xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp (revision cf37ae5caeafb372593ca4bb9ce0e91258524ca1)
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumeBundleQueries.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/AttributeMask.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsAArch64.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/IntrinsicsARM.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/InstCombine/InstCombiner.h"
68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <optional>
75 #include <utility>
76 #include <vector>
77 
78 #define DEBUG_TYPE "instcombine"
79 #include "llvm/Transforms/Utils/InstructionWorklist.h"
80 
81 using namespace llvm;
82 using namespace PatternMatch;
83 
84 STATISTIC(NumSimplified, "Number of library calls simplified");
85 
86 static cl::opt<unsigned> GuardWideningWindow(
87     "instcombine-guard-widening-window",
88     cl::init(3),
89     cl::desc("How wide an instruction window to bypass looking for "
90              "another guard"));
91 
92 /// Return the specified type promoted as it would be to pass though a va_arg
93 /// area.
94 static Type *getPromotedType(Type *Ty) {
95   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
96     if (ITy->getBitWidth() < 32)
97       return Type::getInt32Ty(Ty->getContext());
98   }
99   return Ty;
100 }
101 
102 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
103 /// TODO: This should probably be integrated with visitAllocSites, but that
104 /// requires a deeper change to allow either unread or unwritten objects.
105 static bool hasUndefSource(AnyMemTransferInst *MI) {
106   auto *Src = MI->getRawSource();
107   while (isa<GetElementPtrInst>(Src)) {
108     if (!Src->hasOneUse())
109       return false;
110     Src = cast<Instruction>(Src)->getOperand(0);
111   }
112   return isa<AllocaInst>(Src) && Src->hasOneUse();
113 }
114 
115 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
116   Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
117   MaybeAlign CopyDstAlign = MI->getDestAlign();
118   if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
119     MI->setDestAlignment(DstAlign);
120     return MI;
121   }
122 
123   Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
124   MaybeAlign CopySrcAlign = MI->getSourceAlign();
125   if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
126     MI->setSourceAlignment(SrcAlign);
127     return MI;
128   }
129 
130   // If we have a store to a location which is known constant, we can conclude
131   // that the store must be storing the constant value (else the memory
132   // wouldn't be constant), and this must be a noop.
133   if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
134     // Set the size of the copy to 0, it will be deleted on the next iteration.
135     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
136     return MI;
137   }
138 
139   // If the source is provably undef, the memcpy/memmove doesn't do anything
140   // (unless the transfer is volatile).
141   if (hasUndefSource(MI) && !MI->isVolatile()) {
142     // Set the size of the copy to 0, it will be deleted on the next iteration.
143     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
144     return MI;
145   }
146 
147   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
148   // load/store.
149   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
150   if (!MemOpLength) return nullptr;
151 
152   // Source and destination pointer types are always "i8*" for intrinsic.  See
153   // if the size is something we can handle with a single primitive load/store.
154   // A single load+store correctly handles overlapping memory in the memmove
155   // case.
156   uint64_t Size = MemOpLength->getLimitedValue();
157   assert(Size && "0-sized memory transferring should be removed already.");
158 
159   if (Size > 8 || (Size&(Size-1)))
160     return nullptr;  // If not 1/2/4/8 bytes, exit.
161 
162   // If it is an atomic and alignment is less than the size then we will
163   // introduce the unaligned memory access which will be later transformed
164   // into libcall in CodeGen. This is not evident performance gain so disable
165   // it now.
166   if (isa<AtomicMemTransferInst>(MI))
167     if (*CopyDstAlign < Size || *CopySrcAlign < Size)
168       return nullptr;
169 
170   // Use an integer load+store unless we can find something better.
171   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
172 
173   // If the memcpy has metadata describing the members, see if we can get the
174   // TBAA, scope and noalias tags describing our copy.
175   AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size);
176 
177   Value *Src = MI->getArgOperand(1);
178   Value *Dest = MI->getArgOperand(0);
179   LoadInst *L = Builder.CreateLoad(IntType, Src);
180   // Alignment from the mem intrinsic will be better, so use it.
181   L->setAlignment(*CopySrcAlign);
182   L->setAAMetadata(AACopyMD);
183   MDNode *LoopMemParallelMD =
184     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
185   if (LoopMemParallelMD)
186     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
187   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
188   if (AccessGroupMD)
189     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
190 
191   StoreInst *S = Builder.CreateStore(L, Dest);
192   // Alignment from the mem intrinsic will be better, so use it.
193   S->setAlignment(*CopyDstAlign);
194   S->setAAMetadata(AACopyMD);
195   if (LoopMemParallelMD)
196     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
197   if (AccessGroupMD)
198     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
199   S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
200 
201   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
202     // non-atomics can be volatile
203     L->setVolatile(MT->isVolatile());
204     S->setVolatile(MT->isVolatile());
205   }
206   if (isa<AtomicMemTransferInst>(MI)) {
207     // atomics have to be unordered
208     L->setOrdering(AtomicOrdering::Unordered);
209     S->setOrdering(AtomicOrdering::Unordered);
210   }
211 
212   // Set the size of the copy to 0, it will be deleted on the next iteration.
