include "llvm/IR/IntrinsicsHexagon.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/InstCombine/InstCombiner.h" 68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <optional> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "instcombine" 79 #include "llvm/Transforms/Utils/InstructionWorklist.h" 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 STATISTIC(NumSimplified, "Number of library calls simplified"); 85 86 static cl::opt<unsigned> GuardWideningWindow( 87 "instcombine-guard-widening-window", 88 cl::init(3), 89 cl::desc("How wide an instruction window to bypass looking for " 90 "another guard")); 91 92 /// Return the specified type promoted as it would be to pass though a va_arg 93 /// area. 94 static Type *getPromotedType(Type *Ty) { 95 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 96 if (ITy->getBitWidth() < 32) 97 return Type::getInt32Ty(Ty->getContext()); 98 } 99 return Ty; 100 } 101 102 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca. 103 /// TODO: This should probably be integrated with visitAllocSites, but that 104 /// requires a deeper change to allow either unread or unwritten objects. 105 static bool hasUndefSource(AnyMemTransferInst *MI) { 106 auto *Src = MI->getRawSource(); 107 while (isa<GetElementPtrInst>(Src)) { 108 if (!Src->hasOneUse()) 109 return false; 110 Src = cast<Instruction>(Src)->getOperand(0); 111 } 112 return isa<AllocaInst>(Src) && Src->hasOneUse(); 113 } 114 115 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 116 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 117 MaybeAlign CopyDstAlign = MI->getDestAlign(); 118 if (!CopyDstAlign || *CopyDstAlign < DstAlign) { 119 MI->setDestAlignment(DstAlign); 120 return MI; 121 } 122 123 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 124 MaybeAlign CopySrcAlign = MI->getSourceAlign(); 125 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { 126 MI->setSourceAlignment(SrcAlign); 127 return MI; 128 } 129 130 // If we have a store to a location which is known constant, we can conclude 131 // that the store must be storing the constant value (else the memory 132 // wouldn't be constant), and this must be a noop. 133 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) { 134 // Set the size of the copy to 0, it will be deleted on the next iteration. 135 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 136 return MI; 137 } 138 139 // If the source is provably undef, the memcpy/memmove doesn't do anything 140 // (unless the transfer is volatile). 141 if (hasUndefSource(MI) && !MI->isVolatile()) { 142 // Set the size of the copy to 0, it will be deleted on the next iteration. 143 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 144 return MI; 145 } 146 147 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 148 // load/store. 149 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 150 if (!MemOpLength) return nullptr; 151 152 // Source and destination pointer types are always "i8*" for intrinsic. See 153 // if the size is something we can handle with a single primitive load/store. 154 // A single load+store correctly handles overlapping memory in the memmove 155 // case. 156 uint64_t Size = MemOpLength->getLimitedValue(); 157 assert(Size && "0-sized memory transferring should be removed already."); 158 159 if (Size > 8 || (Size&(Size-1))) 160 return nullptr; // If not 1/2/4/8 bytes, exit. 161 162 // If it is an atomic and alignment is less than the size then we will 163 // introduce the unaligned memory access which will be later transformed 164 // into libcall in CodeGen. This is not evident performance gain so disable 165 // it now. 166 if (isa<AtomicMemTransferInst>(MI)) 167 if (*CopyDstAlign < Size || *CopySrcAlign < Size) 168 return nullptr; 169 170 // Use an integer load+store unless we can find something better. 171 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 172 173 // If the memcpy has metadata describing the members, see if we can get the 174 // TBAA, scope and noalias tags describing our copy. 175 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size); 176 177 Value *Src = MI->getArgOperand(1); 178 Value *Dest = MI->getArgOperand(0); 179 LoadInst *L = Builder.CreateLoad(IntType, Src); 180 // Alignment from the mem intrinsic will be better, so use it. 181 L->setAlignment(*CopySrcAlign); 182 L->setAAMetadata(AACopyMD); 183 MDNode *LoopMemParallelMD = 184 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 185 if (LoopMemParallelMD) 186 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 187 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 188 if (AccessGroupMD) 189 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 190 191 StoreInst *S = Builder.CreateStore(L, Dest); 192 // Alignment from the mem intrinsic will be better, so use it. 193 S->setAlignment(*CopyDstAlign); 194 S->setAAMetadata(AACopyMD); 195 if (LoopMemParallelMD) 196 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 197 if (AccessGroupMD) 198 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 199 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID); 200 201 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 202 // non-atomics can be volatile 203 L->setVolatile(MT->isVolatile()); 204 S->setVolatile(MT->isVolatile()); 205 } 206 if (isa<AtomicMemTransferInst>(MI)) { 207 // atomics have to be unordered 208 L->setOrdering(AtomicOrdering::Unordered); 209 S->setOrdering(AtomicOrdering::Unordered); 210 } 211 212 // Set the size of the copy to 0, it will be deleted on the next iteration. 213 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 214 return MI; 215 } 216 217 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { 218 const Align KnownAlignment = 219 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 220 MaybeAlign MemSetAlign = MI->getDestAlign(); 221 if (!MemSetAlign || *MemSetAlign < KnownAlignment) { 222 MI->setDestAlignment(KnownAlignment); 223 return MI; 224 } 225 226 // If we have a store to a location which is known constant, we can conclude 227 // that the store must be storing the constant value (else the memory 228 // wouldn't be constant), and this must be a noop. 229 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) { 230 // Set the size of the copy to 0, it will be deleted on the next iteration. 231 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 232 return MI; 233 } 234 235 // Remove memset with an undef value. 236 // FIXME: This is technically incorrect because it might overwrite a poison 237 // value. Change to PoisonValue once #52930 is resolved. 238 if (isa<UndefValue>(MI->getValue())) { 239 // Set the size of the copy to 0, it will be deleted on the next iteration. 240 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 241 return MI; 242 } 243 244 // Extract the length and alignment and fill if they are constant. 245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 248 return nullptr; 249 const uint64_t Len = LenC->getLimitedValue(); 250 assert(Len && "0-sized memory setting should be removed already."); 251 const Align Alignment = MI->getDestAlign().valueOrOne(); 252 253 // If it is an atomic and alignment is less than the size then we will 254 // introduce the unaligned memory access which will be later transformed 255 // into libcall in CodeGen. This is not evident performance gain so disable 256 // it now. 257 if (isa<AtomicMemSetInst>(MI)) 258 if (Alignment < Len) 259 return nullptr; 260 261 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 263 Value *Dest = MI->getDest(); 264 265 // Extract the fill value and store. 266 Constant *FillVal = ConstantInt::get( 267 MI->getContext(), APInt::getSplat(Len * 8, FillC->getValue())); 268 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile()); 269 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID); 270 auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) { 271 if (llvm::is_contained(DbgAssign->location_ops(), FillC)) 272 DbgAssign->replaceVariableLocationOp(FillC, FillVal); 273 }; 274 for_each(at::getAssignmentMarkers(S), replaceOpForAssignmentMarkers); 275 for_each(at::getDVRAssignmentMarkers(S), replaceOpForAssignmentMarkers); 276 277 S->setAlignment(Alignment); 278 if (isa<AtomicMemSetInst>(MI)) 279 S->setOrdering(AtomicOrdering::Unordered); 280 281 // Set the size of the copy to 0, it will be deleted on the next iteration. 282 MI->setLength(Constant::getNullValue(LenC->getType())); 283 return MI; 284 } 285 286 return nullptr; 287 } 288 289 // TODO, Obvious Missing Transforms: 290 // * Narrow width by halfs excluding zero/undef lanes 291 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { 292 Value *LoadPtr = II.getArgOperand(0); 293 const Align Alignment = 294 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 295 296 // If the mask is all ones or undefs, this is a plain vector load of the 1st 297 // argument. 298 if (maskIsAllOneOrUndef(II.getArgOperand(2))) { 299 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 300 "unmaskedload"); 301 L->copyMetadata(II); 302 return L; 303 } 304 305 // If we can unconditionally load from this address, replace with a 306 // load/select idiom. TODO: use DT for context sensitive query 307 if (isDereferenceablePointer(LoadPtr, II.getType(), 308 II.getDataLayout(), &II, &AC)) { 309 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 310 "unmaskedload"); 311 LI->copyMetadata(II); 312 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 313 } 314 315 return nullptr; 316 } 317 318 // TODO, Obvious Missing Transforms: 319 // * Single constant active lane -> store 320 // * Narrow width by halfs excluding zero/undef lanes 321 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { 322 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 323 if (!ConstMask) 324 return nullptr; 325 326 // If the mask is all zeros, this instruction does nothing. 327 if (ConstMask->isNullValue()) 328 return eraseInstFromFunction(II); 329 330 // If the mask is all ones, this is a plain vector store of the 1st argument. 331 if (ConstMask->isAllOnesValue()) { 332 Value *StorePtr = II.getArgOperand(1); 333 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 334 StoreInst *S = 335 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 336 S->copyMetadata(II); 337 return S; 338 } 339 340 if (isa<ScalableVectorType>(ConstMask->getType())) 341 return nullptr; 342 343 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 344 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 345 APInt PoisonElts(DemandedElts.getBitWidth(), 0); 346 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, 347 PoisonElts)) 348 return replaceOperand(II, 0, V); 349 350 return nullptr; 351 } 352 353 // TODO, Obvious Missing Transforms: 354 // * Single constant active lane load -> load 355 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 356 // * Adjacent vector addresses -> masked.load 357 // * Narrow width by halfs excluding zero/undef lanes 358 // * Vector incrementing address -> vector masked load 359 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { 360 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2)); 361 if (!ConstMask) 362 return nullptr; 363 364 // Vector splat address w/known mask -> scalar load 365 // Fold the gather to load the source vector first lane 366 // because it is reloading the same value each time 367 if (ConstMask->isAllOnesValue()) 368 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) { 369 auto *VecTy = cast<VectorType>(II.getType()); 370 const Align Alignment = 371 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 372 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr, 373 Alignment, "load.scalar"); 374 Value *Shuf = 375 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast"); 376 return replaceInstUsesWith(II, cast<Instruction>(Shuf)); 377 } 378 379 return nullptr; 380 } 381 382 // TODO, Obvious Missing Transforms: 383 // * Single constant active lane -> store 384 // * Adjacent vector addresses -> masked.store 385 // * Narrow store width by halfs excluding zero/undef lanes 386 // * Vector incrementing address -> vector masked store 387 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { 388 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 389 if (!ConstMask) 390 return nullptr; 391 392 // If the mask is all zeros, a scatter does nothing. 393 if (ConstMask->isNullValue()) 394 return eraseInstFromFunction(II); 395 396 // Vector splat address -> scalar store 397 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) { 398 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr 399 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) { 400 if (maskContainsAllOneOrUndef(ConstMask)) { 401 Align Alignment = 402 cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 403 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, 404 Alignment); 405 S->copyMetadata(II); 406 return S; 407 } 408 } 409 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector, 410 // lastlane), ptr 411 if (ConstMask->isAllOnesValue()) { 412 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 413 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType()); 414 ElementCount VF = WideLoadTy->getElementCount(); 415 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF); 416 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1)); 417 Value *Extract = 418 Builder.CreateExtractElement(II.getArgOperand(0), LastLane); 419 StoreInst *S = 420 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment); 421 S->copyMetadata(II); 422 return S; 423 } 424 } 425 if (isa<ScalableVectorType>(ConstMask->getType())) 426 return nullptr; 427 428 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 429 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 430 APInt PoisonElts(DemandedElts.getBitWidth(), 0); 431 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, 432 PoisonElts)) 433 return replaceOperand(II, 0, V); 434 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, 435 PoisonElts)) 436 return replaceOperand(II, 1, V); 437 438 return nullptr; 439 } 440 441 /// This function transforms launder.invariant.group and strip.invariant.group 442 /// like: 443 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 444 /// launder(strip(%x)) -> launder(%x) 445 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 446 /// strip(launder(%x)) -> strip(%x) 447 /// This is legal because it preserves the most recent information about 448 /// the presence or absence of invariant.group. 449 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 450 InstCombinerImpl &IC) { 451 auto *Arg = II.getArgOperand(0); 452 auto *StrippedArg = Arg->stripPointerCasts(); 453 auto *StrippedInvariantGroupsArg = StrippedArg; 454 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { 455 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && 456 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) 457 break; 458 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); 459 } 460 if (StrippedArg == StrippedInvariantGroupsArg) 461 return nullptr; // No launders/strips to remove. 462 463 Value *Result = nullptr; 464 465 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 466 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 467 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 468 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 469 else 470 llvm_unreachable( 471 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 472 if (Result->getType()->getPointerAddressSpace() != 473 II.getType()->getPointerAddressSpace()) 474 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 475 476 return cast<Instruction>(Result); 477 } 478 479 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { 480 assert((II.getIntrinsicID() == Intrinsic::cttz || 481 II.getIntrinsicID() == Intrinsic::ctlz) && 482 "Expected cttz or ctlz intrinsic"); 483 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 484 Value *Op0 = II.getArgOperand(0); 485 Value *Op1 = II.getArgOperand(1); 486 Value *X; 487 // ctlz(bitreverse(x)) -> cttz(x) 488 // cttz(bitreverse(x)) -> ctlz(x) 489 if (match(Op0, m_BitReverse(m_Value(X)))) { 490 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 491 Function *F = 492 Intrinsic::getOrInsertDeclaration(II.getModule(), ID, II.getType()); 493 return CallInst::Create(F, {X, II.getArgOperand(1)}); 494 } 495 496 if (II.getType()->isIntOrIntVectorTy(1)) { 497 // ctlz/cttz i1 Op0 --> not Op0 498 if (match(Op1, m_Zero())) 499 return BinaryOperator::CreateNot(Op0); 500 // If zero is poison, then the input can be assumed to be "true", so the 501 // instruction simplifies to "false". 502 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1"); 503 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType())); 504 } 505 506 // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true. 507 if (II.hasOneUse() && match(Op1, m_Zero()) && 508 match(II.user_back(), m_Shift(m_Value(), m_Specific(&II)))) { 509 II.dropUBImplyingAttrsAndMetadata(); 510 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 511 } 512 513 Constant *C; 514 515 if (IsTZ) { 516 // cttz(-x) -> cttz(x) 517 if (match(Op0, m_Neg(m_Value(X)))) 518 return IC.replaceOperand(II, 0, X); 519 520 // cttz(-x & x) -> cttz(x) 521 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) 522 return IC.replaceOperand(II, 0, X); 523 524 // cttz(sext(x)) -> cttz(zext(x)) 525 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { 526 auto *Zext = IC.Builder.CreateZExt(X, II.getType()); 527 auto *CttzZext = 528 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); 529 return IC.replaceInstUsesWith(II, CttzZext); 530 } 531 532 // Zext doesn't change the number of trailing zeros, so narrow: 533 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'. 534 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { 535 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, 536 IC.Builder.getTrue()); 537 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); 538 return IC.replaceInstUsesWith(II, ZextCttz); 539 } 540 541 // cttz(abs(x)) -> cttz(x) 542 // cttz(nabs(x)) -> cttz(x) 543 Value *Y; 544 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 545 if (SPF == SPF_ABS || SPF == SPF_NABS) 546 return IC.replaceOperand(II, 0, X); 547 548 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 549 return IC.replaceOperand(II, 0, X); 550 551 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val) 552 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) && 553 match(Op1, m_One())) { 554 Value *ConstCttz = 555 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1); 556 return BinaryOperator::CreateAdd(ConstCttz, X); 557 } 558 559 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val) 560 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) && 561 match(Op1, m_One())) { 562 Value *ConstCttz = 563 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1); 564 return BinaryOperator::CreateSub(ConstCttz, X); 565 } 566 567 // cttz(add(lshr(UINT_MAX, %val), 1)) --> sub(width, %val) 568 if (match(Op0, m_Add(m_LShr(m_AllOnes(), m_Value(X)), m_One()))) { 569 Value *Width = 570 ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits()); 571 return BinaryOperator::CreateSub(Width, X); 572 } 573 } else { 574 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val) 575 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) && 576 match(Op1, m_One())) { 577 Value *ConstCtlz = 578 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1); 579 return BinaryOperator::CreateAdd(ConstCtlz, X); 580 } 581 582 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val) 583 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) && 584 match(Op1, m_One())) { 585 Value *ConstCtlz = 586 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1); 587 return BinaryOperator::CreateSub(ConstCtlz, X); 588 } 589 } 590 591 // cttz(Pow2) -> Log2(Pow2) 592 // ctlz(Pow2) -> BitWidth - 1 - Log2(Pow2) 593 if (auto *R = IC.tryGetLog2(Op0, match(Op1, m_One()))) { 594 if (IsTZ) 595 return IC.replaceInstUsesWith(II, R); 596 BinaryOperator *BO = BinaryOperator::CreateSub( 597 ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1), 598 R); 599 BO->setHasNoSignedWrap(); 600 BO->setHasNoUnsignedWrap(); 601 return BO; 602 } 603 604 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 605 606 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 607 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 608 : Known.countMaxLeadingZeros(); 609 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 610 : Known.countMinLeadingZeros(); 611 612 // If all bits above (ctlz) or below (cttz) the first known one are known 613 // zero, this value is constant. 614 // FIXME: This should be in InstSimplify because we're replacing an 615 // instruction with a constant. 616 if (PossibleZeros == DefiniteZeros) { 617 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 618 return IC.replaceInstUsesWith(II, C); 619 } 620 621 // If the input to cttz/ctlz is known to be non-zero, 622 // then change the 'ZeroIsPoison' parameter to 'true' 623 // because we know the zero behavior can't affect the result. 