213   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
214   return MI;
215 }
216 
217 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
218   const Align KnownAlignment =
219       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
220   MaybeAlign MemSetAlign = MI->getDestAlign();
221   if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
222     MI->setDestAlignment(KnownAlignment);
223     return MI;
224   }
225 
226   // If we have a store to a location which is known constant, we can conclude
227   // that the store must be storing the constant value (else the memory
228   // wouldn't be constant), and this must be a noop.
229   if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
230     // Set the size of the copy to 0, it will be deleted on the next iteration.
231     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
232     return MI;
233   }
234 
235   // Remove memset with an undef value.
236   // FIXME: This is technically incorrect because it might overwrite a poison
237   // value. Change to PoisonValue once #52930 is resolved.
238   if (isa<UndefValue>(MI->getValue())) {
239     // Set the size of the copy to 0, it will be deleted on the next iteration.
240     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241     return MI;
242   }
243 
244   // Extract the length and alignment and fill if they are constant.
245   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248     return nullptr;
249   const uint64_t Len = LenC->getLimitedValue();
250   assert(Len && "0-sized memory setting should be removed already.");
251   const Align Alignment = MI->getDestAlign().valueOrOne();
252 
253   // If it is an atomic and alignment is less than the size then we will
254   // introduce the unaligned memory access which will be later transformed
255   // into libcall in CodeGen. This is not evident performance gain so disable
256   // it now.
257   if (isa<AtomicMemSetInst>(MI))
258     if (Alignment < Len)
259       return nullptr;
260 
261   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263     Value *Dest = MI->getDest();
264 
265     // Extract the fill value and store.
266     Constant *FillVal = ConstantInt::get(
267         MI->getContext(), APInt::getSplat(Len * 8, FillC->getValue()));
268     StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
269     S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
270     auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) {
271       if (llvm::is_contained(DbgAssign->location_ops(), FillC))
272         DbgAssign->replaceVariableLocationOp(FillC, FillVal);
273     };
274     for_each(at::getAssignmentMarkers(S), replaceOpForAssignmentMarkers);
275     for_each(at::getDVRAssignmentMarkers(S), replaceOpForAssignmentMarkers);
276 
277     S->setAlignment(Alignment);
278     if (isa<AtomicMemSetInst>(MI))
279       S->setOrdering(AtomicOrdering::Unordered);
280 
281     // Set the size of the copy to 0, it will be deleted on the next iteration.
282     MI->setLength(Constant::getNullValue(LenC->getType()));
283     return MI;
284   }
285 
286   return nullptr;
287 }
288 
289 // TODO, Obvious Missing Transforms:
290 // * Narrow width by halfs excluding zero/undef lanes
291 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
292   Value *LoadPtr = II.getArgOperand(0);
293   const Align Alignment =
294       cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
295 
296   // If the mask is all ones or undefs, this is a plain vector load of the 1st
297   // argument.
298   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
299     LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
300                                             "unmaskedload");
301     L->copyMetadata(II);
302     return L;
303   }
304 
305   // If we can unconditionally load from this address, replace with a
306   // load/select idiom. TODO: use DT for context sensitive query
307   if (isDereferenceablePointer(LoadPtr, II.getType(),
308                                II.getDataLayout(), &II, &AC)) {
309     LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
310                                              "unmaskedload");
311     LI->copyMetadata(II);
312     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
313   }
314 
315   return nullptr;
316 }
317 
318 // TODO, Obvious Missing Transforms:
319 // * Single constant active lane -> store
320 // * Narrow width by halfs excluding zero/undef lanes
321 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
322   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
323   if (!ConstMask)
324     return nullptr;
325 
326   // If the mask is all zeros, this instruction does nothing.
327   if (ConstMask->isNullValue())
328     return eraseInstFromFunction(II);
329 
330   // If the mask is all ones, this is a plain vector store of the 1st argument.
331   if (ConstMask->isAllOnesValue()) {
332     Value *StorePtr = II.getArgOperand(1);
333     Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
334     StoreInst *S =
335         new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
336     S->copyMetadata(II);
337     return S;
338   }
339 
340   if (isa<ScalableVectorType>(ConstMask->getType()))
341     return nullptr;
342 
343   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
344   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
345   APInt PoisonElts(DemandedElts.getBitWidth(), 0);
346   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
347                                             PoisonElts))
348     return replaceOperand(II, 0, V);
349 
350   return nullptr;
351 }
352 
353 // TODO, Obvious Missing Transforms:
354 // * Single constant active lane load -> load
355 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
356 // * Adjacent vector addresses -> masked.load
357 // * Narrow width by halfs excluding zero/undef lanes
358 // * Vector incrementing address -> vector masked load
359 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
360   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
361   if (!ConstMask)
362     return nullptr;
363 
364   // Vector splat address w/known mask -> scalar load
365   // Fold the gather to load the source vector first lane
366   // because it is reloading the same value each time
367   if (ConstMask->isAllOnesValue())
368     if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
369       auto *VecTy = cast<VectorType>(II.getType());
370       const Align Alignment =
371           cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
372       LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
373                                               Alignment, "load.scalar");
374       Value *Shuf =
375           Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
376       return replaceInstUsesWith(II, cast<Instruction>(Shuf));
377     }
378 
379   return nullptr;
380 }
381 
382 // TODO, Obvious Missing Transforms:
383 // * Single constant active lane -> store
384 // * Adjacent vector addresses -> masked.store
385 // * Narrow store width by halfs excluding zero/undef lanes
386 // * Vector incrementing address -> vector masked store
387 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
388   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
389   if (!ConstMask)
390     return nullptr;
391 
392   // If the mask is all zeros, a scatter does nothing.
393   if (ConstMask->isNullValue())
394     return eraseInstFromFunction(II);
395 
396   // Vector splat address -> scalar store
397   if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
398     // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
399     if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
400       if (maskContainsAllOneOrUndef(ConstMask)) {
401         Align Alignment =
402             cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
403         StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
404                                      Alignment);
405         S->copyMetadata(II);
406         return S;
407       }
408     }
409     // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
410     // lastlane), ptr
411     if (ConstMask->isAllOnesValue()) {
412       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
413       VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
414       ElementCount VF = WideLoadTy->getElementCount();
415       Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
416       Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
417       Value *Extract =
418           Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
419       StoreInst *S =
420           new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
421       S->copyMetadata(II);
422       return S;
423     }
424   }
425   if (isa<ScalableVectorType>(ConstMask->getType()))
426     return nullptr;
427 
428   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
429   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
430   APInt PoisonElts(DemandedElts.getBitWidth(), 0);
431   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
432                                             PoisonElts))
433     return replaceOperand(II, 0, V);
434   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts,
435                                             PoisonElts))
436     return replaceOperand(II, 1, V);
437 
438   return nullptr;
439 }
440 
441 /// This function transforms launder.invariant.group and strip.invariant.group
442 /// like:
443 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
444 /// launder(strip(%x)) -> launder(%x)
445 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
446 /// strip(launder(%x)) -> strip(%x)
447 /// This is legal because it preserves the most recent information about
448 /// the presence or absence of invariant.group.
449 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
450                                                     InstCombinerImpl &IC) {
451   auto *Arg = II.getArgOperand(0);
452   auto *StrippedArg = Arg->stripPointerCasts();
453   auto *StrippedInvariantGroupsArg = StrippedArg;
454   while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
455     if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
456         Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
457       break;
458     StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
459   }
460   if (StrippedArg == StrippedInvariantGroupsArg)
461     return nullptr; // No launders/strips to remove.
462 
463   Value *Result = nullptr;
464 
465   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
466     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
467   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
468     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
469   else
470     llvm_unreachable(
471         "simplifyInvariantGroupIntrinsic only handles launder and strip");
472   if (Result->getType()->getPointerAddressSpace() !=
473       II.getType()->getPointerAddressSpace())
474     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
475 
476   return cast<Instruction>(Result);
477 }
478 
479 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
480   assert((II.getIntrinsicID() == Intrinsic::cttz ||
481           II.getIntrinsicID() == Intrinsic::ctlz) &&
482          "Expected cttz or ctlz intrinsic");
483   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
484   Value *Op0 = II.getArgOperand(0);
485   Value *Op1 = II.getArgOperand(1);
486   Value *X;
487   // ctlz(bitreverse(x)) -> cttz(x)
488   // cttz(bitreverse(x)) -> ctlz(x)
489   if (match(Op0, m_BitReverse(m_Value(X)))) {
490     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
491     Function *F =
492         Intrinsic::getOrInsertDeclaration(II.getModule(), ID, II.getType());
493     return CallInst::Create(F, {X, II.getArgOperand(1)});
494   }
495 
496   if (II.getType()->isIntOrIntVectorTy(1)) {
497     // ctlz/cttz i1 Op0 --> not Op0
498     if (match(Op1, m_Zero()))
499       return BinaryOperator::CreateNot(Op0);
500     // If zero is poison, then the input can be assumed to be "true", so the
501     // instruction simplifies to "false".
502     assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
503     return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
504   }
505 
506   // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true.
507   if (II.hasOneUse() && match(Op1, m_Zero()) &&
508       match(II.user_back(), m_Shift(m_Value(), m_Specific(&II)))) {
509     II.dropUBImplyingAttrsAndMetadata();
510     return IC.replaceOperand(II, 1, IC.Builder.getTrue());
511   }
512 
513   Constant *C;
514 
515   if (IsTZ) {
516     // cttz(-x) -> cttz(x)
517     if (match(Op0, m_Neg(m_Value(X))))
518       return IC.replaceOperand(II, 0, X);
519 
520     // cttz(-x & x) -> cttz(x)
521     if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
522       return IC.replaceOperand(II, 0, X);
523 
524     // cttz(sext(x)) -> cttz(zext(x))
525     if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
526       auto *Zext = IC.Builder.CreateZExt(X, II.getType());
527       auto *CttzZext =
528           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
529       return IC.replaceInstUsesWith(II, CttzZext);
530     }
531 
532     // Zext doesn't change the number of trailing zeros, so narrow:
533     // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
534     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
535       auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
536                                                     IC.Builder.getTrue());
537       auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
538       return IC.replaceInstUsesWith(II, ZextCttz);
539     }
540 
541     // cttz(abs(x)) -> cttz(x)
542     // cttz(nabs(x)) -> cttz(x)
543     Value *Y;
544     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
545     if (SPF == SPF_ABS || SPF == SPF_NABS)
546       return IC.replaceOperand(II, 0, X);
547 
548     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
549       return IC.replaceOperand(II, 0, X);
550 