624 if (!Known.One.isZero() || 625 isKnownNonZero(Op0, IC.getSimplifyQuery().getWithInstruction(&II))) { 626 if (!match(II.getArgOperand(1), m_One())) 627 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 628 } 629 630 // Add range attribute since known bits can't completely reflect what we know. 631 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 632 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) && 633 !II.getMetadata(LLVMContext::MD_range)) { 634 ConstantRange Range(APInt(BitWidth, DefiniteZeros), 635 APInt(BitWidth, PossibleZeros + 1)); 636 II.addRangeRetAttr(Range); 637 return &II; 638 } 639 640 return nullptr; 641 } 642 643 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { 644 assert(II.getIntrinsicID() == Intrinsic::ctpop && 645 "Expected ctpop intrinsic"); 646 Type *Ty = II.getType(); 647 unsigned BitWidth = Ty->getScalarSizeInBits(); 648 Value *Op0 = II.getArgOperand(0); 649 Value *X, *Y; 650 651 // ctpop(bitreverse(x)) -> ctpop(x) 652 // ctpop(bswap(x)) -> ctpop(x) 653 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) 654 return IC.replaceOperand(II, 0, X); 655 656 // ctpop(rot(x)) -> ctpop(x) 657 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || 658 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && 659 X == Y) 660 return IC.replaceOperand(II, 0, X); 661 662 // ctpop(x | -x) -> bitwidth - cttz(x, false) 663 if (Op0->hasOneUse() && 664 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { 665 auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty, 666 {X, IC.Builder.getFalse()}); 667 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); 668 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); 669 } 670 671 // ctpop(~x & (x - 1)) -> cttz(x, false) 672 if (match(Op0, 673 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { 674 Function *F = 675 Intrinsic::getOrInsertDeclaration(II.getModule(), Intrinsic::cttz, Ty); 676 return CallInst::Create(F, {X, IC.Builder.getFalse()}); 677 } 678 679 // Zext doesn't change the number of set bits, so narrow: 680 // ctpop (zext X) --> zext (ctpop X) 681 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 682 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); 683 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); 684 } 685 686 KnownBits Known(BitWidth); 687 IC.computeKnownBits(Op0, Known, 0, &II); 688 689 // If all bits are zero except for exactly one fixed bit, then the result 690 // must be 0 or 1, and we can get that answer by shifting to LSB: 691 // ctpop (X & 32) --> (X & 32) >> 5 692 // TODO: Investigate removing this as its likely unnecessary given the below 693 // `isKnownToBeAPowerOfTwo` check. 694 if ((~Known.Zero).isPowerOf2()) 695 return BinaryOperator::CreateLShr( 696 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); 697 698 // More generally we can also handle non-constant power of 2 patterns such as 699 // shl/shr(Pow2, X), (X & -X), etc... by transforming: 700 // ctpop(Pow2OrZero) --> icmp ne X, 0 701 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true)) 702 return CastInst::Create(Instruction::ZExt, 703 IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0, 704 Constant::getNullValue(Ty)), 705 Ty); 706 707 // Add range attribute since known bits can't completely reflect what we know. 708 if (BitWidth != 1) { 709 ConstantRange OldRange = 710 II.getRange().value_or(ConstantRange::getFull(BitWidth)); 711 712 unsigned Lower = Known.countMinPopulation(); 713 unsigned Upper = Known.countMaxPopulation() + 1; 714 715 if (Lower == 0 && OldRange.contains(APInt::getZero(BitWidth)) && 716 isKnownNonZero(Op0, IC.getSimplifyQuery().getWithInstruction(&II))) 717 Lower = 1; 718 719 ConstantRange Range(APInt(BitWidth, Lower), APInt(BitWidth, Upper)); 720 Range = Range.intersectWith(OldRange, ConstantRange::Unsigned); 721 722 if (Range != OldRange) { 723 II.addRangeRetAttr(Range); 724 return &II; 725 } 726 } 727 728 return nullptr; 729 } 730 731 /// Convert a table lookup to shufflevector if the mask is constant. 732 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 733 /// which case we could lower the shufflevector with rev64 instructions 734 /// as it's actually a byte reverse. 735 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 736 InstCombiner::BuilderTy &Builder) { 737 // Bail out if the mask is not a constant. 738 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 739 if (!C) 740 return nullptr; 741 742 auto *VecTy = cast<FixedVectorType>(II.getType()); 743 unsigned NumElts = VecTy->getNumElements(); 744 745 // Only perform this transformation for <8 x i8> vector types. 746 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 747 return nullptr; 748 749 int Indexes[8]; 750 751 for (unsigned I = 0; I < NumElts; ++I) { 752 Constant *COp = C->getAggregateElement(I); 753 754 if (!COp || !isa<ConstantInt>(COp)) 755 return nullptr; 756 757 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 758 759 // Make sure the mask indices are in range. 760 if ((unsigned)Indexes[I] >= NumElts) 761 return nullptr; 762 } 763 764 auto *V1 = II.getArgOperand(0); 765 auto *V2 = Constant::getNullValue(V1->getType()); 766 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes)); 767 } 768 769 // Returns true iff the 2 intrinsics have the same operands, limiting the 770 // comparison to the first NumOperands. 771 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 772 unsigned NumOperands) { 773 assert(I.arg_size() >= NumOperands && "Not enough operands"); 774 assert(E.arg_size() >= NumOperands && "Not enough operands"); 775 for (unsigned i = 0; i < NumOperands; i++) 776 if (I.getArgOperand(i) != E.getArgOperand(i)) 777 return false; 778 return true; 779 } 780 781 // Remove trivially empty start/end intrinsic ranges, i.e. a start 782 // immediately followed by an end (ignoring debuginfo or other 783 // start/end intrinsics in between). As this handles only the most trivial 784 // cases, tracking the nesting level is not needed: 785 // 786 // call @llvm.foo.start(i1 0) 787 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed 788 // call @llvm.foo.end(i1 0) 789 // call @llvm.foo.end(i1 0) ; &I 790 static bool 791 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, 792 std::function<bool(const IntrinsicInst &)> IsStart) { 793 // We start from the end intrinsic and scan backwards, so that InstCombine 794 // has already processed (and potentially removed) all the instructions 795 // before the end intrinsic. 796 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); 797 for (; BI != BE; ++BI) { 798 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { 799 if (I->isDebugOrPseudoInst() || 800 I->getIntrinsicID() == EndI.getIntrinsicID()) 801 continue; 802 if (IsStart(*I)) { 803 if (haveSameOperands(EndI, *I, EndI.arg_size())) { 804 IC.eraseInstFromFunction(*I); 805 IC.eraseInstFromFunction(EndI); 806 return true; 807 } 808 // Skip start intrinsics that don't pair with this end intrinsic. 809 continue; 810 } 811 } 812 break; 813 } 814 815 return false; 816 } 817 818 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { 819 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { 820 return I.getIntrinsicID() == Intrinsic::vastart || 821 I.getIntrinsicID() == Intrinsic::vacopy; 822 }); 823 return nullptr; 824 } 825 826 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { 827 assert(Call.arg_size() > 1 && "Need at least 2 args to swap"); 828 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 829 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 830 Call.setArgOperand(0, Arg1); 831 Call.setArgOperand(1, Arg0); 832 return &Call; 833 } 834 return nullptr; 835 } 836 837 /// Creates a result tuple for an overflow intrinsic \p II with a given 838 /// \p Result and a constant \p Overflow value. 839 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, 840 Constant *Overflow) { 841 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow}; 842 StructType *ST = cast<StructType>(II->getType()); 843 Constant *Struct = ConstantStruct::get(ST, V); 844 return InsertValueInst::Create(Struct, Result, 0); 845 } 846 847 Instruction * 848 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 849 WithOverflowInst *WO = cast<WithOverflowInst>(II); 850 Value *OperationResult = nullptr; 851 Constant *OverflowResult = nullptr; 852 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 853 WO->getRHS(), *WO, OperationResult, OverflowResult)) 854 return createOverflowTuple(WO, OperationResult, OverflowResult); 855 856 // See whether we can optimize the overflow check with assumption information. 857 for (User *U : WO->users()) { 858 if (!match(U, m_ExtractValue<1>(m_Value()))) 859 continue; 860 861 for (auto &AssumeVH : AC.assumptionsFor(U)) { 862 if (!AssumeVH) 863 continue; 864 CallInst *I = cast<CallInst>(AssumeVH); 865 if (!match(I->getArgOperand(0), m_Not(m_Specific(U)))) 866 continue; 867 if (!isValidAssumeForContext(I, II, /*DT=*/nullptr, 868 /*AllowEphemerals=*/true)) 869 continue; 870 Value *Result = 871 Builder.CreateBinOp(WO->getBinaryOp(), WO->getLHS(), WO->getRHS()); 872 Result->takeName(WO); 873 if (auto *Inst = dyn_cast<Instruction>(Result)) { 874 if (WO->isSigned()) 875 Inst->setHasNoSignedWrap(); 876 else 877 Inst->setHasNoUnsignedWrap(); 878 } 879 return createOverflowTuple(WO, Result, 880 ConstantInt::getFalse(U->getType())); 881 } 882 } 883 884 return nullptr; 885 } 886 887 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) { 888 Ty = Ty->getScalarType(); 889 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE; 890 } 891 892 static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) { 893 Ty = Ty->getScalarType(); 894 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero(); 895 } 896 897 /// \returns the compare predicate type if the test performed by 898 /// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the 899 /// floating-point environment assumed for \p F for type \p Ty 900 static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, 901 const Function &F, Type *Ty) { 902 switch (static_cast<unsigned>(Mask)) { 903 case fcZero: 904 if (inputDenormalIsIEEE(F, Ty)) 905 return FCmpInst::FCMP_OEQ; 906 break; 907 case fcZero | fcSubnormal: 908 if (inputDenormalIsDAZ(F, Ty)) 909 return FCmpInst::FCMP_OEQ; 910 break; 911 case fcPositive | fcNegZero: 912 if (inputDenormalIsIEEE(F, Ty)) 913 return FCmpInst::FCMP_OGE; 914 break; 915 case fcPositive | fcNegZero | fcNegSubnormal: 916 if (inputDenormalIsDAZ(F, Ty)) 917 return FCmpInst::FCMP_OGE; 918 break; 919 case fcPosSubnormal | fcPosNormal | fcPosInf: 920 if (inputDenormalIsIEEE(F, Ty)) 921 return FCmpInst::FCMP_OGT; 922 break; 923 case fcNegative | fcPosZero: 924 if (inputDenormalIsIEEE(F, Ty)) 925 return FCmpInst::FCMP_OLE; 926 break; 927 case fcNegative | fcPosZero | fcPosSubnormal: 928 if (inputDenormalIsDAZ(F, Ty)) 929 return FCmpInst::FCMP_OLE; 930 break; 931 case fcNegSubnormal | fcNegNormal | fcNegInf: 932 if (inputDenormalIsIEEE(F, Ty)) 933 return FCmpInst::FCMP_OLT; 934 break; 935 case fcPosNormal | fcPosInf: 936 if (inputDenormalIsDAZ(F, Ty)) 937 return FCmpInst::FCMP_OGT; 938 break; 939 case fcNegNormal | fcNegInf: 940 if (inputDenormalIsDAZ(F, Ty)) 941 return FCmpInst::FCMP_OLT; 942 break; 943 case ~fcZero & ~fcNan: 944 if (inputDenormalIsIEEE(F, Ty)) 945 return FCmpInst::FCMP_ONE; 946 break; 947 case ~(fcZero | fcSubnormal) & ~fcNan: 948 if (inputDenormalIsDAZ(F, Ty)) 949 return FCmpInst::FCMP_ONE; 950 break; 951 default: 952 break; 953 } 954 955 return FCmpInst::BAD_FCMP_PREDICATE; 956 } 957 958 Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) { 959 Value *Src0 = II.getArgOperand(0); 960 Value *Src1 = II.getArgOperand(1); 961 const ConstantInt *CMask = cast<ConstantInt>(Src1); 962 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue()); 963 const bool IsUnordered = (Mask & fcNan) == fcNan; 964 const bool IsOrdered = (Mask & fcNan) == fcNone; 965 const FPClassTest OrderedMask = Mask & ~fcNan; 966 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan; 967 968 const bool IsStrict = 969 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP); 970 971 Value *FNegSrc; 972 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) { 973 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask) 974 975 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask))); 976 return replaceOperand(II, 0, FNegSrc); 977 } 978 979 Value *FAbsSrc; 980 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) { 981 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask))); 982 return replaceOperand(II, 0, FAbsSrc); 983 } 984 985 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) && 986 (IsOrdered || IsUnordered) && !IsStrict) { 987 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf 988 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf 989 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf 990 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf 991 Constant *Inf = ConstantFP::getInfinity(Src0->getType()); 992 FCmpInst::Predicate Pred = 993 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ; 994 if (OrderedInvertedMask == fcInf) 995 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE; 996 997 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0); 998 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf); 999 CmpInf->takeName(&II); 1000 return replaceInstUsesWith(II, CmpInf); 1001 } 1002 1003 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) && 1004 (IsOrdered || IsUnordered) && !IsStrict) { 1005 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf 1006 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf 1007 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf 1008 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf 1009 Constant *Inf = 1010 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf); 1011 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf) 1012 : Builder.CreateFCmpOEQ(Src0, Inf); 1013 1014 EqInf->takeName(&II); 1015 return replaceInstUsesWith(II, EqInf); 1016 } 1017 1018 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) && 1019 (IsOrdered || IsUnordered) && !IsStrict) { 1020 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf 1021 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf 1022 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf 1023 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf 1024 Constant *Inf = ConstantFP::getInfinity(Src0->getType(), 1025 OrderedInvertedMask == fcNegInf); 1026 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf) 1027 : Builder.CreateFCmpONE(Src0, Inf); 1028 NeInf->takeName(&II); 1029 return replaceInstUsesWith(II, NeInf); 1030 } 1031 1032 if (Mask == fcNan && !IsStrict) { 1033 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP 1034 // exceptions. 1035 Value *IsNan = 1036 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType())); 1037 IsNan->takeName(&II); 1038 return replaceInstUsesWith(II, IsNan); 1039 } 1040 1041 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) { 1042 // Equivalent of !isnan. Replace with standard fcmp. 1043 Value *FCmp = 1044 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType())); 1045 FCmp->takeName(&II); 1046 return replaceInstUsesWith(II, FCmp); 1047 } 1048 1049 FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE; 1050 1051 // Try to replace with an fcmp with 0 1052 // 1053 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0 1054 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0 1055 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0 1056 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0 1057 // 1058 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0 1059 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0 1060 // 1061 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0 1062 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0 1063 // 1064 if (!IsStrict && (IsOrdered || IsUnordered) && 1065 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(), 1066 Src0->getType())) != 1067 FCmpInst::BAD_FCMP_PREDICATE) { 1068 Constant *Zero = ConstantFP::getZero(Src0->getType()); 1069 // Equivalent of == 0. 1070 Value *FCmp = Builder.CreateFCmp( 1071 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType, 1072 Src0, Zero); 1073 1074 FCmp->takeName(&II); 1075 return replaceInstUsesWith(II, FCmp); 1076 } 1077 1078 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II); 1079 1080 // Clear test bits we know must be false from the source value. 1081 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other 1082 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other 1083 if ((Mask & Known.KnownFPClasses) != Mask) { 1084 II.setArgOperand( 1085 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses)); 1086 return &II; 1087 } 1088 1089 // If none of the tests which can return false are possible, fold to true. 1090 // fp_class (nnan x), ~(qnan|snan) -> true 1091 // fp_class (ninf x), ~(ninf|pinf) -> true 1092 if (Mask == Known.KnownFPClasses) 1093 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true)); 1094 1095 return nullptr; 1096 } 1097 1098 static std::optional<bool> getKnownSign(Value *Op, const SimplifyQuery &SQ) { 1099 KnownBits Known = computeKnownBits(Op, /*Depth=*/0, SQ); 1100 if (Known.isNonNegative()) 1101 return false; 1102 if (Known.isNegative()) 1103 return true; 1104 1105 Value *X, *Y; 1106 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y)))) 1107 return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, SQ.CxtI, SQ.DL); 1108 1109 return std::nullopt; 1110 } 1111 1112 static std::optional<bool> getKnownSignOrZero(Value *Op, 1113 const SimplifyQuery &SQ) { 1114 if (std::optional<bool> Sign = getKnownSign(Op, SQ)) 1115 return Sign; 1116 1117 Value *X, *Y; 1118 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y)))) 1119 return isImpliedByDomCondition(ICmpInst::ICMP_SLE, X, Y, SQ.CxtI, SQ.DL); 1120 1121 return std::nullopt; 1122 } 1123 1124 /// Return true if two values \p Op0 and \p Op1 are known to have the same sign. 1125 static bool signBitMustBeTheSame(Value *Op0, Value *Op1, 1126 const SimplifyQuery &SQ) { 1127 std::optional<bool> Known1 = getKnownSign(Op1, SQ); 1128 if (!Known1) 1129 return false; 1130 std::optional<bool> Known0 = getKnownSign(Op0, SQ); 1131 if (!Known0) 1132 return false; 1133 return *Known0 == *Known1; 1134 } 1135 1136 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This 1137 /// can trigger other combines. 1138 static Instruction *moveAddAfterMinMax(IntrinsicInst *II, 1139 InstCombiner::BuilderTy &Builder) { 1140 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1141 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin || 1142 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) && 1143 "Expected a min or max intrinsic"); 1144 1145 // TODO: Match vectors with undef elements, but undef may not propagate. 1146 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1147 Value *X; 1148 const APInt *C0, *C1; 1149 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) || 1150 !match(Op1, m_APInt(C1))) 1151 return nullptr; 1152 1153 // Check for necessary no-wrap and overflow constraints. 1154 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin; 1155 auto *Add = cast<BinaryOperator>(Op0); 1156 if ((IsSigned && !Add->hasNoSignedWrap()) || 1157 (!IsSigned && !Add->hasNoUnsignedWrap())) 1158 return nullptr; 1159 1160 // If the constant difference overflows, then instsimplify should reduce the 1161 // min/max to the add or C1. 1162 bool Overflow; 1163 APInt CDiff = 1164 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow); 1165 assert(!Overflow && "Expected simplify of min/max"); 1166 1167 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0 1168 // Note: the "mismatched" no-overflow setting does not propagate. 1169 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff); 1170 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC); 1171 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1)) 1172 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1)); 1173 } 1174 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 1175 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) { 1176 Type *Ty = MinMax1.getType(); 1177 1178 // We are looking for a tree of: 1179 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 1180 // Where the min and max could be reversed 1181 Instruction *MinMax2; 1182 BinaryOperator *AddSub; 1183 const APInt *MinValue, *MaxValue; 1184 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 1185 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 1186 return nullptr; 1187 } else if (match(&MinMax1, 1188 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 1189 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 1190 return nullptr; 1191 } else 1192 return nullptr; 1193 1194 // Check that the constants clamp a saturate, and that the new type would be 1195 // sensible to convert to. 1196 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 1197 return nullptr; 1198 // In what bitwidth can this be treated as saturating arithmetics? 1199 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 1200 // FIXME: This isn't quite right for vectors, but using the scalar type is a 1201 // good first approximation for what should be done there. 