551     // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
552     if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) &&
553         match(Op1, m_One())) {
554       Value *ConstCttz =
555           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
556       return BinaryOperator::CreateAdd(ConstCttz, X);
557     }
558 
559     // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
560     if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) &&
561         match(Op1, m_One())) {
562       Value *ConstCttz =
563           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
564       return BinaryOperator::CreateSub(ConstCttz, X);
565     }
566 
567     // cttz(add(lshr(UINT_MAX, %val), 1)) --> sub(width, %val)
568     if (match(Op0, m_Add(m_LShr(m_AllOnes(), m_Value(X)), m_One()))) {
569       Value *Width =
570           ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits());
571       return BinaryOperator::CreateSub(Width, X);
572     }
573   } else {
574     // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
575     if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) &&
576         match(Op1, m_One())) {
577       Value *ConstCtlz =
578           IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
579       return BinaryOperator::CreateAdd(ConstCtlz, X);
580     }
581 
582     // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
583     if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) &&
584         match(Op1, m_One())) {
585       Value *ConstCtlz =
586           IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
587       return BinaryOperator::CreateSub(ConstCtlz, X);
588     }
589   }
590 
591   // cttz(Pow2) -> Log2(Pow2)
592   // ctlz(Pow2) -> BitWidth - 1 - Log2(Pow2)
593   if (auto *R = IC.tryGetLog2(Op0, match(Op1, m_One()))) {
594     if (IsTZ)
595       return IC.replaceInstUsesWith(II, R);
596     BinaryOperator *BO = BinaryOperator::CreateSub(
597         ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1),
598         R);
599     BO->setHasNoSignedWrap();
600     BO->setHasNoUnsignedWrap();
601     return BO;
602   }
603 
604   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
605 
606   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
607   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
608                                 : Known.countMaxLeadingZeros();
609   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
610                                 : Known.countMinLeadingZeros();
611 
612   // If all bits above (ctlz) or below (cttz) the first known one are known
613   // zero, this value is constant.
614   // FIXME: This should be in InstSimplify because we're replacing an
615   // instruction with a constant.
616   if (PossibleZeros == DefiniteZeros) {
617     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
618     return IC.replaceInstUsesWith(II, C);
619   }
620 
621   // If the input to cttz/ctlz is known to be non-zero,
622   // then change the 'ZeroIsPoison' parameter to 'true'
623   // because we know the zero behavior can't affect the result.
624   if (!Known.One.isZero() ||
625       isKnownNonZero(Op0, IC.getSimplifyQuery().getWithInstruction(&II))) {
626     if (!match(II.getArgOperand(1), m_One()))
627       return IC.replaceOperand(II, 1, IC.Builder.getTrue());
628   }
629 
630   // Add range attribute since known bits can't completely reflect what we know.
631   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
632   if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
633       !II.getMetadata(LLVMContext::MD_range)) {
634     ConstantRange Range(APInt(BitWidth, DefiniteZeros),
635                         APInt(BitWidth, PossibleZeros + 1));
636     II.addRangeRetAttr(Range);
637     return &II;
638   }
639 
640   return nullptr;
641 }
642 
643 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
644   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
645          "Expected ctpop intrinsic");
646   Type *Ty = II.getType();
647   unsigned BitWidth = Ty->getScalarSizeInBits();
648   Value *Op0 = II.getArgOperand(0);
649   Value *X, *Y;
650 
651   // ctpop(bitreverse(x)) -> ctpop(x)
652   // ctpop(bswap(x)) -> ctpop(x)
653   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
654     return IC.replaceOperand(II, 0, X);
655 
656   // ctpop(rot(x)) -> ctpop(x)
657   if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
658        match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
659       X == Y)
660     return IC.replaceOperand(II, 0, X);
661 
662   // ctpop(x | -x) -> bitwidth - cttz(x, false)
663   if (Op0->hasOneUse() &&
664       match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
665     auto *Cttz = IC.Builder.CreateIntrinsic(Intrinsic::cttz, Ty,
666                                             {X, IC.Builder.getFalse()});
667     auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
668     return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
669   }
670 
671   // ctpop(~x & (x - 1)) -> cttz(x, false)
672   if (match(Op0,
673             m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
674     Function *F =
675         Intrinsic::getOrInsertDeclaration(II.getModule(), Intrinsic::cttz, Ty);
676     return CallInst::Create(F, {X, IC.Builder.getFalse()});
677   }
678 
679   // Zext doesn't change the number of set bits, so narrow:
680   // ctpop (zext X) --> zext (ctpop X)
681   if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
682     Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
683     return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
684   }
685 
686   KnownBits Known(BitWidth);
687   IC.computeKnownBits(Op0, Known, 0, &II);
688 
689   // If all bits are zero except for exactly one fixed bit, then the result
690   // must be 0 or 1, and we can get that answer by shifting to LSB:
691   // ctpop (X & 32) --> (X & 32) >> 5
692   // TODO: Investigate removing this as its likely unnecessary given the below
693   // `isKnownToBeAPowerOfTwo` check.
694   if ((~Known.Zero).isPowerOf2())
695     return BinaryOperator::CreateLShr(
696         Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
697 
698   // More generally we can also handle non-constant power of 2 patterns such as
699   // shl/shr(Pow2, X), (X & -X), etc... by transforming:
700   // ctpop(Pow2OrZero) --> icmp ne X, 0
701   if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
702     return CastInst::Create(Instruction::ZExt,
703                             IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0,
704                                                   Constant::getNullValue(Ty)),
705                             Ty);
706 
707   // Add range attribute since known bits can't completely reflect what we know.
708   if (BitWidth != 1) {
709     ConstantRange OldRange =
710         II.getRange().value_or(ConstantRange::getFull(BitWidth));
711 
712     unsigned Lower = Known.countMinPopulation();
713     unsigned Upper = Known.countMaxPopulation() + 1;
714 
715     if (Lower == 0 && OldRange.contains(APInt::getZero(BitWidth)) &&
716         isKnownNonZero(Op0, IC.getSimplifyQuery().getWithInstruction(&II)))
717       Lower = 1;
718 
719     ConstantRange Range(APInt(BitWidth, Lower), APInt(BitWidth, Upper));
720     Range = Range.intersectWith(OldRange, ConstantRange::Unsigned);
721 
722     if (Range != OldRange) {
723       II.addRangeRetAttr(Range);
724       return &II;
725     }
726   }
727 
728   return nullptr;
729 }
730 
731 /// Convert a table lookup to shufflevector if the mask is constant.
732 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
733 /// which case we could lower the shufflevector with rev64 instructions
734 /// as it's actually a byte reverse.
735 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
736                                InstCombiner::BuilderTy &Builder) {
737   // Bail out if the mask is not a constant.
738   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
739   if (!C)
740     return nullptr;
741 
742   auto *VecTy = cast<FixedVectorType>(II.getType());
743   unsigned NumElts = VecTy->getNumElements();
744 
745   // Only perform this transformation for <8 x i8> vector types.
746   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
747     return nullptr;
748 
749   int Indexes[8];
750 
751   for (unsigned I = 0; I < NumElts; ++I) {
752     Constant *COp = C->getAggregateElement(I);
753 
754     if (!COp || !isa<ConstantInt>(COp))
755       return nullptr;
756 
757     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
758 
759     // Make sure the mask indices are in range.
760     if ((unsigned)Indexes[I] >= NumElts)
761       return nullptr;
762   }
763 
764   auto *V1 = II.getArgOperand(0);
765   auto *V2 = Constant::getNullValue(V1->getType());
766   return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
767 }
768 
769 // Returns true iff the 2 intrinsics have the same operands, limiting the
770 // comparison to the first NumOperands.
771 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
772                              unsigned NumOperands) {
773   assert(I.arg_size() >= NumOperands && "Not enough operands");
774   assert(E.arg_size() >= NumOperands && "Not enough operands");
775   for (unsigned i = 0; i < NumOperands; i++)
776     if (I.getArgOperand(i) != E.getArgOperand(i))
777       return false;
778   return true;
779 }
780 
781 // Remove trivially empty start/end intrinsic ranges, i.e. a start
782 // immediately followed by an end (ignoring debuginfo or other
783 // start/end intrinsics in between). As this handles only the most trivial
784 // cases, tracking the nesting level is not needed:
785 //
786 //   call @llvm.foo.start(i1 0)
787 //   call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
788 //   call @llvm.foo.end(i1 0)
789 //   call @llvm.foo.end(i1 0) ; &I
790 static bool
791 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
792                           std::function<bool(const IntrinsicInst &)> IsStart) {
793   // We start from the end intrinsic and scan backwards, so that InstCombine
794   // has already processed (and potentially removed) all the instructions
795   // before the end intrinsic.
796   BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
797   for (; BI != BE; ++BI) {
798     if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
799       if (I->isDebugOrPseudoInst() ||
800           I->getIntrinsicID() == EndI.getIntrinsicID())
801         continue;
802       if (IsStart(*I)) {
803         if (haveSameOperands(EndI, *I, EndI.arg_size())) {
804           IC.eraseInstFromFunction(*I);
805           IC.eraseInstFromFunction(EndI);
806           return true;
807         }
808         // Skip start intrinsics that don't pair with this end intrinsic.
809         continue;
810       }
811     }
812     break;
813   }
814 
815   return false;
816 }
817 
818 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
819   removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
820     return I.getIntrinsicID() == Intrinsic::vastart ||
821            I.getIntrinsicID() == Intrinsic::vacopy;
822   });
823   return nullptr;
824 }
825 
826 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
827   assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
828   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
829   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
830     Call.setArgOperand(0, Arg1);
831     Call.setArgOperand(1, Arg0);
832     return &Call;
833   }
834   return nullptr;
835 }
836 
837 /// Creates a result tuple for an overflow intrinsic \p II with a given
838 /// \p Result and a constant \p Overflow value.
839 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
840                                         Constant *Overflow) {
841   Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
842   StructType *ST = cast<StructType>(II->getType());
843   Constant *Struct = ConstantStruct::get(ST, V);
844   return InsertValueInst::Create(Struct, Result, 0);
845 }
846 
847 Instruction *
848 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
849   WithOverflowInst *WO = cast<WithOverflowInst>(II);
850   Value *OperationResult = nullptr;
851   Constant *OverflowResult = nullptr;
852   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
853                             WO->getRHS(), *WO, OperationResult, OverflowResult))
854     return createOverflowTuple(WO, OperationResult, OverflowResult);
855 
856   // See whether we can optimize the overflow check with assumption information.