1202 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 1203 return nullptr; 1204 1205 // Also make sure that the inner min/max and the add/sub have one use. 1206 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse()) 1207 return nullptr; 1208 1209 // Create the new type (which can be a vector type) 1210 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 1211 1212 Intrinsic::ID IntrinsicID; 1213 if (AddSub->getOpcode() == Instruction::Add) 1214 IntrinsicID = Intrinsic::sadd_sat; 1215 else if (AddSub->getOpcode() == Instruction::Sub) 1216 IntrinsicID = Intrinsic::ssub_sat; 1217 else 1218 return nullptr; 1219 1220 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This 1221 // is usually achieved via a sext from a smaller type. 1222 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) > 1223 NewBitWidth || 1224 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) 1225 return nullptr; 1226 1227 // Finally create and return the sat intrinsic, truncated to the new type 1228 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy); 1229 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy); 1230 Value *Sat = Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT, BT}); 1231 return CastInst::Create(Instruction::SExt, Sat, Ty); 1232 } 1233 1234 1235 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output 1236 /// can only be one of two possible constant values -- turn that into a select 1237 /// of constants. 1238 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, 1239 InstCombiner::BuilderTy &Builder) { 1240 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1241 Value *X; 1242 const APInt *C0, *C1; 1243 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) 1244 return nullptr; 1245 1246 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 1247 switch (II->getIntrinsicID()) { 1248 case Intrinsic::smax: 1249 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 1250 Pred = ICmpInst::ICMP_SGT; 1251 break; 1252 case Intrinsic::smin: 1253 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 1254 Pred = ICmpInst::ICMP_SLT; 1255 break; 1256 case Intrinsic::umax: 1257 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 1258 Pred = ICmpInst::ICMP_UGT; 1259 break; 1260 case Intrinsic::umin: 1261 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 1262 Pred = ICmpInst::ICMP_ULT; 1263 break; 1264 default: 1265 llvm_unreachable("Expected min/max intrinsic"); 1266 } 1267 if (Pred == CmpInst::BAD_ICMP_PREDICATE) 1268 return nullptr; 1269 1270 // max (min X, 42), 41 --> X > 41 ? 42 : 41 1271 // min (max X, 42), 43 --> X < 43 ? 42 : 43 1272 Value *Cmp = Builder.CreateICmp(Pred, X, I1); 1273 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); 1274 } 1275 1276 /// If this min/max has a constant operand and an operand that is a matching 1277 /// min/max with a constant operand, constant-fold the 2 constant operands. 1278 static Value *reassociateMinMaxWithConstants(IntrinsicInst *II, 1279 IRBuilderBase &Builder, 1280 const SimplifyQuery &SQ) { 1281 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1282 auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0)); 1283 if (!LHS) 1284 return nullptr; 1285 1286 Constant *C0, *C1; 1287 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) || 1288 !match(II->getArgOperand(1), m_ImmConstant(C1))) 1289 return nullptr; 1290 1291 // max (max X, C0), C1 --> max X, (max C0, C1) 1292 // min (min X, C0), C1 --> min X, (min C0, C1) 1293 // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1) 1294 // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1) 1295 Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID(); 1296 if (InnerMinMaxID != MinMaxID && 1297 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) || 1298 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) && 1299 isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ))) 1300 return nullptr; 1301 1302 ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID); 1303 Value *CondC = Builder.CreateICmp(Pred, C0, C1); 1304 Value *NewC = Builder.CreateSelect(CondC, C0, C1); 1305 return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(), 1306 {LHS->getArgOperand(0), NewC}); 1307 } 1308 1309 /// If this min/max has a matching min/max operand with a constant, try to push 1310 /// the constant operand into this instruction. This can enable more folds. 1311 static Instruction * 1312 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, 1313 InstCombiner::BuilderTy &Builder) { 1314 // Match and capture a min/max operand candidate. 1315 Value *X, *Y; 1316 Constant *C; 1317 Instruction *Inner; 1318 if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd( 1319 m_Instruction(Inner), 1320 m_MaxOrMin(m_Value(X), m_ImmConstant(C)))), 1321 m_Value(Y)))) 1322 return nullptr; 1323 1324 // The inner op must match. Check for constants to avoid infinite loops. 1325 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1326 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner); 1327 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID || 1328 match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) 1329 return nullptr; 1330 1331 // max (max X, C), Y --> max (max X, Y), C 1332 Function *MinMax = Intrinsic::getOrInsertDeclaration(II->getModule(), 1333 MinMaxID, II->getType()); 1334 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y); 1335 NewInner->takeName(Inner); 1336 return CallInst::Create(MinMax, {NewInner, C}); 1337 } 1338 1339 /// Reduce a sequence of min/max intrinsics with a common operand. 1340 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) { 1341 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1342 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 1343 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1)); 1344 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1345 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID || 1346 RHS->getIntrinsicID() != MinMaxID || 1347 (!LHS->hasOneUse() && !RHS->hasOneUse())) 1348 return nullptr; 1349 1350 Value *A = LHS->getArgOperand(0); 1351 Value *B = LHS->getArgOperand(1); 1352 Value *C = RHS->getArgOperand(0); 1353 Value *D = RHS->getArgOperand(1); 1354 1355 // Look for a common operand. 1356 Value *MinMaxOp = nullptr; 1357 Value *ThirdOp = nullptr; 1358 if (LHS->hasOneUse()) { 1359 // If the LHS is only used in this chain and the RHS is used outside of it, 1360 // reuse the RHS min/max because that will eliminate the LHS. 1361 if (D == A || C == A) { 1362 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1363 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1364 MinMaxOp = RHS; 1365 ThirdOp = B; 1366 } else if (D == B || C == B) { 1367 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1368 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1369 MinMaxOp = RHS; 1370 ThirdOp = A; 1371 } 1372 } else { 1373 assert(RHS->hasOneUse() && "Expected one-use operand"); 1374 // Reuse the LHS. This will eliminate the RHS. 1375 if (D == A || D == B) { 1376 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1377 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1378 MinMaxOp = LHS; 1379 ThirdOp = C; 1380 } else if (C == A || C == B) { 1381 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1382 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1383 MinMaxOp = LHS; 1384 ThirdOp = D; 1385 } 1386 } 1387 1388 if (!MinMaxOp || !ThirdOp) 1389 return nullptr; 1390 1391 Module *Mod = II->getModule(); 1392 Function *MinMax = 1393 Intrinsic::getOrInsertDeclaration(Mod, MinMaxID, II->getType()); 1394 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp }); 1395 } 1396 1397 /// If all arguments of the intrinsic are unary shuffles with the same mask, 1398 /// try to shuffle after the intrinsic. 1399 static Instruction * 1400 foldShuffledIntrinsicOperands(IntrinsicInst *II, 1401 InstCombiner::BuilderTy &Builder) { 1402 // TODO: This should be extended to handle other intrinsics like fshl, ctpop, 1403 // etc. Use llvm::isTriviallyVectorizable() and related to determine 1404 // which intrinsics are safe to shuffle? 1405 switch (II->getIntrinsicID()) { 1406 case Intrinsic::smax: 1407 case Intrinsic::smin: 1408 case Intrinsic::umax: 1409 case Intrinsic::umin: 1410 case Intrinsic::fma: 1411 case Intrinsic::fshl: 1412 case Intrinsic::fshr: 1413 break; 1414 default: 1415 return nullptr; 1416 } 1417 1418 Value *X; 1419 ArrayRef<int> Mask; 1420 if (!match(II->getArgOperand(0), 1421 m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask)))) 1422 return nullptr; 1423 1424 // At least 1 operand must have 1 use because we are creating 2 instructions. 1425 if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); })) 1426 return nullptr; 1427 1428 // See if all arguments are shuffled with the same mask. 1429 SmallVector<Value *, 4> NewArgs(II->arg_size()); 1430 NewArgs[0] = X; 1431 Type *SrcTy = X->getType(); 1432 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) { 1433 if (!match(II->getArgOperand(i), 1434 m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) || 1435 X->getType() != SrcTy) 1436 return nullptr; 1437 NewArgs[i] = X; 1438 } 1439 1440 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M 1441 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr; 1442 Value *NewIntrinsic = 1443 Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI); 1444 return new ShuffleVectorInst(NewIntrinsic, Mask); 1445 } 1446 1447 /// Fold the following cases and accepts bswap and bitreverse intrinsics: 1448 /// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y)) 1449 /// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse) 1450 template <Intrinsic::ID IntrID> 1451 static Instruction *foldBitOrderCrossLogicOp(Value *V, 1452 InstCombiner::BuilderTy &Builder) { 1453 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse, 1454 "This helper only supports BSWAP and BITREVERSE intrinsics"); 1455 1456 Value *X, *Y; 1457 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we 1458 // don't match ConstantExpr that aren't meaningful for this transform. 1459 if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) && 1460 isa<BinaryOperator>(V)) { 1461 Value *OldReorderX, *OldReorderY; 1462 BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode(); 1463 1464 // If both X and Y are bswap/bitreverse, the transform reduces the number 1465 // of instructions even if there's multiuse. 1466 // If only one operand is bswap/bitreverse, we need to ensure the operand 1467 // have only one use. 1468 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) && 1469 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) { 1470 return BinaryOperator::Create(Op, OldReorderX, OldReorderY); 1471 } 1472 1473 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) { 1474 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y); 1475 return BinaryOperator::Create(Op, OldReorderX, NewReorder); 1476 } 1477 1478 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) { 1479 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X); 1480 return BinaryOperator::Create(Op, NewReorder, OldReorderY); 1481 } 1482 } 1483 return nullptr; 1484 } 1485 1486 static Value *simplifyReductionOperand(Value *Arg, bool CanReorderLanes) { 1487 if (!CanReorderLanes) 1488 return nullptr; 1489 1490 Value *V; 1491 if (match(Arg, m_VecReverse(m_Value(V)))) 1492 return V; 1493 1494 ArrayRef<int> Mask; 1495 if (!isa<FixedVectorType>(Arg->getType()) || 1496 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) || 1497 !cast<ShuffleVectorInst>(Arg)->isSingleSource()) 1498 return nullptr; 1499 1500 int Sz = Mask.size(); 1501 SmallBitVector UsedIndices(Sz); 1502 for (int Idx : Mask) { 1503 if (Idx == PoisonMaskElem || UsedIndices.test(Idx)) 1504 return nullptr; 1505 UsedIndices.set(Idx); 1506 } 1507 1508 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or 1509 // other changes. 1510 return UsedIndices.all() ? V : nullptr; 1511 } 1512 1513 /// Fold an unsigned minimum of trailing or leading zero bits counts: 1514 /// umin(cttz(CtOp, ZeroUndef), ConstOp) --> cttz(CtOp | (1 << ConstOp)) 1515 /// umin(ctlz(CtOp, ZeroUndef), ConstOp) --> ctlz(CtOp | (SignedMin 1516 /// >> ConstOp)) 1517 template <Intrinsic::ID IntrID> 1518 static Value * 1519 foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, 1520 const DataLayout &DL, 1521 InstCombiner::BuilderTy &Builder) { 1522 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz, 1523 "This helper only supports cttz and ctlz intrinsics"); 1524 1525 Value *CtOp; 1526 Value *ZeroUndef; 1527 if (!match(I0, 1528 m_OneUse(m_Intrinsic<IntrID>(m_Value(CtOp), m_Value(ZeroUndef))))) 1529 return nullptr; 1530 1531 unsigned BitWidth = I1->getType()->getScalarSizeInBits(); 1532 auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); }; 1533 if (!match(I1, m_CheckedInt(LessBitWidth))) 1534 // We have a constant >= BitWidth (which can be handled by CVP) 1535 // or a non-splat vector with elements < and >= BitWidth 1536 return nullptr; 1537 1538 Type *Ty = I1->getType(); 1539 Constant *NewConst = ConstantFoldBinaryOpOperands( 1540 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr, 1541 IntrID == Intrinsic::cttz 1542 ? ConstantInt::get(Ty, 1) 1543 : ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)), 1544 cast<Constant>(I1), DL); 1545 return Builder.CreateBinaryIntrinsic( 1546 IntrID, Builder.CreateOr(CtOp, NewConst), 1547 ConstantInt::getTrue(ZeroUndef->getType())); 1548 } 1549 1550 /// Return whether "X LOp (Y ROp Z)" is always equal to 1551 /// "(X LOp Y) ROp (X LOp Z)". 1552 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, 1553 bool HasNSW, Intrinsic::ID ROp) { 1554 switch (ROp) { 1555 case Intrinsic::umax: 1556 case Intrinsic::umin: 1557 return HasNUW && LOp == Instruction::Add; 1558 case Intrinsic::smax: 1559 case Intrinsic::smin: 1560 return HasNSW && LOp == Instruction::Add; 1561 default: 1562 return false; 1563 } 1564 } 1565 1566 // Attempts to factorise a common term 1567 // in an instruction that has the form "(A op' B) op (C op' D) 1568 // where op is an intrinsic and op' is a binop 1569 static Value * 1570 foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II, 1571 InstCombiner::BuilderTy &Builder) { 1572 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); 1573 Intrinsic::ID TopLevelOpcode = II->getIntrinsicID(); 1574 1575 OverflowingBinaryOperator *Op0 = dyn_cast<OverflowingBinaryOperator>(LHS); 1576 OverflowingBinaryOperator *Op1 = dyn_cast<OverflowingBinaryOperator>(RHS); 1577 1578 if (!Op0 || !Op1) 1579 return nullptr; 1580 1581 if (Op0->getOpcode() != Op1->getOpcode()) 1582 return nullptr; 1583 1584 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1585 return nullptr; 1586 1587 Instruction::BinaryOps InnerOpcode = 1588 static_cast<Instruction::BinaryOps>(Op0->getOpcode()); 1589 bool HasNUW = Op0->hasNoUnsignedWrap() && Op1->hasNoUnsignedWrap(); 1590 bool HasNSW = Op0->hasNoSignedWrap() && Op1->hasNoSignedWrap(); 1591 1592 if (!leftDistributesOverRight(InnerOpcode, HasNUW, HasNSW, TopLevelOpcode)) 1593 return nullptr; 1594 1595 assert(II->isCommutative() && Op0->isCommutative() && 1596 "Only inner and outer commutative op codes are supported."); 1597 1598 Value *A = Op0->getOperand(0); 1599 Value *B = Op0->getOperand(1); 1600 Value *C = Op1->getOperand(0); 1601 Value *D = Op1->getOperand(1); 1602 1603 // Attempts to swap variables such that A always equals C 1604 if (A != C && A != D) 1605 std::swap(A, B); 1606 if (A == C || A == D) { 1607 if (A != C) 1608 std::swap(C, D); 1609 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, B, D); 1610 BinaryOperator *NewBinop = 1611 cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, NewIntrinsic, A)); 1612 NewBinop->setHasNoSignedWrap(HasNSW); 1613 NewBinop->setHasNoUnsignedWrap(HasNUW); 1614 return NewBinop; 1615 } 1616 1617 return nullptr; 1618 } 1619 1620 /// CallInst simplification. This mostly only handles folding of intrinsic 1621 /// instructions. For normal calls, it allows visitCallBase to do the heavy 1622 /// lifting. 1623 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { 1624 // Don't try to simplify calls without uses. It will not do anything useful, 1625 // but will result in the following folds being skipped. 1626 if (!CI.use_empty()) { 1627 SmallVector<Value *, 8> Args(CI.args()); 1628 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args, 1629 SQ.getWithInstruction(&CI))) 1630 return replaceInstUsesWith(CI, V); 1631 } 1632 1633 if (Value *FreedOp = getFreedOperand(&CI, &TLI)) 1634 return visitFree(CI, FreedOp); 1635 1636 // If the caller function (i.e. us, the function that contains this CallInst) 1637 // is nounwind, mark the call as nounwind, even if the callee isn't. 1638 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 1639 CI.setDoesNotThrow(); 1640 return &CI; 1641 } 1642 1643 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 1644 if (!II) return visitCallBase(CI); 1645 1646 // For atomic unordered mem intrinsics if len is not a positive or 1647 // not a multiple of element size then behavior is undefined. 1648 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) 1649 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) 1650 if (NumBytes->isNegative() || 1651 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { 1652 CreateNonTerminatorUnreachable(AMI); 1653 assert(AMI->getType()->isVoidTy() && 1654 "non void atomic unordered mem intrinsic"); 1655 return eraseInstFromFunction(*AMI); 1656 } 1657 1658 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 1659 // instead of in visitCallBase. 1660 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 1661 bool Changed = false; 1662 1663 // memmove/cpy/set of zero bytes is a noop. 1664 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 1665 if (NumBytes->isNullValue()) 1666 return eraseInstFromFunction(CI); 1667 } 1668 1669 // No other transformations apply to volatile transfers. 1670 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 1671 if (M->isVolatile()) 1672 return nullptr; 1673 1674 // If we have a memmove and the source operation is a constant global, 1675 // then the source and dest pointers can't alias, so we can change this 1676 // into a call to memcpy. 1677 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 1678 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 1679 if (GVSrc->isConstant()) { 1680 Module *M = CI.getModule(); 1681 Intrinsic::ID MemCpyID = 1682 isa<AtomicMemMoveInst>(MMI) 1683 ? Intrinsic::memcpy_element_unordered_atomic 1684 : Intrinsic::memcpy; 1685 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 1686 CI.getArgOperand(1)->getType(), 1687 CI.getArgOperand(2)->getType() }; 1688 CI.setCalledFunction( 1689 Intrinsic::getOrInsertDeclaration(M, MemCpyID, Tys)); 1690 Changed = true; 1691 } 1692 } 1693 1694 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1695 // memmove(x,x,size) -> noop. 1696 if (MTI->getSource() == MTI->getDest()) 1697 return eraseInstFromFunction(CI); 1698 } 1699 1700 auto IsPointerUndefined = [MI](Value *Ptr) { 1701 return isa<ConstantPointerNull>(Ptr) && 1702 !NullPointerIsDefined( 1703 MI->getFunction(), 1704 cast<PointerType>(Ptr->getType())->getAddressSpace()); 1705 }; 1706 bool SrcIsUndefined = false; 1707 // If we can determine a pointer alignment that is bigger than currently 1708 // set, update the alignment. 1709 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1710 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 1711 return I; 1712 SrcIsUndefined = IsPointerUndefined(MTI->getRawSource()); 1713 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 1714 if (Instruction *I = SimplifyAnyMemSet(MSI)) 1715 return I; 1716 } 1717 1718 // If src/dest is null, this memory intrinsic must be a noop. 1719 if (SrcIsUndefined || IsPointerUndefined(MI->getRawDest())) { 1720 Builder.CreateAssumption(Builder.CreateIsNull(MI->getLength())); 1721 return eraseInstFromFunction(CI); 1722 } 1723 1724 if (Changed) return II; 1725 } 1726 1727 // For fixed width vector result intrinsics, use the generic demanded vector 1728 // support. 1729 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { 1730 auto VWidth = IIFVTy->getNumElements(); 1731 APInt PoisonElts(VWidth, 0); 1732 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1733 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) { 1734 if (V != II) 1735 return replaceInstUsesWith(*II, V); 1736 return II; 1737 } 1738 } 1739 1740 if (II->isCommutative()) { 1741 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) { 1742 replaceOperand(*II, 0, Pair->first); 1743 replaceOperand(*II, 1, Pair->second); 1744 return II; 1745 } 1746 1747 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) 1748 return NewCall; 1749 } 1750 1751 // Unused constrained FP intrinsic calls may have declared side effect, which 1752 // prevents it from being removed. In some cases however the side effect is 1753 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it 1754 // returns a replacement, the call may be removed. 