857   for (User *U : WO->users()) {
858     if (!match(U, m_ExtractValue<1>(m_Value())))
859       continue;
860 
861     for (auto &AssumeVH : AC.assumptionsFor(U)) {
862       if (!AssumeVH)
863         continue;
864       CallInst *I = cast<CallInst>(AssumeVH);
865       if (!match(I->getArgOperand(0), m_Not(m_Specific(U))))
866         continue;
867       if (!isValidAssumeForContext(I, II, /*DT=*/nullptr,
868                                    /*AllowEphemerals=*/true))
869         continue;
870       Value *Result =
871           Builder.CreateBinOp(WO->getBinaryOp(), WO->getLHS(), WO->getRHS());
872       Result->takeName(WO);
873       if (auto *Inst = dyn_cast<Instruction>(Result)) {
874         if (WO->isSigned())
875           Inst->setHasNoSignedWrap();
876         else
877           Inst->setHasNoUnsignedWrap();
878       }
879       return createOverflowTuple(WO, Result,
880                                  ConstantInt::getFalse(U->getType()));
881     }
882   }
883 
884   return nullptr;
885 }
886 
887 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
888   Ty = Ty->getScalarType();
889   return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
890 }
891 
892 static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
893   Ty = Ty->getScalarType();
894   return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
895 }
896 
897 /// \returns the compare predicate type if the test performed by
898 /// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
899 /// floating-point environment assumed for \p F for type \p Ty
900 static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask,
901                                               const Function &F, Type *Ty) {
902   switch (static_cast<unsigned>(Mask)) {
903   case fcZero:
904     if (inputDenormalIsIEEE(F, Ty))
905       return FCmpInst::FCMP_OEQ;
906     break;
907   case fcZero | fcSubnormal:
908     if (inputDenormalIsDAZ(F, Ty))
909       return FCmpInst::FCMP_OEQ;
910     break;
911   case fcPositive | fcNegZero:
912     if (inputDenormalIsIEEE(F, Ty))
913       return FCmpInst::FCMP_OGE;
914     break;
915   case fcPositive | fcNegZero | fcNegSubnormal:
916     if (inputDenormalIsDAZ(F, Ty))
917       return FCmpInst::FCMP_OGE;
918     break;
919   case fcPosSubnormal | fcPosNormal | fcPosInf:
920     if (inputDenormalIsIEEE(F, Ty))
921       return FCmpInst::FCMP_OGT;
922     break;
923   case fcNegative | fcPosZero:
924     if (inputDenormalIsIEEE(F, Ty))
925       return FCmpInst::FCMP_OLE;
926     break;
927   case fcNegative | fcPosZero | fcPosSubnormal:
928     if (inputDenormalIsDAZ(F, Ty))
929       return FCmpInst::FCMP_OLE;
930     break;
931   case fcNegSubnormal | fcNegNormal | fcNegInf:
932     if (inputDenormalIsIEEE(F, Ty))
933       return FCmpInst::FCMP_OLT;
934     break;
935   case fcPosNormal | fcPosInf:
936     if (inputDenormalIsDAZ(F, Ty))
937       return FCmpInst::FCMP_OGT;
938     break;
939   case fcNegNormal | fcNegInf:
940     if (inputDenormalIsDAZ(F, Ty))
941       return FCmpInst::FCMP_OLT;
942     break;
943   case ~fcZero & ~fcNan:
944     if (inputDenormalIsIEEE(F, Ty))
945       return FCmpInst::FCMP_ONE;
946     break;
947   case ~(fcZero | fcSubnormal) & ~fcNan:
948     if (inputDenormalIsDAZ(F, Ty))
949       return FCmpInst::FCMP_ONE;
950     break;
951   default:
952     break;
953   }
954 
955   return FCmpInst::BAD_FCMP_PREDICATE;
956 }
957 
958 Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
959   Value *Src0 = II.getArgOperand(0);
960   Value *Src1 = II.getArgOperand(1);
961   const ConstantInt *CMask = cast<ConstantInt>(Src1);
962   FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
963   const bool IsUnordered = (Mask & fcNan) == fcNan;
964   const bool IsOrdered = (Mask & fcNan) == fcNone;
965   const FPClassTest OrderedMask = Mask & ~fcNan;
966   const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
967 
968   const bool IsStrict =
969       II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
970 
971   Value *FNegSrc;
972   if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
973     // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
974 
975     II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
976     return replaceOperand(II, 0, FNegSrc);
977   }
978 
979   Value *FAbsSrc;
980   if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
981     II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
982     return replaceOperand(II, 0, FAbsSrc);
983   }
984 
985   if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
986       (IsOrdered || IsUnordered) && !IsStrict) {
987     // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
988     // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
989     // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
990     // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
991     Constant *Inf = ConstantFP::getInfinity(Src0->getType());
992     FCmpInst::Predicate Pred =
993         IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
994     if (OrderedInvertedMask == fcInf)
995       Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
996 
997     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
998     Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
999     CmpInf->takeName(&II);
1000     return replaceInstUsesWith(II, CmpInf);
1001   }
1002 
1003   if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
1004       (IsOrdered || IsUnordered) && !IsStrict) {
1005     // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
1006     // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
1007     // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
1008     // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
1009     Constant *Inf =
1010         ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
1011     Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
1012                                : Builder.CreateFCmpOEQ(Src0, Inf);
1013 
1014     EqInf->takeName(&II);
1015     return replaceInstUsesWith(II, EqInf);
1016   }
1017 
1018   if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
1019       (IsOrdered || IsUnordered) && !IsStrict) {
1020     // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
1021     // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
1022     // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
1023     // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
1024     Constant *Inf = ConstantFP::getInfinity(Src0->getType(),
1025                                             OrderedInvertedMask == fcNegInf);
1026     Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
1027                                : Builder.CreateFCmpONE(Src0, Inf);
1028     NeInf->takeName(&II);
1029     return replaceInstUsesWith(II, NeInf);
1030   }
1031 
1032   if (Mask == fcNan && !IsStrict) {
1033     // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
1034     // exceptions.
1035     Value *IsNan =
1036         Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
1037     IsNan->takeName(&II);
1038     return replaceInstUsesWith(II, IsNan);
1039   }
1040 
1041   if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
1042     // Equivalent of !isnan. Replace with standard fcmp.
1043     Value *FCmp =
1044         Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
1045     FCmp->takeName(&II);
1046     return replaceInstUsesWith(II, FCmp);
1047   }
1048 
1049   FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE;
1050 
1051   // Try to replace with an fcmp with 0
1052   //
1053   // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
1054   // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
1055   // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
1056   // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
1057   //
1058   // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
1059   // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
1060   //
1061   // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1062   // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1063   //
1064   if (!IsStrict && (IsOrdered || IsUnordered) &&
1065       (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
1066                                      Src0->getType())) !=
1067           FCmpInst::BAD_FCMP_PREDICATE) {
1068     Constant *Zero = ConstantFP::getZero(Src0->getType());
1069     // Equivalent of == 0.
1070     Value *FCmp = Builder.CreateFCmp(
1071         IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
1072         Src0, Zero);
1073 
1074     FCmp->takeName(&II);
1075     return replaceInstUsesWith(II, FCmp);
1076   }
1077 
1078   KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1079 
1080   // Clear test bits we know must be false from the source value.
1081   // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1082   // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1083   if ((Mask & Known.KnownFPClasses) != Mask) {
1084     II.setArgOperand(
1085         1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1086     return &II;
1087   }
1088 
1089   // If none of the tests which can return false are possible, fold to true.
1090   // fp_class (nnan x), ~(qnan|snan) -> true
1091   // fp_class (ninf x), ~(ninf|pinf) -> true
1092   if (Mask == Known.KnownFPClasses)
1093     return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1094 
1095   return nullptr;
1096 }
1097 
1098 static std::optional<bool> getKnownSign(Value *Op, const SimplifyQuery &SQ) {
1099   KnownBits Known = computeKnownBits(Op, /*Depth=*/0, SQ);
1100   if (Known.isNonNegative())
1101     return false;
1102   if (Known.isNegative())
1103     return true;
1104 
1105   Value *X, *Y;
1106   if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1107     return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, SQ.CxtI, SQ.DL);
1108 
1109   return std::nullopt;
1110 }
1111 
1112 static std::optional<bool> getKnownSignOrZero(Value *Op,
1113                                               const SimplifyQuery &SQ) {
1114   if (std::optional<bool> Sign = getKnownSign(Op, SQ))
1115     return Sign;
1116 
1117   Value *X, *Y;
1118   if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1119     return isImpliedByDomCondition(ICmpInst::ICMP_SLE, X, Y, SQ.CxtI, SQ.DL);
1120 
1121   return std::nullopt;
1122 }
1123 
1124 /// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1125 static bool signBitMustBeTheSame(Value *Op0, Value *Op1,
1126                                  const SimplifyQuery &SQ) {
1127   std::optional<bool> Known1 = getKnownSign(Op1, SQ);
1128   if (!Known1)
1129     return false;
1130   std::optional<bool> Known0 = getKnownSign(Op0, SQ);
1131   if (!Known0)
1132     return false;
1133   return *Known0 == *Known1;
1134 }
1135 
1136 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1137 /// can trigger other combines.
1138 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
1139                                        InstCombiner::BuilderTy &Builder) {
1140   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1141   assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1142           MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1143          "Expected a min or max intrinsic");
1144 
1145   // TODO: Match vectors with undef elements, but undef may not propagate.
1146   Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1147   Value *X;
1148   const APInt *C0, *C1;
1149   if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1150       !match(Op1, m_APInt(C1)))
1151     return nullptr;
1152 
1153   // Check for necessary no-wrap and overflow constraints.
1154   bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1155   auto *Add = cast<BinaryOperator>(Op0);
1156   if ((IsSigned && !Add->hasNoSignedWrap()) ||
1157       (!IsSigned && !Add->hasNoUnsignedWrap()))
1158     return nullptr;
1159 
1160   // If the constant difference overflows, then instsimplify should reduce the
1161   // min/max to the add or C1.
1162   bool Overflow;
1163   APInt CDiff =
1164       IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1165   assert(!Overflow && "Expected simplify of min/max");
1166 
1167   // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1168   // Note: the "mismatched" no-overflow setting does not propagate.
1169   Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1170   Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1171   return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1172                   : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1173 }
1174 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1175 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1176   Type *Ty = MinMax1.getType();
1177 
1178   // We are looking for a tree of:
1179   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1180   // Where the min and max could be reversed
1181   Instruction *MinMax2;
1182   BinaryOperator *AddSub;
1183   const APInt *MinValue, *MaxValue;
1184   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1185     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1186       return nullptr;
1187   } else if (match(&MinMax1,
1188                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1189     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1190       return nullptr;
1191   } else
1192     return nullptr;
1193 
1194   // Check that the constants clamp a saturate, and that the new type would be
1195   // sensible to convert to.