1755 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) { 1756 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI))) 1757 return eraseInstFromFunction(CI); 1758 } 1759 1760 Intrinsic::ID IID = II->getIntrinsicID(); 1761 switch (IID) { 1762 case Intrinsic::objectsize: { 1763 SmallVector<Instruction *> InsertedInstructions; 1764 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false, 1765 &InsertedInstructions)) { 1766 for (Instruction *Inserted : InsertedInstructions) 1767 Worklist.add(Inserted); 1768 return replaceInstUsesWith(CI, V); 1769 } 1770 return nullptr; 1771 } 1772 case Intrinsic::abs: { 1773 Value *IIOperand = II->getArgOperand(0); 1774 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); 1775 1776 // abs(-x) -> abs(x) 1777 // TODO: Copy nsw if it was present on the neg? 1778 Value *X; 1779 if (match(IIOperand, m_Neg(m_Value(X)))) 1780 return replaceOperand(*II, 0, X); 1781 if (match(IIOperand, m_c_Select(m_Neg(m_Value(X)), m_Deferred(X)))) 1782 return replaceOperand(*II, 0, X); 1783 1784 Value *Y; 1785 // abs(a * abs(b)) -> abs(a * b) 1786 if (match(IIOperand, 1787 m_OneUse(m_c_Mul(m_Value(X), 1788 m_Intrinsic<Intrinsic::abs>(m_Value(Y)))))) { 1789 bool NSW = 1790 cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison; 1791 auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y); 1792 return replaceOperand(*II, 0, XY); 1793 } 1794 1795 if (std::optional<bool> Known = 1796 getKnownSignOrZero(IIOperand, SQ.getWithInstruction(II))) { 1797 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y) 1798 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y) 1799 if (!*Known) 1800 return replaceInstUsesWith(*II, IIOperand); 1801 1802 // abs(x) -> -x if x < 0 1803 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y) 1804 if (IntMinIsPoison) 1805 return BinaryOperator::CreateNSWNeg(IIOperand); 1806 return BinaryOperator::CreateNeg(IIOperand); 1807 } 1808 1809 // abs (sext X) --> zext (abs X*) 1810 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. 1811 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { 1812 Value *NarrowAbs = 1813 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); 1814 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); 1815 } 1816 1817 // Match a complicated way to check if a number is odd/even: 1818 // abs (srem X, 2) --> and X, 1 1819 const APInt *C; 1820 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) 1821 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); 1822 1823 break; 1824 } 1825 case Intrinsic::umin: { 1826 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1827 // umin(x, 1) == zext(x != 0) 1828 if (match(I1, m_One())) { 1829 assert(II->getType()->getScalarSizeInBits() != 1 && 1830 "Expected simplify of umin with max constant"); 1831 Value *Zero = Constant::getNullValue(I0->getType()); 1832 Value *Cmp = Builder.CreateICmpNE(I0, Zero); 1833 return CastInst::Create(Instruction::ZExt, Cmp, II->getType()); 1834 } 1835 // umin(cttz(x), const) --> cttz(x | (1 << const)) 1836 if (Value *FoldedCttz = 1837 foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::cttz>( 1838 I0, I1, DL, Builder)) 1839 return replaceInstUsesWith(*II, FoldedCttz); 1840 // umin(ctlz(x), const) --> ctlz(x | (SignedMin >> const)) 1841 if (Value *FoldedCtlz = 1842 foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::ctlz>( 1843 I0, I1, DL, Builder)) 1844 return replaceInstUsesWith(*II, FoldedCtlz); 1845 [[fallthrough]]; 1846 } 1847 case Intrinsic::umax: { 1848 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1849 Value *X, *Y; 1850 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && 1851 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1852 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1853 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1854 } 1855 Constant *C; 1856 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && 1857 I0->hasOneUse()) { 1858 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) { 1859 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1860 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1861 } 1862 } 1863 // If C is not 0: 1864 // umax(nuw_shl(x, C), x + 1) -> x == 0 ? 1 : nuw_shl(x, C) 1865 // If C is not 0 or 1: 1866 // umax(nuw_mul(x, C), x + 1) -> x == 0 ? 1 : nuw_mul(x, C) 1867 auto foldMaxMulShift = [&](Value *A, Value *B) -> Instruction * { 1868 const APInt *C; 1869 Value *X; 1870 if (!match(A, m_NUWShl(m_Value(X), m_APInt(C))) && 1871 !(match(A, m_NUWMul(m_Value(X), m_APInt(C))) && !C->isOne())) 1872 return nullptr; 1873 if (C->isZero()) 1874 return nullptr; 1875 if (!match(B, m_OneUse(m_Add(m_Specific(X), m_One())))) 1876 return nullptr; 1877 1878 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(X->getType(), 0)); 1879 Value *NewSelect = 1880 Builder.CreateSelect(Cmp, ConstantInt::get(X->getType(), 1), A); 1881 return replaceInstUsesWith(*II, NewSelect); 1882 }; 1883 1884 if (IID == Intrinsic::umax) { 1885 if (Instruction *I = foldMaxMulShift(I0, I1)) 1886 return I; 1887 if (Instruction *I = foldMaxMulShift(I1, I0)) 1888 return I; 1889 } 1890 // If both operands of unsigned min/max are sign-extended, it is still ok 1891 // to narrow the operation. 1892 [[fallthrough]]; 1893 } 1894 case Intrinsic::smax: 1895 case Intrinsic::smin: { 1896 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1897 Value *X, *Y; 1898 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && 1899 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1900 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1901 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1902 } 1903 1904 Constant *C; 1905 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && 1906 I0->hasOneUse()) { 1907 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) { 1908 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1909 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1910 } 1911 } 1912 1913 // umin(i1 X, i1 Y) -> and i1 X, Y 1914 // smax(i1 X, i1 Y) -> and i1 X, Y 1915 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) && 1916 II->getType()->isIntOrIntVectorTy(1)) { 1917 return BinaryOperator::CreateAnd(I0, I1); 1918 } 1919 1920 // umax(i1 X, i1 Y) -> or i1 X, Y 1921 // smin(i1 X, i1 Y) -> or i1 X, Y 1922 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) && 1923 II->getType()->isIntOrIntVectorTy(1)) { 1924 return BinaryOperator::CreateOr(I0, I1); 1925 } 1926 1927 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1928 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y) 1929 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y) 1930 // TODO: Canonicalize neg after min/max if I1 is constant. 1931 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) && 1932 (I0->hasOneUse() || I1->hasOneUse())) { 1933 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1934 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 1935 return BinaryOperator::CreateNSWNeg(InvMaxMin); 1936 } 1937 } 1938 1939 // (umax X, (xor X, Pow2)) 1940 // -> (or X, Pow2) 1941 // (umin X, (xor X, Pow2)) 1942 // -> (and X, ~Pow2) 1943 // (smax X, (xor X, Pos_Pow2)) 1944 // -> (or X, Pos_Pow2) 1945 // (smin X, (xor X, Pos_Pow2)) 1946 // -> (and X, ~Pos_Pow2) 1947 // (smax X, (xor X, Neg_Pow2)) 1948 // -> (and X, ~Neg_Pow2) 1949 // (smin X, (xor X, Neg_Pow2)) 1950 // -> (or X, Neg_Pow2) 1951 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) || 1952 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) && 1953 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) { 1954 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax; 1955 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin; 1956 1957 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1958 auto KnownSign = getKnownSign(X, SQ.getWithInstruction(II)); 1959 if (KnownSign == std::nullopt) { 1960 UseOr = false; 1961 UseAndN = false; 1962 } else if (*KnownSign /* true is Signed. */) { 1963 UseOr ^= true; 1964 UseAndN ^= true; 1965 Type *Ty = I0->getType(); 1966 // Negative power of 2 must be IntMin. It's possible to be able to 1967 // prove negative / power of 2 without actually having known bits, so 1968 // just get the value by hand. 1969 X = Constant::getIntegerValue( 1970 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits())); 1971 } 1972 } 1973 if (UseOr) 1974 return BinaryOperator::CreateOr(I0, X); 1975 else if (UseAndN) 1976 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X)); 1977 } 1978 1979 // If we can eliminate ~A and Y is free to invert: 1980 // max ~A, Y --> ~(min A, ~Y) 1981 // 1982 // Examples: 1983 // max ~A, ~Y --> ~(min A, Y) 1984 // max ~A, C --> ~(min A, ~C) 1985 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z)) 1986 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1987 Value *A; 1988 if (match(X, m_OneUse(m_Not(m_Value(A)))) && 1989 !isFreeToInvert(A, A->hasOneUse())) { 1990 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) { 1991 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1992 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY); 1993 return BinaryOperator::CreateNot(InvMaxMin); 1994 } 1995 } 1996 return nullptr; 1997 }; 1998 1999 if (Instruction *I = moveNotAfterMinMax(I0, I1)) 2000 return I; 2001 if (Instruction *I = moveNotAfterMinMax(I1, I0)) 2002 return I; 2003 2004 if (Instruction *I = moveAddAfterMinMax(II, Builder)) 2005 return I; 2006 2007 // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C 2008 const APInt *RHSC; 2009 if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) && 2010 match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC))))) 2011 return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y), 2012 ConstantInt::get(II->getType(), *RHSC)); 2013 2014 // smax(X, -X) --> abs(X) 2015 // smin(X, -X) --> -abs(X) 2016 // umax(X, -X) --> -abs(X) 2017 // umin(X, -X) --> abs(X) 2018 if (isKnownNegation(I0, I1)) { 2019 // We can choose either operand as the input to abs(), but if we can 2020 // eliminate the only use of a value, that's better for subsequent 2021 // transforms/analysis. 2022 if (I0->hasOneUse() && !I1->hasOneUse()) 2023 std::swap(I0, I1); 2024 2025 // This is some variant of abs(). See if we can propagate 'nsw' to the abs 2026 // operation and potentially its negation. 2027 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); 2028 Value *Abs = Builder.CreateBinaryIntrinsic( 2029 Intrinsic::abs, I0, 2030 ConstantInt::getBool(II->getContext(), IntMinIsPoison)); 2031 2032 // We don't have a "nabs" intrinsic, so negate if needed based on the 2033 // max/min operation. 2034 if (IID == Intrinsic::smin || IID == Intrinsic::umax) 2035 Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison); 2036 return replaceInstUsesWith(CI, Abs); 2037 } 2038 2039 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) 2040 return Sel; 2041 2042 if (Instruction *SAdd = matchSAddSubSat(*II)) 2043 return SAdd; 2044 2045 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ)) 2046 return replaceInstUsesWith(*II, NewMinMax); 2047 2048 if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder)) 2049 return R; 2050 2051 if (Instruction *NewMinMax = factorizeMinMaxTree(II)) 2052 return NewMinMax; 2053 2054 // Try to fold minmax with constant RHS based on range information 2055 if (match(I1, m_APIntAllowPoison(RHSC))) { 2056 ICmpInst::Predicate Pred = 2057 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 2058 bool IsSigned = MinMaxIntrinsic::isSigned(IID); 2059 ConstantRange LHS_CR = computeConstantRangeIncludingKnownBits( 2060 I0, IsSigned, SQ.getWithInstruction(II)); 2061 if (!LHS_CR.isFullSet()) { 2062 if (LHS_CR.icmp(Pred, *RHSC)) 2063 return replaceInstUsesWith(*II, I0); 2064 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC)) 2065 return replaceInstUsesWith(*II, 2066 ConstantInt::get(II->getType(), *RHSC)); 2067 } 2068 } 2069 2070 if (Value *V = foldIntrinsicUsingDistributiveLaws(II, Builder)) 2071 return replaceInstUsesWith(*II, V); 2072 2073 break; 2074 } 2075 case Intrinsic::scmp: { 2076 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 2077 Value *LHS, *RHS; 2078 if (match(I0, m_NSWSub(m_Value(LHS), m_Value(RHS))) && match(I1, m_Zero())) 2079 return replaceInstUsesWith( 2080 CI, 2081 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {LHS, RHS})); 2082 break; 2083 } 2084 case Intrinsic::bitreverse: { 2085 Value *IIOperand = II->getArgOperand(0); 2086 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0 2087 Value *X; 2088 if (match(IIOperand, m_ZExt(m_Value(X))) && 2089 X->getType()->isIntOrIntVectorTy(1)) { 2090 Type *Ty = II->getType(); 2091 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits()); 2092 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit), 2093 ConstantInt::getNullValue(Ty)); 2094 } 2095 2096 if (Instruction *crossLogicOpFold = 2097 foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder)) 2098 return crossLogicOpFold; 2099 2100 break; 2101 } 2102 case Intrinsic::bswap: { 2103 Value *IIOperand = II->getArgOperand(0); 2104 2105 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as 2106 // inverse-shift-of-bswap: 2107 // bswap (shl X, Y) --> lshr (bswap X), Y 2108 // bswap (lshr X, Y) --> shl (bswap X), Y 2109 Value *X, *Y; 2110 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) { 2111 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits(); 2112 if (MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) { 2113 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 2114 BinaryOperator::BinaryOps InverseShift = 2115 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl 2116 ? Instruction::LShr 2117 : Instruction::Shl; 2118 return BinaryOperator::Create(InverseShift, NewSwap, Y); 2119 } 2120 } 2121 2122 KnownBits Known = computeKnownBits(IIOperand, 0, II); 2123 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8); 2124 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8); 2125 unsigned BW = Known.getBitWidth(); 2126 2127 // bswap(x) -> shift(x) if x has exactly one "active byte" 2128 if (BW - LZ - TZ == 8) { 2129 assert(LZ != TZ && "active byte cannot be in the middle"); 2130 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x 2131 return BinaryOperator::CreateNUWShl( 2132 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ)); 2133 // -> lshr(x) if the "active byte" is in the high part of x 2134 return BinaryOperator::CreateExactLShr( 2135 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ)); 2136 } 2137 2138 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 2139 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 2140 unsigned C = X->getType()->getScalarSizeInBits() - BW; 2141 Value *CV = ConstantInt::get(X->getType(), C); 2142 Value *V = Builder.CreateLShr(X, CV); 2143 return new TruncInst(V, IIOperand->getType()); 2144 } 2145 2146 if (Instruction *crossLogicOpFold = 2147 foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) { 2148 return crossLogicOpFold; 2149 } 2150 2151 // Try to fold into bitreverse if bswap is the root of the expression tree. 2152 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false, 2153 /*MatchBitReversals*/ true)) 2154 return BitOp; 2155 break; 2156 } 2157 case Intrinsic::masked_load: 2158 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 2159 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 2160 break; 2161 case Intrinsic::masked_store: 2162 return simplifyMaskedStore(*II); 2163 case Intrinsic::masked_gather: 2164 return simplifyMaskedGather(*II); 2165 case Intrinsic::masked_scatter: 2166 return simplifyMaskedScatter(*II); 2167 case Intrinsic::launder_invariant_group: 2168 case Intrinsic::strip_invariant_group: 2169 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 2170 return replaceInstUsesWith(*II, SkippedBarrier); 2171 break; 2172 case Intrinsic::powi: 2173 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 2174 // 0 and 1 are handled in instsimplify 2175 // powi(x, -1) -> 1/x 2176 if (Power->isMinusOne()) 2177 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), 2178 II->getArgOperand(0), II); 2179 // powi(x, 2) -> x*x 2180 if (Power->equalsInt(2)) 2181 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), 2182 II->getArgOperand(0), II); 2183 2184 if (!Power->getValue()[0]) { 2185 Value *X; 2186 // If power is even: 2187 // powi(-x, p) -> powi(x, p) 2188 // powi(fabs(x), p) -> powi(x, p) 2189 // powi(copysign(x, y), p) -> powi(x, p) 2190 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) || 2191 match(II->getArgOperand(0), m_FAbs(m_Value(X))) || 2192 match(II->getArgOperand(0), 2193 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value()))) 2194 return replaceOperand(*II, 0, X); 2195 } 2196 } 2197 break; 2198 2199 case Intrinsic::cttz: 2200 case Intrinsic::ctlz: 2201 if (auto *I = foldCttzCtlz(*II, *this)) 2202 return I; 2203 break; 2204 2205 case Intrinsic::ctpop: 2206 if (auto *I = foldCtpop(*II, *this)) 2207 return I; 2208 break; 2209 2210 case Intrinsic::fshl: 2211 case Intrinsic::fshr: { 2212 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 2213 Type *Ty = II->getType(); 2214 unsigned BitWidth = Ty->getScalarSizeInBits(); 2215 Constant *ShAmtC; 2216 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) { 2217 // Canonicalize a shift amount constant operand to modulo the bit-width. 2218 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 2219 Constant *ModuloC = 2220 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL); 2221 if (!ModuloC) 2222 return nullptr; 2223 if (ModuloC != ShAmtC) 2224 return replaceOperand(*II, 2, ModuloC); 2225 2226 assert(match(ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, WidthC, 2227 ShAmtC, DL), 2228 m_One()) && 2229 "Shift amount expected to be modulo bitwidth"); 2230 2231 // Canonicalize funnel shift right by constant to funnel shift left. This 2232 // is not entirely arbitrary. For historical reasons, the backend may 2233 // recognize rotate left patterns but miss rotate right patterns. 2234 if (IID == Intrinsic::fshr) { 2235 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero. 2236 if (!isKnownNonZero(ShAmtC, SQ.getWithInstruction(II))) 2237 return nullptr; 2238 2239 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 2240 Module *Mod = II->getModule(); 2241 Function *Fshl = 2242 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::fshl, Ty); 2243 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 2244 } 2245 assert(IID == Intrinsic::fshl && 2246 "All funnel shifts by simple constants should go left"); 2247 2248 // fshl(X, 0, C) --> shl X, C 2249 // fshl(X, undef, C) --> shl X, C 2250 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 2251 return BinaryOperator::CreateShl(Op0, ShAmtC); 2252 2253 // fshl(0, X, C) --> lshr X, (BW-C) 2254 // fshl(undef, X, C) --> lshr X, (BW-C) 2255 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 2256 return BinaryOperator::CreateLShr(Op1, 2257 ConstantExpr::getSub(WidthC, ShAmtC)); 2258 2259 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 2260 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 2261 Module *Mod = II->getModule(); 2262 Function *Bswap = 2263 Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::bswap, Ty); 2264 return CallInst::Create(Bswap, { Op0 }); 2265 } 2266 if (Instruction *BitOp = 2267 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true, 2268 /*MatchBitReversals*/ true)) 2269 return BitOp; 2270 } 2271 2272 // fshl(X, 0, Y) --> shl(X, and(Y, BitWidth - 1)) if bitwidth is a 2273 // power-of-2 2274 if (IID == Intrinsic::fshl && isPowerOf2_32(BitWidth) && 2275 match(Op1, m_ZeroInt())) { 2276 Value *Op2 = II->getArgOperand(2); 2277 Value *And = Builder.CreateAnd(Op2, ConstantInt::get(Ty, BitWidth - 1)); 2278 return BinaryOperator::CreateShl(Op0, And); 2279 } 2280 2281 // Left or right might be masked. 2282 if (SimplifyDemandedInstructionBits(*II)) 2283 return &CI; 2284 2285 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 2286 // so only the low bits of the shift amount are demanded if the bitwidth is 2287 // a power-of-2. 2288 if (!isPowerOf2_32(BitWidth)) 2289 break; 2290 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 2291 KnownBits Op2Known(BitWidth); 2292 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 2293 return &CI; 2294 break; 2295 } 2296 case Intrinsic::ptrmask: { 2297 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType()); 2298 KnownBits Known(BitWidth); 2299 if (SimplifyDemandedInstructionBits(*II, Known)) 2300 return II; 2301 2302 Value *InnerPtr, *InnerMask; 2303 bool Changed = false; 2304 // Combine: 2305 // (ptrmask (ptrmask p, A), B) 2306 // -> (ptrmask p, (and A, B)) 2307 if (match(II->getArgOperand(0), 2308 m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr), 2309 m_Value(InnerMask))))) { 2310 assert(II->getArgOperand(1)->getType() == InnerMask->getType() && 2311 "Mask types must match"); 2312 // TODO: If InnerMask == Op1, we could copy attributes from inner 2313 // callsite -> outer callsite. 2314 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask); 2315 replaceOperand(CI, 0, InnerPtr); 2316 replaceOperand(CI, 1, NewMask); 2317 Changed = true; 2318 } 2319 2320 // See if we can deduce non-null. 2321 if (!CI.hasRetAttr(Attribute::NonNull) && 2322 (Known.isNonZero() || 2323 isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) { 2324 CI.addRetAttr(Attribute::NonNull); 2325 Changed = true; 2326 } 2327 2328 unsigned NewAlignmentLog = 2329 std::min(Value::MaxAlignmentExponent, 2330 std::min(BitWidth - 1, Known.countMinTrailingZeros())); 2331 // Known bits will capture if we had alignment information associated with 2332 // the pointer argument. 2333 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) { 2334 CI.addRetAttr(Attribute::getWithAlignment( 2335 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog))); 2336 Changed = true; 2337 } 2338 if (Changed) 2339 return &CI; 2340 break; 2341 } 2342 case Intrinsic::uadd_with_overflow: 2343 case Intrinsic::sadd_with_overflow: { 2344 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2345 return I; 2346 2347 // Given 2 constant operands whose sum does not overflow: 2348 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 2349 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 2350 Value *X; 2351 const APInt *C0, *C1; 2352 Value *Arg0 = II->getArgOperand(0); 2353 Value *Arg1 = II->getArgOperand(1); 2354 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 2355 bool HasNWAdd = IsSigned 2356 ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0))) 2357 : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0))); 2358 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 2359 bool Overflow; 2360 APInt NewC = 2361 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 2362 if (!Overflow) 2363 return replaceInstUsesWith( 2364 *II, Builder.CreateBinaryIntrinsic( 2365 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 2366 } 2367 break; 2368 } 2369 2370 case Intrinsic::umul_with_overflow: 2371 case Intrinsic::smul_with_overflow: 2372 case Intrinsic::usub_with_overflow: 2373 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2374 return I; 2375 break; 2376 2377 case Intrinsic::ssub_with_overflow: { 2378 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2379 return I; 2380 2381 Constant *C; 2382 Value *Arg0 = II->getArgOperand(0); 2383 Value *Arg1 = II->getArgOperand(1); 2384 // Given a constant C that is not the minimum signed value 2385 // for an integer of a given bit width: 2386 // 2387 // ssubo X, C -> saddo X, -C 2388 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 2389 Value *NegVal = ConstantExpr::getNeg(C); 2390 // Build a saddo call that is equivalent to the discovered 2391 // ssubo call. 2392 return replaceInstUsesWith( 2393 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 2394 Arg0, NegVal)); 2395 } 2396 2397 break; 2398 } 2399 2400 case Intrinsic::uadd_sat: 2401 case Intrinsic::sadd_sat: 2402 case Intrinsic::usub_sat: 2403 case Intrinsic::ssub_sat: { 2404 SaturatingInst *SI = cast<SaturatingInst>(II); 2405 Type *Ty = SI->getType(); 2406 Value *Arg0 = SI->getLHS(); 2407 Value *Arg1 = SI->getRHS(); 2408 2409 // Make use of known overflow information. 2410 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 2411 Arg0, Arg1, SI); 2412 switch (OR) { 2413 case OverflowResult::MayOverflow: 2414 break; 2415 case OverflowResult::NeverOverflows: 2416 if (SI->isSigned()) 2417 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 2418 else 2419 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 2420 case OverflowResult::AlwaysOverflowsLow: { 2421 unsigned BitWidth = Ty->getScalarSizeInBits(); 2422 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 2423 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 2424 } 2425 case OverflowResult::AlwaysOverflowsHigh: { 2426 unsigned BitWidth = Ty->getScalarSizeInBits(); 2427 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 2428 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 2429 } 2430 } 2431 2432 // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A) 2433 // which after that: 2434 // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C 2435 // usub_sat((sub nuw C, A), C1) -> 0 otherwise 2436 Constant *C, *C1; 2437 Value *A; 2438 if (IID == Intrinsic::usub_sat && 2439 match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) && 2440 match(Arg1, m_ImmConstant(C1))) { 2441 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1); 2442 auto *NewSub = 2443 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A); 2444 return replaceInstUsesWith(*SI, NewSub); 2445 } 2446 2447 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 2448 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 2449 C->isNotMinSignedValue()) { 2450 Value *NegVal = ConstantExpr::getNeg(C); 2451 return replaceInstUsesWith( 2452 *II, Builder.CreateBinaryIntrinsic( 2453 Intrinsic::sadd_sat, Arg0, NegVal)); 2454 } 2455 2456 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 2457 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 2458 // if Val and Val2 have the same sign 2459 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 2460 Value *X; 2461 const APInt *Val, *Val2; 2462 APInt NewVal; 2463 bool IsUnsigned = 2464 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 2465 if (Other->getIntrinsicID() == IID && 2466 match(Arg1, m_APInt(Val)) && 2467 match(Other->getArgOperand(0), m_Value(X)) && 2468 match(Other->getArgOperand(1), m_APInt(Val2))) { 2469 if (IsUnsigned) 2470 NewVal = Val->uadd_sat(*Val2); 2471 else if (Val->isNonNegative() == Val2->isNonNegative()) { 2472 bool Overflow; 2473 NewVal = Val->sadd_ov(*Val2, Overflow); 2474 if (Overflow) { 2475 // Both adds together may add more than SignedMaxValue 2476 // without saturating the final result. 2477 break; 2478 } 2479 } else { 2480 // Cannot fold saturated addition with different signs. 2481 break; 2482 } 2483 2484 return replaceInstUsesWith( 2485 *II, Builder.CreateBinaryIntrinsic( 2486 IID, X, ConstantInt::get(II->getType(), NewVal))); 2487 } 2488 } 2489 break; 2490 } 2491 2492 case Intrinsic::minnum: 2493 case Intrinsic::maxnum: 2494 case Intrinsic::minimum: 2495 case Intrinsic::maximum: { 2496 Value *Arg0 = II->getArgOperand(0); 2497 Value *Arg1 = II->getArgOperand(1); 2498 Value *X, *Y; 2499 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 2500 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 2501 // If both operands are negated, invert the call and negate the result: 2502 // min(-X, -Y) --> -(max(X, Y)) 2503 // max(-X, -Y) --> -(min(X, Y)) 2504 Intrinsic::ID NewIID; 2505 switch (IID) { 2506 case Intrinsic::maxnum: 2507 NewIID = Intrinsic::minnum; 2508 break; 2509 case Intrinsic::minnum: 2510 NewIID = Intrinsic::maxnum; 2511 break; 2512 case Intrinsic::maximum: 2513 NewIID = Intrinsic::minimum; 2514 break; 2515 case Intrinsic::minimum: 2516 NewIID = Intrinsic::maximum; 2517 break; 2518 default: 2519 llvm_unreachable("unexpected intrinsic ID"); 2520 } 2521 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 2522 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); 2523 FNeg->copyIRFlags(II); 2524 return FNeg; 2525 } 2526 2527 // m(m(X, C2), C1) -> m(X, C) 2528 const APFloat *C1, *C2; 2529 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 2530 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 2531 ((match(M->getArgOperand(0), m_Value(X)) && 2532 match(M->getArgOperand(1), m_APFloat(C2))) || 2533 (match(M->getArgOperand(1), m_Value(X)) && 2534 match(M->getArgOperand(0), m_APFloat(C2))))) { 2535 APFloat Res(0.0); 2536 switch (IID) { 2537 case Intrinsic::maxnum: 2538 Res = maxnum(*C1, *C2); 2539 break; 2540 case Intrinsic::minnum: 2541 Res = minnum(*C1, *C2); 2542 break; 2543 case Intrinsic::maximum: 2544 Res = maximum(*C1, *C2); 2545 break; 2546 case Intrinsic::minimum: 2547 Res = minimum(*C1, *C2); 2548 break; 2549 default: 2550 llvm_unreachable("unexpected intrinsic ID"); 2551 } 2552 // TODO: Conservatively intersecting FMF. If Res == C2, the transform 2553 // was a simplification (so Arg0 and its original flags could 2554 // propagate?) 2555 Value *V = Builder.CreateBinaryIntrinsic( 2556 IID, X, ConstantFP::get(Arg0->getType(), Res), 2557 FMFSource::intersect(II, M)); 2558 return replaceInstUsesWith(*II, V); 2559 } 2560 } 2561 2562 // m((fpext X), (fpext Y)) -> fpext (m(X, Y)) 2563 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) && 2564 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) && 2565 X->getType() == Y->getType()) { 2566 Value *NewCall = 2567 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName()); 2568 return new FPExtInst(NewCall, II->getType()); 2569 } 2570 2571 // max X, -X --> fabs X 2572 // min X, -X --> -(fabs X) 2573 // TODO: Remove one-use limitation? That is obviously better for max, 2574 // hence why we don't check for one-use for that. However, 2575 // it would be an extra instruction for min (fnabs), but 2576 // that is still likely better for analysis and codegen. 2577 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) { 2578 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X))) 2579 return Op0->hasOneUse() || 2580 (IID != Intrinsic::minimum && IID != Intrinsic::minnum); 2581 return false; 2582 }; 2583 2584 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) { 2585 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 2586 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum) 2587 R = Builder.CreateFNegFMF(R, II); 2588 return replaceInstUsesWith(*II, R); 2589 } 2590 2591 break; 2592 } 2593 case Intrinsic::matrix_multiply: { 2594 // Optimize negation in matrix multiplication. 2595 2596 // -A * -B -> A * B 2597 Value *A, *B; 2598 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) && 2599 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) { 2600 replaceOperand(*II, 0, A); 2601 replaceOperand(*II, 1, B); 2602 return II; 2603 } 2604 2605 Value *Op0 = II->getOperand(0); 2606 Value *Op1 = II->getOperand(1); 2607 Value *OpNotNeg, *NegatedOp; 2608 unsigned NegatedOpArg, OtherOpArg; 2609 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) { 2610 NegatedOp = Op0; 2611 NegatedOpArg = 0; 2612 OtherOpArg = 1; 2613 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) { 2614 NegatedOp = Op1; 2615 NegatedOpArg = 1; 2616 OtherOpArg = 0; 2617 } else 2618 // Multiplication doesn't have a negated operand. 2619 break; 2620 2621 // Only optimize if the negated operand has only one use. 2622 if (!NegatedOp->hasOneUse()) 2623 break; 2624 2625 Value *OtherOp = II->getOperand(OtherOpArg); 2626 VectorType *RetTy = cast<VectorType>(II->getType()); 2627 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType()); 2628 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType()); 2629 ElementCount NegatedCount = NegatedOpTy->getElementCount(); 2630 ElementCount OtherCount = OtherOpTy->getElementCount(); 2631 ElementCount RetCount = RetTy->getElementCount(); 2632 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa. 2633 if (ElementCount::isKnownGT(NegatedCount, OtherCount) && 2634 ElementCount::isKnownLT(OtherCount, RetCount)) { 2635 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp); 2636 replaceOperand(*II, NegatedOpArg, OpNotNeg); 2637 replaceOperand(*II, OtherOpArg, InverseOtherOp); 2638 return II; 2639 } 2640 // (-A) * B -> -(A * B), if it is cheaper to negate the result 2641 if (ElementCount::isKnownGT(NegatedCount, RetCount)) { 2642 SmallVector<Value *, 5> NewArgs(II->args()); 2643 NewArgs[NegatedOpArg] = OpNotNeg; 2644 Instruction *NewMul = 2645 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II); 2646 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II)); 2647 } 2648 break; 2649 } 2650 case Intrinsic::fmuladd: { 2651 // Try to simplify the underlying FMul. 2652 if (Value *V = 2653 simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), 2654 II->getFastMathFlags(), SQ.getWithInstruction(II))) 2655 return BinaryOperator::CreateFAddFMF(V, II->getArgOperand(2), 2656 II->getFastMathFlags()); 2657 2658 [[fallthrough]]; 2659 } 2660 case Intrinsic::fma: { 2661 // fma fneg(x), fneg(y), z -> fma x, y, z 2662 Value *Src0 = II->getArgOperand(0); 2663 Value *Src1 = II->getArgOperand(1); 2664 Value *Src2 = II->getArgOperand(2); 2665 Value *X, *Y; 2666 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 2667 replaceOperand(*II, 0, X); 2668 replaceOperand(*II, 1, Y); 2669 return II; 2670 } 2671 2672 // fma fabs(x), fabs(x), z -> fma x, x, z 2673 if (match(Src0, m_FAbs(m_Value(X))) && 2674 match(Src1, m_FAbs(m_Specific(X)))) { 2675 replaceOperand(*II, 0, X); 2676 replaceOperand(*II, 1, X); 2677 return II; 2678 } 2679 2680 // Try to simplify the underlying FMul. We can only apply simplifications 2681 // that do not require rounding. 2682 if (Value *V = simplifyFMAFMul(Src0, Src1, II->getFastMathFlags(), 2683 SQ.getWithInstruction(II))) 2684 return BinaryOperator::CreateFAddFMF(V, Src2, II->getFastMathFlags()); 2685 2686 // fma x, y, 0 -> fmul x, y 2687 // This is always valid for -0.0, but requires nsz for +0.0 as 2688 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. 2689 if (match(Src2, m_NegZeroFP()) || 2690 (match(Src2, m_PosZeroFP()) && II->getFastMathFlags().noSignedZeros())) 2691 return BinaryOperator::CreateFMulFMF(Src0, Src1, II); 2692 2693 // fma x, -1.0, y -> fsub y, x 2694 if (match(Src1, m_SpecificFP(-1.0))) 2695 return BinaryOperator::CreateFSubFMF(Src2, Src0, II); 2696 2697 break; 2698 } 2699 case Intrinsic::copysign: { 2700 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); 2701 if (std::optional<bool> KnownSignBit = computeKnownFPSignBit( 2702 Sign, /*Depth=*/0, getSimplifyQuery().getWithInstruction(II))) { 2703 if (*KnownSignBit) { 2704 // If we know that the sign argument is negative, reduce to FNABS: 2705 // copysign Mag, -Sign --> fneg (fabs Mag) 2706 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 2707 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); 2708 } 2709 2710 // If we know that the sign argument is positive, reduce to FABS: 2711 // copysign Mag, +Sign --> fabs Mag 2712 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 2713 return replaceInstUsesWith(*II, Fabs); 2714 } 2715 2716 // Propagate sign argument through nested calls: 2717 // copysign Mag, (copysign ?, X) --> copysign Mag, X 2718 Value *X; 2719 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) { 2720 Value *CopySign = 2721 Builder.CreateCopySign(Mag, X, FMFSource::intersect(II, Sign)); 2722 return replaceInstUsesWith(*II, CopySign); 2723 } 2724 2725 // Clear sign-bit of constant magnitude: 2726 // copysign -MagC, X --> copysign MagC, X 2727 // TODO: Support constant folding for fabs 2728 const APFloat *MagC; 2729 if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) { 2730 APFloat PosMagC = *MagC; 2731 PosMagC.clearSign(); 2732 return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC)); 2733 } 2734 2735 // Peek through changes of magnitude's sign-bit. This call rewrites those: 2736 // copysign (fabs X), Sign --> copysign X, Sign 2737 // copysign (fneg X), Sign --> copysign X, Sign 2738 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) 2739 return replaceOperand(*II, 0, X); 2740 2741 break; 2742 } 2743 case Intrinsic::fabs: { 2744 Value *Cond, *TVal, *FVal; 2745 Value *Arg = II->getArgOperand(0); 2746 Value *X; 2747 // fabs (-X) --> fabs (X) 2748 if (match(Arg, m_FNeg(m_Value(X)))) { 2749 CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 2750 return replaceInstUsesWith(CI, Fabs); 2751 } 2752 2753 if (match(Arg, m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { 2754 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF 2755 if (Arg->hasOneUse() ? (isa<Constant>(TVal) || isa<Constant>(FVal)) 2756 : (isa<Constant>(TVal) && isa<Constant>(FVal))) { 2757 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); 2758 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); 2759 SelectInst *SI = SelectInst::Create(Cond, AbsT, AbsF); 2760 FastMathFlags FMF1 = II->getFastMathFlags(); 2761 FastMathFlags FMF2 = cast<SelectInst>(Arg)->getFastMathFlags(); 2762 FMF2.setNoSignedZeros(false); 2763 SI->setFastMathFlags(FMF1 | FMF2); 2764 return SI; 2765 } 2766 // fabs (select Cond, -FVal, FVal) --> fabs FVal 2767 if (match(TVal, m_FNeg(m_Specific(FVal)))) 2768 return replaceOperand(*II, 0, FVal); 2769 // fabs (select Cond, TVal, -TVal) --> fabs TVal 2770 if (match(FVal, m_FNeg(m_Specific(TVal)))) 2771 return replaceOperand(*II, 0, TVal); 2772 } 2773 2774 Value *Magnitude, *Sign; 2775 if (match(II->getArgOperand(0), 2776 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) { 2777 // fabs (copysign x, y) -> (fabs x) 2778 CallInst *AbsSign = 2779 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude, II); 2780 return replaceInstUsesWith(*II, AbsSign); 2781 } 2782 2783 [[fallthrough]]; 2784 } 2785 case Intrinsic::ceil: 2786 case Intrinsic::floor: 2787 case Intrinsic::round: 2788 case Intrinsic::roundeven: 2789 case Intrinsic::nearbyint: 2790 case Intrinsic::rint: 2791 case Intrinsic::trunc: { 2792 Value *ExtSrc; 2793 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 2794 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 2795 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 2796 return new FPExtInst(NarrowII, II->getType()); 2797 } 2798 break; 2799 } 2800 case Intrinsic::cos: 2801 case Intrinsic::amdgcn_cos: { 2802 Value *X, *Sign; 2803 Value *Src = II->getArgOperand(0); 2804 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) || 2805 match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) { 2806 // cos(-x) --> cos(x) 2807 // cos(fabs(x)) --> cos(x) 2808 // cos(copysign(x, y)) --> cos(x) 2809 return replaceOperand(*II, 0, X); 2810 } 2811 break; 2812 } 2813 case Intrinsic::sin: 2814 case Intrinsic::amdgcn_sin: { 2815 Value *X; 2816 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 2817 // sin(-x) --> -sin(x) 2818 Value *NewSin = Builder.CreateUnaryIntrinsic(IID, X, II); 2819 return UnaryOperator::CreateFNegFMF(NewSin, II); 2820 } 2821 break; 2822 } 2823 case Intrinsic::ldexp: { 2824 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b) 2825 // 2826 // The danger is if the first ldexp would overflow to infinity or underflow 2827 // to zero, but the combined exponent avoids it. We ignore this with 2828 // reassoc. 2829 // 2830 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since 2831 // it would just double down on the overflow/underflow which would occur 2832 // anyway. 2833 // 2834 // TODO: Could do better if we had range tracking for the input value 2835 // exponent. Also could broaden sign check to cover == 0 case. 2836 Value *Src = II->getArgOperand(0); 2837 Value *Exp = II->getArgOperand(1); 2838 Value *InnerSrc; 2839 Value *InnerExp; 2840 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>( 2841 m_Value(InnerSrc), m_Value(InnerExp)))) && 2842 Exp->getType() == InnerExp->getType()) { 2843 FastMathFlags FMF = II->getFastMathFlags(); 2844 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags(); 2845 2846 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) || 2847 signBitMustBeTheSame(Exp, InnerExp, SQ.getWithInstruction(II))) { 2848 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent 2849 // width. 2850 Value *NewExp = Builder.CreateAdd(InnerExp, Exp); 2851 II->setArgOperand(1, NewExp); 2852 II->setFastMathFlags(InnerFlags); // Or the inner flags. 2853 return replaceOperand(*II, 0, InnerSrc); 2854 } 2855 } 2856 2857 // ldexp(x, zext(i1 y)) -> fmul x, (select y, 2.0, 1.0) 2858 // ldexp(x, sext(i1 y)) -> fmul x, (select y, 0.5, 1.0) 2859 Value *ExtSrc; 2860 if (match(Exp, m_ZExt(m_Value(ExtSrc))) && 2861 ExtSrc->getType()->getScalarSizeInBits() == 1) { 2862 Value *Select = 2863 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0), 2864 ConstantFP::get(II->getType(), 1.0)); 2865 return BinaryOperator::CreateFMulFMF(Src, Select, II); 2866 } 2867 if (match(Exp, m_SExt(m_Value(ExtSrc))) && 2868 ExtSrc->getType()->getScalarSizeInBits() == 1) { 2869 Value *Select = 2870 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5), 2871 ConstantFP::get(II->getType(), 1.0)); 2872 return BinaryOperator::CreateFMulFMF(Src, Select, II); 2873 } 2874 2875 // ldexp(x, c ? exp : 0) -> c ? ldexp(x, exp) : x 2876 // ldexp(x, c ? 0 : exp) -> c ? x : ldexp(x, exp) 2877 /// 2878 // TODO: If we cared, should insert a canonicalize for x 2879 Value *SelectCond, *SelectLHS, *SelectRHS; 2880 if (match(II->getArgOperand(1), 2881 m_OneUse(m_Select(m_Value(SelectCond), m_Value(SelectLHS), 2882 m_Value(SelectRHS))))) { 2883 Value *NewLdexp = nullptr; 2884 Value *Select = nullptr; 2885 if (match(SelectRHS, m_ZeroInt())) { 2886 NewLdexp = Builder.CreateLdexp(Src, SelectLHS, II); 2887 Select = Builder.CreateSelect(SelectCond, NewLdexp, Src); 2888 } else if (match(SelectLHS, m_ZeroInt())) { 2889 NewLdexp = Builder.CreateLdexp(Src, SelectRHS, II); 2890 Select = Builder.CreateSelect(SelectCond, Src, NewLdexp); 2891 } 2892 2893 if (NewLdexp) { 2894 Select->takeName(II); 2895 return replaceInstUsesWith(*II, Select); 2896 } 2897 } 2898 2899 break; 2900 } 2901 case Intrinsic::ptrauth_auth: 2902 case Intrinsic::ptrauth_resign: { 2903 // (sign|resign) + (auth|resign) can be folded by omitting the middle 2904 // sign+auth component if the key and discriminator match. 2905 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign; 2906 Value *Ptr = II->getArgOperand(0); 2907 Value *Key = II->getArgOperand(1); 2908 Value *Disc = II->getArgOperand(2); 2909 2910 // AuthKey will be the key we need to end up authenticating against in 2911 // whatever we replace this sequence with. 2912 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr; 2913 if (const auto *CI = dyn_cast<CallBase>(Ptr)) { 2914 BasePtr = CI->getArgOperand(0); 2915 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) { 2916 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc) 2917 break; 2918 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) { 2919 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc) 2920 break; 2921 AuthKey = CI->getArgOperand(1); 2922 AuthDisc = CI->getArgOperand(2); 2923 } else 2924 break; 2925 } else if (const auto *PtrToInt = dyn_cast<PtrToIntOperator>(Ptr)) { 2926 // ptrauth constants are equivalent to a call to @llvm.ptrauth.sign for 2927 // our purposes, so check for that too. 2928 const auto *CPA = dyn_cast<ConstantPtrAuth>(PtrToInt->getOperand(0)); 2929 if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL)) 2930 break; 2931 2932 // resign(ptrauth(p,ks,ds),ks,ds,kr,dr) -> ptrauth(p,kr,dr) 2933 if (NeedSign && isa<ConstantInt>(II->getArgOperand(4))) { 2934 auto *SignKey = cast<ConstantInt>(II->getArgOperand(3)); 2935 auto *SignDisc = cast<ConstantInt>(II->getArgOperand(4)); 2936 auto *SignAddrDisc = ConstantPointerNull::get(Builder.getPtrTy()); 2937 auto *NewCPA = ConstantPtrAuth::get(CPA->getPointer(), SignKey, 2938 SignDisc, SignAddrDisc); 2939 replaceInstUsesWith( 2940 *II, ConstantExpr::getPointerCast(NewCPA, II->getType())); 2941 return eraseInstFromFunction(*II); 2942 } 2943 2944 // auth(ptrauth(p,k,d),k,d) -> p 2945 BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType()); 2946 } else 2947 break; 2948 2949 unsigned NewIntrin; 2950 if (AuthKey && NeedSign) { 2951 // resign(0,1) + resign(1,2) = resign(0, 2) 2952 NewIntrin = Intrinsic::ptrauth_resign; 2953 } else if (AuthKey) { 2954 // resign(0,1) + auth(1) = auth(0) 2955 NewIntrin = Intrinsic::ptrauth_auth; 2956 } else if (NeedSign) { 2957 // sign(0) + resign(0, 1) = sign(1) 2958 NewIntrin = Intrinsic::ptrauth_sign; 2959 } else { 2960 // sign(0) + auth(0) = nop 2961 replaceInstUsesWith(*II, BasePtr); 2962 return eraseInstFromFunction(*II); 2963 } 2964 2965 SmallVector<Value *, 4> CallArgs; 2966 CallArgs.push_back(BasePtr); 2967 if (AuthKey) { 2968 CallArgs.push_back(AuthKey); 2969 CallArgs.push_back(AuthDisc); 2970 } 2971 2972 if (NeedSign) { 2973 CallArgs.push_back(II->getArgOperand(3)); 2974 CallArgs.push_back(II->getArgOperand(4)); 2975 } 2976 2977 Function *NewFn = 2978 Intrinsic::getOrInsertDeclaration(II->getModule(), NewIntrin); 2979 return CallInst::Create(NewFn, CallArgs); 2980 } 2981 case Intrinsic::arm_neon_vtbl1: 2982 case Intrinsic::aarch64_neon_tbl1: 2983 if (Value *V = simplifyNeonTbl1(*II, Builder)) 2984 return replaceInstUsesWith(*II, V); 2985 break; 2986 2987 case Intrinsic::arm_neon_vmulls: 2988 case Intrinsic::arm_neon_vmullu: 2989 case Intrinsic::aarch64_neon_smull: 2990 case Intrinsic::aarch64_neon_umull: { 2991 Value *Arg0 = II->getArgOperand(0); 2992 Value *Arg1 = II->getArgOperand(1); 2993 2994 // Handle mul by zero first: 2995 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 2996 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 2997 } 2998 2999 // Check for constant LHS & RHS - in this case we just simplify. 3000 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 3001 IID == Intrinsic::aarch64_neon_umull); 3002 VectorType *NewVT = cast<VectorType>(II->getType()); 3003 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 3004 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 3005 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext); 3006 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext); 3007 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1)); 3008 } 3009 3010 // Couldn't simplify - canonicalize constant to the RHS. 3011 std::swap(Arg0, Arg1); 3012 } 3013 3014 // Handle mul by one: 3015 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 3016 if (ConstantInt *Splat = 3017 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 3018 if (Splat->isOne()) 3019 return CastInst::CreateIntegerCast(Arg0, II->getType(), 3020 /*isSigned=*/!Zext); 3021 3022 break; 3023 } 3024 case Intrinsic::arm_neon_aesd: 3025 case Intrinsic::arm_neon_aese: 3026 case Intrinsic::aarch64_crypto_aesd: 3027 case Intrinsic::aarch64_crypto_aese: { 3028 Value *DataArg = II->getArgOperand(0); 3029 Value *KeyArg = II->getArgOperand(1); 3030 3031 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 3032 Value *Data, *Key; 3033 if (match(KeyArg, m_ZeroInt()) && 3034 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 3035 replaceOperand(*II, 0, Data); 3036 replaceOperand(*II, 1, Key); 3037 return II; 3038 } 3039 break; 3040 } 3041 case Intrinsic::hexagon_V6_vandvrt: 3042 case Intrinsic::hexagon_V6_vandvrt_128B: { 3043 // Simplify Q -> V -> Q conversion. 3044 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 3045 Intrinsic::ID ID0 = Op0->getIntrinsicID(); 3046 if (ID0 != Intrinsic::hexagon_V6_vandqrt && 3047 ID0 != Intrinsic::hexagon_V6_vandqrt_128B) 3048 break; 3049 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); 3050 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); 3051 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); 3052 // Check if every byte has common bits in Bytes and Mask. 3053 uint64_t C = Bytes1 & Mask1; 3054 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) 3055 return replaceInstUsesWith(*II, Op0->getArgOperand(0)); 3056 } 3057 break; 3058 } 3059 case Intrinsic::stackrestore: { 3060 enum class ClassifyResult { 3061 None, 3062 Alloca, 3063 StackRestore, 3064 CallWithSideEffects, 3065 }; 3066 auto Classify = [](const Instruction *I) { 3067 if (isa<AllocaInst>(I)) 3068 return ClassifyResult::Alloca; 3069 3070 if (auto *CI = dyn_cast<CallInst>(I)) { 3071 if (auto *II = dyn_cast<IntrinsicInst>(CI)) { 3072 if (II->getIntrinsicID() == Intrinsic::stackrestore) 3073 return ClassifyResult::StackRestore; 3074 3075 if (II->mayHaveSideEffects()) 3076 return ClassifyResult::CallWithSideEffects; 3077 } else { 3078 // Consider all non-intrinsic calls to be side effects 3079 return ClassifyResult::CallWithSideEffects; 3080 } 3081 } 3082 3083 return ClassifyResult::None; 3084 }; 3085 3086 // If the stacksave and the stackrestore are in the same BB, and there is 3087 // no intervening call, alloca, or stackrestore of a different stacksave, 3088 // remove the restore. This can happen when variable allocas are DCE'd. 3089 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 3090 if (SS->getIntrinsicID() == Intrinsic::stacksave && 3091 SS->getParent() == II->getParent()) { 3092 BasicBlock::iterator BI(SS); 3093 bool CannotRemove = false; 3094 for (++BI; &*BI != II; ++BI) { 3095 switch (Classify(&*BI)) { 3096 case ClassifyResult::None: 3097 // So far so good, look at next instructions. 3098 break; 3099 3100 case ClassifyResult::StackRestore: 3101 // If we found an intervening stackrestore for a different 3102 // stacksave, we can't remove the stackrestore. Otherwise, continue. 3103 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS) 3104 CannotRemove = true; 3105 break; 3106 3107 case ClassifyResult::Alloca: 3108 case ClassifyResult::CallWithSideEffects: 3109 // If we found an alloca, a non-intrinsic call, or an intrinsic 3110 // call with side effects, we can't remove the stackrestore. 3111 CannotRemove = true; 3112 break; 3113 } 3114 if (CannotRemove) 3115 break; 3116 } 3117 3118 if (!CannotRemove) 3119 return eraseInstFromFunction(CI); 3120 } 3121 } 3122 3123 // Scan down this block to see if there is another stack restore in the 3124 // same block without an intervening call/alloca. 3125 BasicBlock::iterator BI(II); 3126 Instruction *TI = II->getParent()->getTerminator(); 3127 bool CannotRemove = false; 3128 for (++BI; &*BI != TI; ++BI) { 3129 switch (Classify(&*BI)) { 3130 case ClassifyResult::None: 3131 // So far so good, look at next instructions. 3132 break; 3133 3134 case ClassifyResult::StackRestore: 3135 // If there is a stackrestore below this one, remove this one. 3136 return eraseInstFromFunction(CI); 3137 3138 case ClassifyResult::Alloca: 3139 case ClassifyResult::CallWithSideEffects: 3140 // If we found an alloca, a non-intrinsic call, or an intrinsic call 3141 // with side effects (such as llvm.stacksave and llvm.read_register), 3142 // we can't remove the stack restore. 3143 CannotRemove = true; 3144 break; 3145 } 3146 if (CannotRemove) 3147 break; 3148 } 3149 3150 // If the stack restore is in a return, resume, or unwind block and if there 3151 // are no allocas or calls between the restore and the return, nuke the 3152 // restore. 3153 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 3154 return eraseInstFromFunction(CI); 3155 break; 3156 } 3157 case Intrinsic::lifetime_end: 3158 // Asan needs to poison memory to detect invalid access which is possible 3159 // even for empty lifetime range. 3160 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3161 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || 3162 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3163 break; 3164 3165 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { 3166 return I.getIntrinsicID() == Intrinsic::lifetime_start; 3167 })) 3168 return nullptr; 3169 break; 3170 case Intrinsic::assume: { 3171 Value *IIOperand = II->getArgOperand(0); 3172 SmallVector<OperandBundleDef, 4> OpBundles; 3173 II->getOperandBundlesAsDefs(OpBundles); 3174 3175 /// This will remove the boolean Condition from the assume given as 3176 /// argument and remove the assume if it becomes useless. 3177 /// always returns nullptr for use as a return values. 3178 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { 3179 assert(isa<AssumeInst>(Assume)); 3180 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) 3181 return eraseInstFromFunction(CI); 3182 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); 3183 return nullptr; 3184 }; 3185 // Remove an assume if it is followed by an identical assume. 3186 // TODO: Do we need this? Unless there are conflicting assumptions, the 3187 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 3188 Instruction *Next = II->getNextNonDebugInstruction(); 3189 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 3190 return RemoveConditionFromAssume(Next); 3191 3192 // Canonicalize assume(a && b) -> assume(a); assume(b); 3193 // Note: New assumption intrinsics created here are registered by 3194 // the InstCombineIRInserter object. 3195 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 3196 Value *AssumeIntrinsic = II->getCalledOperand(); 3197 Value *A, *B; 3198 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { 3199 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, 3200 II->getName()); 3201 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 3202 return eraseInstFromFunction(*II); 3203 } 3204 // assume(!(a || b)) -> assume(!a); assume(!b); 3205 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { 3206 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 3207 Builder.CreateNot(A), OpBundles, II->getName()); 3208 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 3209 Builder.CreateNot(B), II->getName()); 3210 return eraseInstFromFunction(*II); 3211 } 3212 3213 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 3214 // (if assume is valid at the load) 3215 Instruction *LHS; 3216 if (match(IIOperand, m_SpecificICmp(ICmpInst::ICMP_NE, m_Instruction(LHS), 3217 m_Zero())) && 3218 LHS->getOpcode() == Instruction::Load && 3219 LHS->getType()->isPointerTy() && 3220 isValidAssumeForContext(II, LHS, &DT)) { 3221 MDNode *MD = MDNode::get(II->getContext(), {}); 3222 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 3223 LHS->setMetadata(LLVMContext::MD_noundef, MD); 3224 return RemoveConditionFromAssume(II); 3225 3226 // TODO: apply nonnull return attributes to calls and invokes 3227 // TODO: apply range metadata for range check patterns? 3228 } 3229 3230 // Separate storage assumptions apply to the underlying allocations, not any 3231 // particular pointer within them. When evaluating the hints for AA purposes 3232 // we getUnderlyingObject them; by precomputing the answers here we can 3233 // avoid having to do so repeatedly there. 3234 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 3235 OperandBundleUse OBU = II->getOperandBundleAt(Idx); 3236 if (OBU.getTagName() == "separate_storage") { 3237 assert(OBU.Inputs.size() == 2); 3238 auto MaybeSimplifyHint = [&](const Use &U) { 3239 Value *Hint = U.get(); 3240 // Not having a limit is safe because InstCombine removes unreachable 3241 // code. 3242 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0); 3243 if (Hint != UnderlyingObject) 3244 replaceUse(const_cast<Use &>(U), UnderlyingObject); 3245 }; 3246 MaybeSimplifyHint(OBU.Inputs[0]); 3247 MaybeSimplifyHint(OBU.Inputs[1]); 3248 } 3249 } 3250 3251 // Convert nonnull assume like: 3252 // %A = icmp ne i32* %PTR, null 3253 // call void @llvm.assume(i1 %A) 3254 // into 3255 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 3256 if (EnableKnowledgeRetention && 3257 match(IIOperand, 3258 m_SpecificICmp(ICmpInst::ICMP_NE, m_Value(A), m_Zero())) && 3259 A->getType()->isPointerTy()) { 3260 if (auto *Replacement = buildAssumeFromKnowledge( 3261 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { 3262 3263 Replacement->insertBefore(Next->getIterator()); 3264 AC.registerAssumption(Replacement); 3265 return RemoveConditionFromAssume(II); 3266 } 3267 } 3268 3269 // Convert alignment assume like: 3270 // %B = ptrtoint i32* %A to i64 3271 // %C = and i64 %B, Constant 3272 // %D = icmp eq i64 %C, 0 3273 // call void @llvm.assume(i1 %D) 3274 // into 3275 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] 3276 uint64_t AlignMask = 1; 3277 if (EnableKnowledgeRetention && 3278 (match(IIOperand, m_Not(m_Trunc(m_Value(A)))) || 3279 match(IIOperand, 3280 m_SpecificICmp(ICmpInst::ICMP_EQ, 3281 m_And(m_Value(A), m_ConstantInt(AlignMask)), 3282 m_Zero())))) { 3283 if (isPowerOf2_64(AlignMask + 1)) { 3284 uint64_t Offset = 0; 3285 match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); 3286 if (match(A, m_PtrToInt(m_Value(A)))) { 3287 /// Note: this doesn't preserve the offset information but merges 3288 /// offset and alignment. 3289 /// TODO: we can generate a GEP instead of merging the alignment with 3290 /// the offset. 3291 RetainedKnowledge RK{Attribute::Alignment, 3292 (unsigned)MinAlign(Offset, AlignMask + 1), A}; 3293 if (auto *Replacement = 3294 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { 3295 3296 Replacement->insertAfter(II->getIterator()); 3297 AC.registerAssumption(Replacement); 3298 } 3299 return RemoveConditionFromAssume(II); 3300 } 3301 } 3302 } 3303 3304 /// Canonicalize Knowledge in operand bundles. 3305 if (EnableKnowledgeRetention && II->hasOperandBundles()) { 3306 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 3307 auto &BOI = II->bundle_op_info_begin()[Idx]; 3308 RetainedKnowledge RK = 3309 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); 3310 if (BOI.End - BOI.Begin > 2) 3311 continue; // Prevent reducing knowledge in an align with offset since 3312 // extracting a RetainedKnowledge from them looses offset 3313 // information 3314 RetainedKnowledge CanonRK = 3315 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, 3316 &getAssumptionCache(), 3317 &getDominatorTree()); 3318 if (CanonRK == RK) 3319 continue; 3320 if (!CanonRK) { 3321 if (BOI.End - BOI.Begin > 0) { 3322 Worklist.pushValue(II->op_begin()[BOI.Begin]); 3323 Value::dropDroppableUse(II->op_begin()[BOI.Begin]); 3324 } 3325 continue; 3326 } 3327 assert(RK.AttrKind == CanonRK.AttrKind); 3328 if (BOI.End - BOI.Begin > 0) 3329 II->op_begin()[BOI.Begin].set(CanonRK.WasOn); 3330 if (BOI.End - BOI.Begin > 1) 3331 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( 3332 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); 3333 if (RK.WasOn) 3334 Worklist.pushValue(RK.WasOn); 3335 return II; 3336 } 3337 } 3338 3339 // If there is a dominating assume with the same condition as this one, 3340 // then this one is redundant, and should be removed. 3341 KnownBits Known(1); 3342 computeKnownBits(IIOperand, Known, 0, II); 3343 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) 3344 return eraseInstFromFunction(*II); 3345 3346 // assume(false) is unreachable. 3347 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) { 3348 CreateNonTerminatorUnreachable(II); 3349 return eraseInstFromFunction(*II); 3350 } 3351 3352 // Update the cache of affected values for this assumption (we might be 3353 // here because we just simplified the condition). 3354 AC.updateAffectedValues(cast<AssumeInst>(II)); 3355 break; 3356 } 3357 case Intrinsic::experimental_guard: { 3358 // Is this guard followed by another guard? We scan forward over a small 3359 // fixed window of instructions to handle common cases with conditions 3360 // computed between guards. 3361 Instruction *NextInst = II->getNextNonDebugInstruction(); 3362 for (unsigned i = 0; i < GuardWideningWindow; i++) { 3363 // Note: Using context-free form to avoid compile time blow up 3364 if (!isSafeToSpeculativelyExecute(NextInst)) 3365 break; 3366 NextInst = NextInst->getNextNonDebugInstruction(); 3367 } 3368 Value *NextCond = nullptr; 3369 if (match(NextInst, 3370 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 3371 Value *CurrCond = II->getArgOperand(0); 3372 3373 // Remove a guard that it is immediately preceded by an identical guard. 3374 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 3375 if (CurrCond != NextCond) { 3376 Instruction *MoveI = II->getNextNonDebugInstruction(); 3377 while (MoveI != NextInst) { 3378 auto *Temp = MoveI; 3379 MoveI = MoveI->getNextNonDebugInstruction(); 3380 Temp->moveBefore(II->getIterator()); 3381 } 3382 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); 3383 } 3384 eraseInstFromFunction(*NextInst); 3385 return II; 3386 } 3387 break; 3388 } 3389 case Intrinsic::vector_insert: { 3390 Value *Vec = II->getArgOperand(0); 3391 Value *SubVec = II->getArgOperand(1); 3392 Value *Idx = II->getArgOperand(2); 3393 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 3394 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 3395 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); 3396 3397 // Only canonicalize if the destination vector, Vec, and SubVec are all 3398 // fixed vectors. 3399 if (DstTy && VecTy && SubVecTy) { 3400 unsigned DstNumElts = DstTy->getNumElements(); 3401 unsigned VecNumElts = VecTy->getNumElements(); 3402 unsigned SubVecNumElts = SubVecTy->getNumElements(); 3403 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 3404 3405 // An insert that entirely overwrites Vec with SubVec is a nop. 3406 if (VecNumElts == SubVecNumElts) 3407 return replaceInstUsesWith(CI, SubVec); 3408 3409 // Widen SubVec into a vector of the same width as Vec, since 3410 // shufflevector requires the two input vectors to be the same width. 3411 // Elements beyond the bounds of SubVec within the widened vector are 3412 // undefined. 3413 SmallVector<int, 8> WidenMask; 3414 unsigned i; 3415 for (i = 0; i != SubVecNumElts; ++i) 3416 WidenMask.push_back(i); 3417 for (; i != VecNumElts; ++i) 3418 WidenMask.push_back(PoisonMaskElem); 3419 3420 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); 3421 3422 SmallVector<int, 8> Mask; 3423 for (unsigned i = 0; i != IdxN; ++i) 3424 Mask.push_back(i); 3425 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) 3426 Mask.push_back(i); 3427 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) 3428 Mask.push_back(i); 3429 3430 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); 3431 return replaceInstUsesWith(CI, Shuffle); 3432 } 3433 break; 3434 } 3435 case Intrinsic::vector_extract: { 3436 Value *Vec = II->getArgOperand(0); 3437 Value *Idx = II->getArgOperand(1); 3438 3439 Type *ReturnType = II->getType(); 3440 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx), 3441 // ExtractIdx) 3442 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue(); 3443 Value *InsertTuple, *InsertIdx, *InsertValue; 3444 if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple), 3445 m_Value(InsertValue), 3446 m_Value(InsertIdx))) && 3447 InsertValue->getType() == ReturnType) { 3448 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue(); 3449 // Case where we get the same index right after setting it. 3450 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) --> 3451 // InsertValue 3452 if (ExtractIdx == Index) 3453 return replaceInstUsesWith(CI, InsertValue); 3454 // If we are getting a different index than what was set in the 3455 // insert.vector intrinsic. We can just set the input tuple to the one up 3456 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue, 3457 // InsertIndex), ExtractIndex) 3458 // --> extract.vector(InsertTuple, ExtractIndex) 3459 else 3460 return replaceOperand(CI, 0, InsertTuple); 3461 } 3462 3463 auto *DstTy = dyn_cast<VectorType>(ReturnType); 3464 auto *VecTy = dyn_cast<VectorType>(Vec->getType()); 3465 3466 if (DstTy && VecTy) { 3467 auto DstEltCnt = DstTy->getElementCount(); 3468 auto VecEltCnt = VecTy->getElementCount(); 3469 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 3470 3471 // Extracting the entirety of Vec is a nop. 3472 if (DstEltCnt == VecTy->getElementCount()) { 3473 replaceInstUsesWith(CI, Vec); 3474 return eraseInstFromFunction(CI); 3475 } 3476 3477 // Only canonicalize to shufflevector if the destination vector and 3478 // Vec are fixed vectors. 3479 if (VecEltCnt.isScalable() || DstEltCnt.isScalable()) 3480 break; 3481 3482 SmallVector<int, 8> Mask; 3483 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i) 3484 Mask.push_back(IdxN + i); 3485 3486 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask); 3487 return replaceInstUsesWith(CI, Shuffle); 3488 } 3489 break; 3490 } 3491 case Intrinsic::vector_reverse: { 3492 Value *BO0, *BO1, *X, *Y; 3493 Value *Vec = II->getArgOperand(0); 3494 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) { 3495 auto *OldBinOp = cast<BinaryOperator>(Vec); 3496 if (match(BO0, m_VecReverse(m_Value(X)))) { 3497 // rev(binop rev(X), rev(Y)) --> binop X, Y 3498 if (match(BO1, m_VecReverse(m_Value(Y)))) 3499 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( 3500 OldBinOp->getOpcode(), X, Y, 3501 OldBinOp, OldBinOp->getName(), 3502 II->getIterator())); 3503 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat 3504 if (isSplatValue(BO1)) 3505 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( 3506 OldBinOp->getOpcode(), X, BO1, 3507 OldBinOp, OldBinOp->getName(), 3508 II->getIterator())); 3509 } 3510 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y 3511 if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0)) 3512 return replaceInstUsesWith(CI, 3513 BinaryOperator::CreateWithCopiedFlags( 3514 OldBinOp->getOpcode(), BO0, Y, OldBinOp, 3515 OldBinOp->getName(), II->getIterator())); 3516 } 3517 // rev(unop rev(X)) --> unop X 3518 if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) { 3519 auto *OldUnOp = cast<UnaryOperator>(Vec); 3520 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags( 3521 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), 3522 II->getIterator()); 3523 return replaceInstUsesWith(CI, NewUnOp); 3524 } 3525 break; 3526 } 3527 case Intrinsic::vector_reduce_or: 3528 case Intrinsic::vector_reduce_and: { 3529 // Canonicalize logical or/and reductions: 3530 // Or reduction for i1 is represented as: 3531 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 3532 // %res = cmp ne iReduxWidth %val, 0 3533 // And reduction for i1 is represented as: 3534 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 3535 // %res = cmp eq iReduxWidth %val, 11111 3536 Value *Arg = II->getArgOperand(0); 3537 Value *Vect; 3538 3539 if (Value *NewOp = 3540 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3541 replaceUse(II->getOperandUse(0), NewOp); 3542 return II; 3543 } 3544 3545 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3546 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3547 if (FTy->getElementType() == Builder.getInt1Ty()) { 3548 Value *Res = Builder.CreateBitCast( 3549 Vect, Builder.getIntNTy(FTy->getNumElements())); 3550 if (IID == Intrinsic::vector_reduce_and) { 3551 Res = Builder.CreateICmpEQ( 3552 Res, ConstantInt::getAllOnesValue(Res->getType())); 3553 } else { 3554 assert(IID == Intrinsic::vector_reduce_or && 3555 "Expected or reduction."); 3556 Res = Builder.CreateIsNotNull(Res); 3557 } 3558 if (Arg != Vect) 3559 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3560 II->getType()); 3561 return replaceInstUsesWith(CI, Res); 3562 } 3563 } 3564 [[fallthrough]]; 3565 } 3566 case Intrinsic::vector_reduce_add: { 3567 if (IID == Intrinsic::vector_reduce_add) { 3568 // Convert vector_reduce_add(ZExt(<n x i1>)) to 3569 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 3570 // Convert vector_reduce_add(SExt(<n x i1>)) to 3571 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 3572 // Convert vector_reduce_add(<n x i1>) to 3573 // Trunc(ctpop(bitcast <n x i1> to in)). 3574 Value *Arg = II->getArgOperand(0); 3575 Value *Vect; 3576 3577 if (Value *NewOp = 3578 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3579 replaceUse(II->getOperandUse(0), NewOp); 3580 return II; 3581 } 3582 3583 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3584 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3585 if (FTy->getElementType() == Builder.getInt1Ty()) { 3586 Value *V = Builder.CreateBitCast( 3587 Vect, Builder.getIntNTy(FTy->getNumElements())); 3588 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V); 3589 if (Res->getType() != II->getType()) 3590 Res = Builder.CreateZExtOrTrunc(Res, II->getType()); 3591 if (Arg != Vect && 3592 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt) 3593 Res = Builder.CreateNeg(Res); 3594 return replaceInstUsesWith(CI, Res); 3595 } 3596 } 3597 } 3598 [[fallthrough]]; 3599 } 3600 case Intrinsic::vector_reduce_xor: { 3601 if (IID == Intrinsic::vector_reduce_xor) { 3602 // Exclusive disjunction reduction over the vector with 3603 // (potentially-extended) i1 element type is actually a 3604 // (potentially-extended) arithmetic `add` reduction over the original 3605 // non-extended value: 3606 // vector_reduce_xor(?ext(<n x i1>)) 3607 // --> 3608 // ?ext(vector_reduce_add(<n x i1>)) 3609 Value *Arg = II->getArgOperand(0); 3610 Value *Vect; 3611 3612 if (Value *NewOp = 3613 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3614 replaceUse(II->getOperandUse(0), NewOp); 3615 return II; 3616 } 3617 3618 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3619 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3620 if (VTy->getElementType() == Builder.getInt1Ty()) { 3621 Value *Res = Builder.CreateAddReduce(Vect); 3622 if (Arg != Vect) 3623 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3624 II->getType()); 3625 return replaceInstUsesWith(CI, Res); 3626 } 3627 } 3628 } 3629 [[fallthrough]]; 3630 } 3631 case Intrinsic::vector_reduce_mul: { 3632 if (IID == Intrinsic::vector_reduce_mul) { 3633 // Multiplicative reduction over the vector with (potentially-extended) 3634 // i1 element type is actually a (potentially zero-extended) 3635 // logical `and` reduction over the original non-extended value: 3636 // vector_reduce_mul(?ext(<n x i1>)) 3637 // --> 3638 // zext(vector_reduce_and(<n x i1>)) 3639 Value *Arg = II->getArgOperand(0); 3640 Value *Vect; 3641 3642 if (Value *NewOp = 3643 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3644 replaceUse(II->getOperandUse(0), NewOp); 3645 return II; 3646 } 3647 3648 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3649 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3650 if (VTy->getElementType() == Builder.getInt1Ty()) { 3651 Value *Res = Builder.CreateAndReduce(Vect); 3652 if (Res->getType() != II->getType()) 3653 Res = Builder.CreateZExt(Res, II->getType()); 3654 return replaceInstUsesWith(CI, Res); 3655 } 3656 } 3657 } 3658 [[fallthrough]]; 3659 } 3660 case Intrinsic::vector_reduce_umin: 3661 case Intrinsic::vector_reduce_umax: { 3662 if (IID == Intrinsic::vector_reduce_umin || 3663 IID == Intrinsic::vector_reduce_umax) { 3664 // UMin/UMax reduction over the vector with (potentially-extended) 3665 // i1 element type is actually a (potentially-extended) 3666 // logical `and`/`or` reduction over the original non-extended value: 3667 // vector_reduce_u{min,max}(?ext(<n x i1>)) 3668 // --> 3669 // ?ext(vector_reduce_{and,or}(<n x i1>)) 3670 Value *Arg = II->getArgOperand(0); 3671 Value *Vect; 3672 3673 if (Value *NewOp = 3674 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3675 replaceUse(II->getOperandUse(0), NewOp); 3676 return II; 3677 } 3678 3679 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3680 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3681 if (VTy->getElementType() == Builder.getInt1Ty()) { 3682 Value *Res = IID == Intrinsic::vector_reduce_umin 3683 ? Builder.CreateAndReduce(Vect) 3684 : Builder.CreateOrReduce(Vect); 3685 if (Arg != Vect) 3686 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3687 II->getType()); 3688 return replaceInstUsesWith(CI, Res); 3689 } 3690 } 3691 } 3692 [[fallthrough]]; 3693 } 3694 case Intrinsic::vector_reduce_smin: 3695 case Intrinsic::vector_reduce_smax: { 3696 if (IID == Intrinsic::vector_reduce_smin || 3697 IID == Intrinsic::vector_reduce_smax) { 3698 // SMin/SMax reduction over the vector with (potentially-extended) 3699 // i1 element type is actually a (potentially-extended) 3700 // logical `and`/`or` reduction over the original non-extended value: 3701 // vector_reduce_s{min,max}(<n x i1>) 3702 // --> 3703 // vector_reduce_{or,and}(<n x i1>) 3704 // and 3705 // vector_reduce_s{min,max}(sext(<n x i1>)) 3706 // --> 3707 // sext(vector_reduce_{or,and}(<n x i1>)) 3708 // and 3709 // vector_reduce_s{min,max}(zext(<n x i1>)) 3710 // --> 3711 // zext(vector_reduce_{and,or}(<n x i1>)) 3712 Value *Arg = II->getArgOperand(0); 3713 Value *Vect; 3714 3715 if (Value *NewOp = 3716 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3717 replaceUse(II->getOperandUse(0), NewOp); 3718 return II; 3719 } 3720 3721 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3722 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3723 if (VTy->getElementType() == Builder.getInt1Ty()) { 3724 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd; 3725 if (Arg != Vect) 3726 ExtOpc = cast<CastInst>(Arg)->getOpcode(); 3727 Value *Res = ((IID == Intrinsic::vector_reduce_smin) == 3728 (ExtOpc == Instruction::CastOps::ZExt)) 3729 ? Builder.CreateAndReduce(Vect) 3730 : Builder.CreateOrReduce(Vect); 3731 if (Arg != Vect) 3732 Res = Builder.CreateCast(ExtOpc, Res, II->getType()); 3733 return replaceInstUsesWith(CI, Res); 3734 } 3735 } 3736 } 3737 [[fallthrough]]; 3738 } 3739 case Intrinsic::vector_reduce_fmax: 3740 case Intrinsic::vector_reduce_fmin: 3741 case Intrinsic::vector_reduce_fadd: 3742 case Intrinsic::vector_reduce_fmul: { 3743 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd && 3744 IID != Intrinsic::vector_reduce_fmul) || 3745 II->hasAllowReassoc(); 3746 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd || 3747 IID == Intrinsic::vector_reduce_fmul) 3748 ? 1 3749 : 0; 3750 Value *Arg = II->getArgOperand(ArgIdx); 3751 if (Value *NewOp = simplifyReductionOperand(Arg, CanReorderLanes)) { 3752 replaceUse(II->getOperandUse(ArgIdx), NewOp); 3753 return nullptr; 3754 } 3755 break; 3756 } 3757 case Intrinsic::is_fpclass: { 3758 if (Instruction *I = foldIntrinsicIsFPClass(*II)) 3759 return I; 3760 break; 3761 } 3762 case Intrinsic::threadlocal_address: { 3763 Align MinAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); 3764 MaybeAlign Align = II->getRetAlign(); 3765 if (MinAlign > Align.valueOrOne()) { 3766 II->addRetAttr(Attribute::getWithAlignment(II->getContext(), MinAlign)); 3767 return II; 3768 } 3769 break; 3770 } 3771 default: { 3772 // Handle target specific intrinsics 3773 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II); 3774 if (V) 3775 return *V; 3776 break; 3777 } 3778 } 3779 3780 // Try to fold intrinsic into select operands. This is legal if: 3781 // * The intrinsic is speculatable. 3782 // * The select condition is not a vector, or the intrinsic does not 3783 // perform cross-lane operations. 3784 if (isSafeToSpeculativelyExecuteWithVariableReplaced(&CI) && 3785 isNotCrossLaneOperation(II)) 3786 for (Value *Op : II->args()) 3787 if (auto *Sel = dyn_cast<SelectInst>(Op)) 3788 if (Instruction *R = FoldOpIntoSelect(*II, Sel)) 3789 return R; 3790 3791 if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder)) 3792 return Shuf; 3793 3794 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke 3795 // context, so it is handled in visitCallBase and we should trigger it. 3796 return visitCallBase(*II); 3797 } 3798 3799 // Fence instruction simplification 3800 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { 3801 auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction()); 3802 // This check is solely here to handle arbitrary target-dependent syncscopes. 3803 // TODO: Can remove if does not matter in practice. 3804 if (NFI && FI.isIdenticalTo(NFI)) 3805 return eraseInstFromFunction(FI); 3806 3807 // Returns true if FI1 is identical or stronger fence than FI2. 3808 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) { 3809 auto FI1SyncScope = FI1->getSyncScopeID(); 3810 // Consider same scope, where scope is global or single-thread. 3811 if (FI1SyncScope != FI2->getSyncScopeID() || 3812 (FI1SyncScope != SyncScope::System && 3813 FI1SyncScope != SyncScope::SingleThread)) 3814 return false; 3815 3816 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering()); 3817 }; 3818 if (NFI && isIdenticalOrStrongerFence(NFI, &FI)) 3819 return eraseInstFromFunction(FI); 3820 3821 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction())) 3822 if (isIdenticalOrStrongerFence(PFI, &FI)) 3823 return eraseInstFromFunction(FI); 3824 return nullptr; 3825 } 3826 3827 // InvokeInst simplification 3828 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { 3829 return visitCallBase(II); 3830 } 3831 3832 // CallBrInst simplification 3833 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { 3834 return visitCallBase(CBI); 3835 } 3836 3837 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { 3838 if (!CI->getCalledFunction()) return nullptr; 3839 3840 // Skip optimizing notail and musttail calls so 3841 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants. 3842 // LibCallSimplifier::optimizeCall should try to preserve tail calls though. 3843 if (CI->isMustTailCall() || CI->isNoTailCall()) 3844 return nullptr; 3845 3846 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 3847 replaceInstUsesWith(*From, With); 3848 }; 3849 auto InstCombineErase = [this](Instruction *I) { 3850 eraseInstFromFunction(*I); 3851 }; 3852 LibCallSimplifier Simplifier(DL, &TLI, &DT, &DC, &AC, ORE, BFI, PSI, 3853 InstCombineRAUW, InstCombineErase); 3854 if (Value *With = Simplifier.optimizeCall(CI, Builder)) { 3855 ++NumSimplified; 3856 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 3857 } 3858 3859 return nullptr; 3860 } 3861 3862 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 3863 // Strip off at most one level of pointer casts, looking for an alloca. This 3864 // is good enough in practice and simpler than handling any number of casts. 3865 Value *Underlying = TrampMem->stripPointerCasts(); 3866 if (Underlying != TrampMem && 3867 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 3868 return nullptr; 3869 if (!isa<AllocaInst>(Underlying)) 3870 return nullptr; 3871 3872 IntrinsicInst *InitTrampoline = nullptr; 3873 for (User *U : TrampMem->users()) { 3874 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3875 if (!II) 3876 return nullptr; 3877 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 3878 if (InitTrampoline) 3879 // More than one init_trampoline writes to this value. Give up. 3880 return nullptr; 3881 InitTrampoline = II; 3882 continue; 3883 } 3884 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 3885 // Allow any number of calls to adjust.trampoline. 3886 continue; 3887 return nullptr; 3888 } 3889 3890 // No call to init.trampoline found. 3891 if (!InitTrampoline) 3892 return nullptr; 3893 3894 // Check that the alloca is being used in the expected way. 3895 if (InitTrampoline->getOperand(0) != TrampMem) 3896 return nullptr; 3897 3898 return InitTrampoline; 3899 } 3900 3901 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 3902 Value *TrampMem) { 3903 // Visit all the previous instructions in the basic block, and try to find a 3904 // init.trampoline which has a direct path to the adjust.trampoline. 3905 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 3906 E = AdjustTramp->getParent()->begin(); 3907 I != E;) { 3908 Instruction *Inst = &*--I; 3909 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 3910 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 3911 II->getOperand(0) == TrampMem) 3912 return II; 3913 if (Inst->mayWriteToMemory()) 3914 return nullptr; 3915 } 3916 return nullptr; 3917 } 3918 3919 // Given a call to llvm.adjust.trampoline, find and return the corresponding 3920 // call to llvm.init.trampoline if the call to the trampoline can be optimized 3921 // to a direct call to a function. Otherwise return NULL. 3922 static IntrinsicInst *findInitTrampoline(Value *Callee) { 3923 Callee = Callee->stripPointerCasts(); 3924 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 3925 if (!AdjustTramp || 3926 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 3927 return nullptr; 3928 3929 Value *TrampMem = AdjustTramp->getOperand(0); 3930 3931 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 3932 return IT; 3933 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 3934 return IT; 3935 return nullptr; 3936 } 3937 3938 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, 3939 const TargetLibraryInfo *TLI) { 3940 // Note: We only handle cases which can't be driven from generic attributes 3941 // here. So, for example, nonnull and noalias (which are common properties 3942 // of some allocation functions) are expected to be handled via annotation 3943 // of the respective allocator declaration with generic attributes. 3944 bool Changed = false; 3945 3946 if (!Call.getType()->isPointerTy()) 3947 return Changed; 3948 3949 std::optional<APInt> Size = getAllocSize(&Call, TLI); 3950 if (Size && *Size != 0) { 3951 // TODO: We really should just emit deref_or_null here and then 3952 // let the generic inference code combine that with nonnull. 3953 if (Call.hasRetAttr(Attribute::NonNull)) { 3954 Changed = !Call.hasRetAttr(Attribute::Dereferenceable); 3955 Call.addRetAttr(Attribute::getWithDereferenceableBytes( 3956 Call.getContext(), Size->getLimitedValue())); 3957 } else { 3958 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull); 3959 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 3960 Call.getContext(), Size->getLimitedValue())); 3961 } 3962 } 3963 3964 // Add alignment attribute if alignment is a power of two constant. 3965 Value *Alignment = getAllocAlignment(&Call, TLI); 3966 if (!Alignment) 3967 return Changed; 3968 3969 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment); 3970 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) { 3971 uint64_t AlignmentVal = AlignOpC->getZExtValue(); 3972 if (llvm::isPowerOf2_64(AlignmentVal)) { 3973 Align ExistingAlign = Call.getRetAlign().valueOrOne(); 3974 Align NewAlign = Align(AlignmentVal); 3975 if (NewAlign > ExistingAlign) { 3976 Call.addRetAttr( 3977 Attribute::getWithAlignment(Call.getContext(), NewAlign)); 3978 Changed = true; 3979 } 3980 } 3981 } 3982 return Changed; 3983 } 3984 3985 /// Improvements for call, callbr and invoke instructions. 3986 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) { 3987 bool Changed = annotateAnyAllocSite(Call, &TLI); 3988 3989 // Mark any parameters that are known to be non-null with the nonnull 3990 // attribute. This is helpful for inlining calls to functions with null 3991 // checks on their arguments. 3992 SmallVector<unsigned, 4> ArgNos; 3993 unsigned ArgNo = 0; 3994 3995 for (Value *V : Call.args()) { 3996 if (V->getType()->isPointerTy() && 3997 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 3998 isKnownNonZero(V, getSimplifyQuery().getWithInstruction(&Call))) 3999 ArgNos.push_back(ArgNo); 4000 ArgNo++; 4001 } 4002 4003 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly."); 4004 4005 if (!ArgNos.empty()) { 4006 AttributeList AS = Call.getAttributes(); 4007 LLVMContext &Ctx = Call.getContext(); 4008 AS = AS.addParamAttribute(Ctx, ArgNos, 4009 Attribute::get(Ctx, Attribute::NonNull)); 4010 Call.setAttributes(AS); 4011 Changed = true; 4012 } 4013 4014 // If the callee is a pointer to a function, attempt to move any casts to the 4015 // arguments of the call/callbr/invoke. 4016 Value *Callee = Call.getCalledOperand(); 4017 Function *CalleeF = dyn_cast<Function>(Callee); 4018 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) && 4019 transformConstExprCastCall(Call)) 4020 return nullptr; 4021 4022 if (CalleeF) { 4023 // Remove the convergent attr on calls when the callee is not convergent. 4024 if (Call.isConvergent() && !CalleeF->isConvergent() && 4025 !CalleeF->isIntrinsic()) { 4026 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 4027 << "\n"); 4028 Call.setNotConvergent(); 4029 return &Call; 4030 } 4031 4032 // If the call and callee calling conventions don't match, and neither one 4033 // of the calling conventions is compatible with C calling convention 4034 // this call must be unreachable, as the call is undefined. 4035 if ((CalleeF->getCallingConv() != Call.getCallingConv() && 4036 !(CalleeF->getCallingConv() == llvm::CallingConv::C && 4037 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) && 4038 !(Call.getCallingConv() == llvm::CallingConv::C && 4039 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) && 4040 // Only do this for calls to a function with a body. A prototype may 4041 // not actually end up matching the implementation's calling conv for a 4042 // variety of reasons (e.g. it may be written in assembly). 4043 !CalleeF->isDeclaration()) { 4044 Instruction *OldCall = &Call; 4045 CreateNonTerminatorUnreachable(OldCall); 4046 // If OldCall does not return void then replaceInstUsesWith poison. 4047 // This allows ValueHandlers and custom metadata to adjust itself. 4048 if (!OldCall->getType()->isVoidTy()) 4049 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType())); 4050 if (isa<CallInst>(OldCall)) 4051 return eraseInstFromFunction(*OldCall); 4052 4053 // We cannot remove an invoke or a callbr, because it would change thexi 4054 // CFG, just change the callee to a null pointer. 4055 cast<CallBase>(OldCall)->setCalledFunction( 4056 CalleeF->getFunctionType(), 4057 Constant::getNullValue(CalleeF->getType())); 4058 return nullptr; 4059 } 4060 } 4061 4062 // Calling a null function pointer is undefined if a null address isn't 4063 // dereferenceable. 4064 if ((isa<ConstantPointerNull>(Callee) && 4065 !NullPointerIsDefined(Call.getFunction())) || 4066 isa<UndefValue>(Callee)) { 4067 // If Call does not return void then replaceInstUsesWith poison. 4068 // This allows ValueHandlers and custom metadata to adjust itself. 4069 if (!Call.getType()->isVoidTy()) 4070 replaceInstUsesWith(Call, PoisonValue::get(Call.getType())); 4071 4072 if (Call.isTerminator()) { 4073 // Can't remove an invoke or callbr because we cannot change the CFG. 4074 return nullptr; 4075 } 4076 4077 // This instruction is not reachable, just remove it. 4078 CreateNonTerminatorUnreachable(&Call); 4079 return eraseInstFromFunction(Call); 4080 } 4081 4082 if (IntrinsicInst *II = findInitTrampoline(Callee)) 4083 return transformCallThroughTrampoline(Call, *II); 4084 4085 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 4086 InlineAsm *IA = cast<InlineAsm>(Callee); 4087 if (!IA->canThrow()) { 4088 // Normal inline asm calls cannot throw - mark them 4089 // 'nounwind'. 4090 Call.setDoesNotThrow(); 4091 Changed = true; 4092 } 4093 } 4094 4095 // Try to optimize the call if possible, we require DataLayout for most of 4096 // this. None of these calls are seen as possibly dead so go ahead and 4097 // delete the instruction now. 4098 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 4099 Instruction *I = tryOptimizeCall(CI); 4100 // If we changed something return the result, etc. Otherwise let 4101 // the fallthrough check. 4102 if (I) return eraseInstFromFunction(*I); 4103 } 4104 4105 if (!Call.use_empty() && !Call.isMustTailCall()) 4106 if (Value *ReturnedArg = Call.getReturnedArgOperand()) { 4107 Type *CallTy = Call.getType(); 4108 Type *RetArgTy = ReturnedArg->getType(); 4109 if (RetArgTy->canLosslesslyBitCastTo(CallTy)) 4110 return replaceInstUsesWith( 4111 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy)); 4112 } 4113 4114 // Drop unnecessary kcfi operand bundles from calls that were converted 4115 // into direct calls. 4116 auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi); 4117 if (Bundle && !Call.isIndirectCall()) { 4118 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", { 4119 if (CalleeF) { 4120 ConstantInt *FunctionType = nullptr; 4121 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]); 4122 4123 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type)) 4124 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0)); 4125 4126 if (FunctionType && 4127 FunctionType->getZExtValue() != ExpectedType->getZExtValue()) 4128 dbgs() << Call.getModule()->getName() 4129 << ": warning: kcfi: " << Call.getCaller()->getName() 4130 << ": call to " << CalleeF->getName() 4131 << " using a mismatching function pointer type\n"; 4132 } 4133 }); 4134 4135 return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi); 4136 } 4137 4138 if (isRemovableAlloc(&Call, &TLI)) 4139 return visitAllocSite(Call); 4140 4141 // Handle intrinsics which can be used in both call and invoke context. 4142 switch (Call.getIntrinsicID()) { 4143 case Intrinsic::experimental_gc_statepoint: { 4144 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call); 4145 SmallPtrSet<Value *, 32> LiveGcValues; 4146 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 4147 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 4148 4149 // Remove the relocation if unused. 4150 if (GCR.use_empty()) { 4151 eraseInstFromFunction(GCR); 4152 continue; 4153 } 4154 4155 Value *DerivedPtr = GCR.getDerivedPtr(); 4156 Value *BasePtr = GCR.getBasePtr(); 4157 4158 // Undef is undef, even after relocation. 4159 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 4160 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType())); 4161 eraseInstFromFunction(GCR); 4162 continue; 4163 } 4164 4165 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 4166 // The relocation of null will be null for most any collector. 4167 // TODO: provide a hook for this in GCStrategy. There might be some 4168 // weird collector this property does not hold for. 4169 if (isa<ConstantPointerNull>(DerivedPtr)) { 4170 // Use null-pointer of gc_relocate's type to replace it. 4171 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT)); 4172 eraseInstFromFunction(GCR); 4173 continue; 4174 } 4175 4176 // isKnownNonNull -> nonnull attribute 4177 if (!GCR.hasRetAttr(Attribute::NonNull) && 4178 isKnownNonZero(DerivedPtr, 4179 getSimplifyQuery().getWithInstruction(&Call))) { 4180 GCR.addRetAttr(Attribute::NonNull); 4181 // We discovered new fact, re-check users. 4182 Worklist.pushUsersToWorkList(GCR); 4183 } 4184 } 4185 4186 // If we have two copies of the same pointer in the statepoint argument 4187 // list, canonicalize to one. This may let us common gc.relocates. 4188 if (GCR.getBasePtr() == GCR.getDerivedPtr() && 4189 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { 4190 auto *OpIntTy = GCR.getOperand(2)->getType(); 4191 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); 4192 } 4193 4194 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 4195 // Canonicalize on the type from the uses to the defs 4196 4197 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 4198 LiveGcValues.insert(BasePtr); 4199 LiveGcValues.insert(DerivedPtr); 4200 } 4201 std::optional<OperandBundleUse> Bundle = 4202 GCSP.getOperandBundle(LLVMContext::OB_gc_live); 4203 unsigned NumOfGCLives = LiveGcValues.size(); 4204 if (!Bundle || NumOfGCLives == Bundle->Inputs.size()) 4205 break; 4206 // We can reduce the size of gc live bundle. 4207 DenseMap<Value *, unsigned> Val2Idx; 4208 std::vector<Value *> NewLiveGc; 4209 for (Value *V : Bundle->Inputs) { 4210 auto [It, Inserted] = Val2Idx.try_emplace(V); 4211 if (!Inserted) 4212 continue; 4213 if (LiveGcValues.count(V)) { 4214 It->second = NewLiveGc.size(); 4215 NewLiveGc.push_back(V); 4216 } else 4217 It->second = NumOfGCLives; 4218 } 4219 // Update all gc.relocates 4220 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 4221 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 4222 Value *BasePtr = GCR.getBasePtr(); 4223 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives && 4224 "Missed live gc for base pointer"); 4225 auto *OpIntTy1 = GCR.getOperand(1)->getType(); 4226 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr])); 4227 Value *DerivedPtr = GCR.getDerivedPtr(); 4228 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives && 4229 "Missed live gc for derived pointer"); 4230 auto *OpIntTy2 = GCR.getOperand(2)->getType(); 4231 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr])); 4232 } 4233 // Create new statepoint instruction. 4234 OperandBundleDef NewBundle("gc-live", NewLiveGc); 4235 return CallBase::Create(&Call, NewBundle); 4236 } 4237 default: { break; } 4238 } 4239 4240 return Changed ? &Call : nullptr; 4241 } 4242 4243 /// If the callee is a constexpr cast of a function, attempt to move the cast to 4244 /// the arguments of the call/invoke. 4245 /// CallBrInst is not supported. 4246 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) { 4247 auto *Callee = 4248 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 4249 if (!Callee) 4250 return false; 4251 4252 assert(!isa<CallBrInst>(Call) && 4253 "CallBr's don't have a single point after a def to insert at"); 4254 4255 // Don't perform the transform for declarations, which may not be fully 4256 // accurate. For example, void @foo() is commonly used as a placeholder for 4257 // unknown prototypes. 4258 if (Callee->isDeclaration()) 4259 return false; 4260 4261 // If this is a call to a thunk function, don't remove the cast. Thunks are 4262 // used to transparently forward all incoming parameters and outgoing return 4263 // values, so it's important to leave the cast in place. 4264 if (Callee->hasFnAttribute("thunk")) 4265 return false; 4266 4267 // If this is a call to a naked function, the assembly might be 4268 // using an argument, or otherwise rely on the frame layout, 4269 // the function prototype will mismatch. 4270 if (Callee->hasFnAttribute(Attribute::Naked)) 4271 return false; 4272 4273 // If this is a musttail call, the callee's prototype must match the caller's 4274 // prototype with the exception of pointee types. The code below doesn't 4275 // implement that, so we can't do this transform. 4276 // TODO: Do the transform if it only requires adding pointer casts. 4277 if (Call.isMustTailCall()) 4278 return false; 4279 4280 Instruction *Caller = &Call; 4281 const AttributeList &CallerPAL = Call.getAttributes(); 4282 4283 // Okay, this is a cast from a function to a different type. Unless doing so 4284 // would cause a type conversion of one of our arguments, change this call to 4285 // be a direct call with arguments casted to the appropriate types. 4286 FunctionType *FT = Callee->getFunctionType(); 4287 Type *OldRetTy = Caller->getType(); 4288 Type *NewRetTy = FT->getReturnType(); 4289 4290 // Check to see if we are changing the return type... 4291 if (OldRetTy != NewRetTy) { 4292 4293 if (NewRetTy->isStructTy()) 4294 return false; // TODO: Handle multiple return values. 4295 4296 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 4297 if (!Caller->use_empty()) 4298 return false; // Cannot transform this return value. 4299 } 4300 4301 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 4302 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 4303 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible( 4304 NewRetTy, CallerPAL.getRetAttrs()))) 4305 return false; // Attribute not compatible with transformed value. 4306 } 4307 4308 // If the callbase is an invoke instruction, and the return value is 4309 // used by a PHI node in a successor, we cannot change the return type of 4310 // the call because there is no place to put the cast instruction (without 4311 // breaking the critical edge). Bail out in this case. 4312 if (!Caller->use_empty()) { 4313 BasicBlock *PhisNotSupportedBlock = nullptr; 4314 if (auto *II = dyn_cast<InvokeInst>(Caller)) 4315 PhisNotSupportedBlock = II->getNormalDest(); 4316 if (PhisNotSupportedBlock) 4317 for (User *U : Caller->users()) 4318 if (PHINode *PN = dyn_cast<PHINode>(U)) 4319 if (PN->getParent() == PhisNotSupportedBlock) 4320 return false; 4321 } 4322 } 4323 4324 unsigned NumActualArgs = Call.arg_size(); 4325 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 4326 4327 // Prevent us turning: 4328 // declare void @takes_i32_inalloca(i32* inalloca) 4329 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 4330 // 4331 // into: 4332 // call void @takes_i32_inalloca(i32* null) 4333 // 4334 // Similarly, avoid folding away bitcasts of byval calls. 4335 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 4336 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) 4337 return false; 4338 4339 auto AI = Call.arg_begin(); 4340 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 4341 Type *ParamTy = FT->getParamType(i); 4342 Type *ActTy = (*AI)->getType(); 4343 4344 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 4345 return false; // Cannot transform this parameter value. 4346 4347 // Check if there are any incompatible attributes we cannot drop safely. 4348 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i)) 4349 .overlaps(AttributeFuncs::typeIncompatible( 4350 ParamTy, CallerPAL.getParamAttrs(i), 4351 AttributeFuncs::ASK_UNSAFE_TO_DROP))) 4352 return false; // Attribute not compatible with transformed value. 4353 4354 if (Call.isInAllocaArgument(i) || 4355 CallerPAL.hasParamAttr(i, Attribute::Preallocated)) 4356 return false; // Cannot transform to and from inalloca/preallocated. 4357 4358 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError)) 4359 return false; 4360 4361 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) != 4362 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal)) 4363 return false; // Cannot transform to or from byval. 4364 } 4365 4366 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 4367 !CallerPAL.isEmpty()) { 4368 // In this case we have more arguments than the new function type, but we 4369 // won't be dropping them. Check that these extra arguments have attributes 4370 // that are compatible with being a vararg call argument. 4371 unsigned SRetIdx; 4372 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 4373 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams()) 4374 return false; 4375 } 4376 4377 // Okay, we decided that this is a safe thing to do: go ahead and start 4378 // inserting cast instructions as necessary. 4379 SmallVector<Value *, 8> Args; 4380 SmallVector<AttributeSet, 8> ArgAttrs; 4381 Args.reserve(NumActualArgs); 4382 ArgAttrs.reserve(NumActualArgs); 4383 4384 // Get any return attributes. 4385 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 4386 4387 // If the return value is not being used, the type may not be compatible 4388 // with the existing attributes. Wipe out any problematic attributes. 4389 RAttrs.remove( 4390 AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs())); 4391 4392 LLVMContext &Ctx = Call.getContext(); 4393 AI = Call.arg_begin(); 4394 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 4395 Type *ParamTy = FT->getParamType(i); 4396 4397 Value *NewArg = *AI; 4398 if ((*AI)->getType() != ParamTy) 4399 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 4400 Args.push_back(NewArg); 4401 4402 // Add any parameter attributes except the ones incompatible with the new 4403 // type. Note that we made sure all incompatible ones are safe to drop. 4404 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible( 4405 ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP); 4406 ArgAttrs.push_back( 4407 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs)); 4408 } 4409 4410 // If the function takes more arguments than the call was taking, add them 4411 // now. 4412 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 4413 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 4414 ArgAttrs.push_back(AttributeSet()); 4415 } 4416 4417 // If we are removing arguments to the function, emit an obnoxious warning. 4418 if (FT->getNumParams() < NumActualArgs) { 4419 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 4420 if (FT->isVarArg()) { 4421 // Add all of the arguments in their promoted form to the arg list. 4422 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 4423 Type *PTy = getPromotedType((*AI)->getType()); 4424 Value *NewArg = *AI; 4425 if (PTy != (*AI)->getType()) { 4426 // Must promote to pass through va_arg area! 4427 Instruction::CastOps opcode = 4428 CastInst::getCastOpcode(*AI, false, PTy, false); 4429 NewArg = Builder.CreateCast(opcode, *AI, PTy); 4430 } 4431 Args.push_back(NewArg); 4432 4433 // Add any parameter attributes. 4434 ArgAttrs.push_back(CallerPAL.getParamAttrs(i)); 4435 } 4436 } 4437 } 4438 4439 AttributeSet FnAttrs = CallerPAL.getFnAttrs(); 4440 4441 if (NewRetTy->isVoidTy()) 4442 Caller->setName(""); // Void type should not have a name. 4443 4444 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 4445 "missing argument attributes"); 4446 AttributeList NewCallerPAL = AttributeList::get( 4447 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 4448 4449 SmallVector<OperandBundleDef, 1> OpBundles; 4450 Call.getOperandBundlesAsDefs(OpBundles); 4451 4452 CallBase *NewCall; 4453 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 4454 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 4455 II->getUnwindDest(), Args, OpBundles); 4456 } else { 4457 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 4458 cast<CallInst>(NewCall)->setTailCallKind( 4459 cast<CallInst>(Caller)->getTailCallKind()); 4460 } 4461 NewCall->takeName(Caller); 4462 NewCall->setCallingConv(Call.getCallingConv()); 4463 NewCall->setAttributes(NewCallerPAL); 4464 4465 // Preserve prof metadata if any. 4466 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof}); 4467 4468 // Insert a cast of the return type as necessary. 4469 Instruction *NC = NewCall; 4470 Value *NV = NC; 4471 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 4472 assert(!NV->getType()->isVoidTy()); 4473 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 4474 NC->setDebugLoc(Caller->getDebugLoc()); 4475 4476 auto OptInsertPt = NewCall->getInsertionPointAfterDef(); 4477 assert(OptInsertPt && "No place to insert cast"); 4478 InsertNewInstBefore(NC, *OptInsertPt); 4479 Worklist.pushUsersToWorkList(*Caller); 4480 } 4481 4482 if (!Caller->use_empty()) 4483 replaceInstUsesWith(*Caller, NV); 4484 else if (Caller->hasValueHandle()) { 4485 if (OldRetTy == NV->getType()) 4486 ValueHandleBase::ValueIsRAUWd(Caller, NV); 4487 else 4488 // We cannot call ValueIsRAUWd with a different type, and the 4489 // actual tracked value will disappear. 4490 ValueHandleBase::ValueIsDeleted(Caller); 4491 } 4492 4493 eraseInstFromFunction(*Caller); 4494 return true; 4495 } 4496 4497 /// Turn a call to a function created by init_trampoline / adjust_trampoline 4498 /// intrinsic pair into a direct call to the underlying function. 4499 Instruction * 4500 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call, 4501 IntrinsicInst &Tramp) { 4502 FunctionType *FTy = Call.getFunctionType(); 4503 AttributeList Attrs = Call.getAttributes(); 4504 4505 // If the call already has the 'nest' attribute somewhere then give up - 4506 // otherwise 'nest' would occur twice after splicing in the chain. 4507 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 4508 return nullptr; 4509 4510 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 4511 FunctionType *NestFTy = NestF->getFunctionType(); 4512 4513 AttributeList NestAttrs = NestF->getAttributes(); 4514 if (!NestAttrs.isEmpty()) { 4515 unsigned NestArgNo = 0; 4516 Type *NestTy = nullptr; 4517 AttributeSet NestAttr; 4518 4519 // Look for a parameter marked with the 'nest' attribute. 4520 for (FunctionType::param_iterator I = NestFTy->param_begin(), 4521 E = NestFTy->param_end(); 4522 I != E; ++NestArgNo, ++I) { 4523 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo); 4524 if (AS.hasAttribute(Attribute::Nest)) { 4525 // Record the parameter type and any other attributes. 4526 NestTy = *I; 4527 NestAttr = AS; 4528 break; 4529 } 4530 } 4531 4532 if (NestTy) { 4533 std::vector<Value*> NewArgs; 4534 std::vector<AttributeSet> NewArgAttrs; 4535 NewArgs.reserve(Call.arg_size() + 1); 4536 NewArgAttrs.reserve(Call.arg_size()); 4537 4538 // Insert the nest argument into the call argument list, which may 4539 // mean appending it. Likewise for attributes. 4540 4541 { 4542 unsigned ArgNo = 0; 4543 auto I = Call.arg_begin(), E = Call.arg_end(); 4544 do { 4545 if (ArgNo == NestArgNo) { 4546 // Add the chain argument and attributes. 4547 Value *NestVal = Tramp.getArgOperand(2); 4548 if (NestVal->getType() != NestTy) 4549 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 4550 NewArgs.push_back(NestVal); 4551 NewArgAttrs.push_back(NestAttr); 4552 } 4553 4554 if (I == E) 4555 break; 4556 4557 // Add the original argument and attributes. 4558 NewArgs.push_back(*I); 4559 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 4560 4561 ++ArgNo; 4562 ++I; 4563 } while (true); 4564 } 4565 4566 // The trampoline may have been bitcast to a bogus type (FTy). 4567 // Handle this by synthesizing a new function type, equal to FTy 4568 // with the chain parameter inserted. 4569 4570 std::vector<Type*> NewTypes; 4571 NewTypes.reserve(FTy->getNumParams()+1); 4572 4573 // Insert the chain's type into the list of parameter types, which may 4574 // mean appending it. 4575 { 4576 unsigned ArgNo = 0; 4577 FunctionType::param_iterator I = FTy->param_begin(), 4578 E = FTy->param_end(); 4579 4580 do { 4581 if (ArgNo == NestArgNo) 4582 // Add the chain's type. 4583 NewTypes.push_back(NestTy); 4584 4585 if (I == E) 4586 break; 4587 4588 // Add the original type. 4589 NewTypes.push_back(*I); 4590 4591 ++ArgNo; 4592 ++I; 4593 } while (true); 4594 } 4595 4596 // Replace the trampoline call with a direct call. Let the generic 4597 // code sort out any function type mismatches. 4598 FunctionType *NewFTy = 4599 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); 4600 AttributeList NewPAL = 4601 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(), 4602 Attrs.getRetAttrs(), NewArgAttrs); 4603 4604 SmallVector<OperandBundleDef, 1> OpBundles; 4605 Call.getOperandBundlesAsDefs(OpBundles); 4606 4607 Instruction *NewCaller; 4608 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 4609 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(), 4610 II->getUnwindDest(), NewArgs, OpBundles); 4611 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 4612 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 4613 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 4614 NewCaller = 4615 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(), 4616 CBI->getIndirectDests(), NewArgs, OpBundles); 4617 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 4618 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 4619 } else { 4620 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles); 4621 cast<CallInst>(NewCaller)->setTailCallKind( 4622 cast<CallInst>(Call).getTailCallKind()); 4623 cast<CallInst>(NewCaller)->setCallingConv( 4624 cast<CallInst>(Call).getCallingConv()); 4625 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 4626 } 4627 NewCaller->setDebugLoc(Call.getDebugLoc()); 4628 4629 return NewCaller; 4630 } 4631 } 4632 4633 // Replace the trampoline call with a direct call. Since there is no 'nest' 4634 // parameter, there is no need to adjust the argument list. Let the generic 4635 // code sort out any function type mismatches. 4636 Call.setCalledFunction(FTy, NestF); 4637 return &Call; 4638 } 4639