1196   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1197     return nullptr;
1198   // In what bitwidth can this be treated as saturating arithmetics?
1199   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1200   // FIXME: This isn't quite right for vectors, but using the scalar type is a
1201   // good first approximation for what should be done there.
1202   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1203     return nullptr;
1204 
1205   // Also make sure that the inner min/max and the add/sub have one use.
1206   if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1207     return nullptr;
1208 
1209   // Create the new type (which can be a vector type)
1210   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1211 
1212   Intrinsic::ID IntrinsicID;
1213   if (AddSub->getOpcode() == Instruction::Add)
1214     IntrinsicID = Intrinsic::sadd_sat;
1215   else if (AddSub->getOpcode() == Instruction::Sub)
1216     IntrinsicID = Intrinsic::ssub_sat;
1217   else
1218     return nullptr;
1219 
1220   // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1221   // is usually achieved via a sext from a smaller type.
1222   if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
1223           NewBitWidth ||
1224       ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
1225     return nullptr;
1226 
1227   // Finally create and return the sat intrinsic, truncated to the new type
1228   Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1229   Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1230   Value *Sat = Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT, BT});
1231   return CastInst::Create(Instruction::SExt, Sat, Ty);
1232 }
1233 
1234 
1235 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1236 /// can only be one of two possible constant values -- turn that into a select
1237 /// of constants.
1238 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
1239                                         InstCombiner::BuilderTy &Builder) {
1240   Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1241   Value *X;
1242   const APInt *C0, *C1;
1243   if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1244     return nullptr;
1245 
1246   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
1247   switch (II->getIntrinsicID()) {
1248   case Intrinsic::smax:
1249     if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1250       Pred = ICmpInst::ICMP_SGT;
1251     break;
1252   case Intrinsic::smin:
1253     if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1254       Pred = ICmpInst::ICMP_SLT;
1255     break;
1256   case Intrinsic::umax:
1257     if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1258       Pred = ICmpInst::ICMP_UGT;
1259     break;
1260   case Intrinsic::umin:
1261     if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1262       Pred = ICmpInst::ICMP_ULT;
1263     break;
1264   default:
1265     llvm_unreachable("Expected min/max intrinsic");
1266   }
1267   if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1268     return nullptr;
1269 
1270   // max (min X, 42), 41 --> X > 41 ? 42 : 41
1271   // min (max X, 42), 43 --> X < 43 ? 42 : 43
1272   Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1273   return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1274 }
1275 
1276 /// If this min/max has a constant operand and an operand that is a matching
1277 /// min/max with a constant operand, constant-fold the 2 constant operands.
1278 static Value *reassociateMinMaxWithConstants(IntrinsicInst *II,
1279                                              IRBuilderBase &Builder,
1280                                              const SimplifyQuery &SQ) {
1281   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1282   auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0));
1283   if (!LHS)
1284     return nullptr;
1285 
1286   Constant *C0, *C1;
1287   if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1288       !match(II->getArgOperand(1), m_ImmConstant(C1)))
1289     return nullptr;
1290 
1291   // max (max X, C0), C1 --> max X, (max C0, C1)
1292   // min (min X, C0), C1 --> min X, (min C0, C1)
1293   // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1)
1294   // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1)
1295   Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID();
1296   if (InnerMinMaxID != MinMaxID &&
1297       !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1298          (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1299         isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ)))
1300     return nullptr;
1301 
1302   ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
1303   Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1304   Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1305   return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(),
1306                                  {LHS->getArgOperand(0), NewC});
1307 }
1308 
1309 /// If this min/max has a matching min/max operand with a constant, try to push
1310 /// the constant operand into this instruction. This can enable more folds.
1311 static Instruction *
1312 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1313                                        InstCombiner::BuilderTy &Builder) {
1314   // Match and capture a min/max operand candidate.
1315   Value *X, *Y;
1316   Constant *C;
1317   Instruction *Inner;
1318   if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
1319                                   m_Instruction(Inner),
1320                                   m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
1321                               m_Value(Y))))
1322     return nullptr;
1323 
1324   // The inner op must match. Check for constants to avoid infinite loops.
1325   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1326   auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1327   if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1328       match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
1329     return nullptr;
1330 
1331   // max (max X, C), Y --> max (max X, Y), C
1332   Function *MinMax = Intrinsic::getOrInsertDeclaration(II->getModule(),
1333                                                        MinMaxID, II->getType());
1334   Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1335   NewInner->takeName(Inner);
1336   return CallInst::Create(MinMax, {NewInner, C});
1337 }
1338 
1339 /// Reduce a sequence of min/max intrinsics with a common operand.
1340 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1341   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1342   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1343   auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1344   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1345   if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1346       RHS->getIntrinsicID() != MinMaxID ||
1347       (!LHS->hasOneUse() && !RHS->hasOneUse()))
1348     return nullptr;
1349 
1350   Value *A = LHS->getArgOperand(0);
1351   Value *B = LHS->getArgOperand(1);
1352   Value *C = RHS->getArgOperand(0);
1353   Value *D = RHS->getArgOperand(1);
1354 
1355   // Look for a common operand.
1356   Value *MinMaxOp = nullptr;
1357   Value *ThirdOp = nullptr;
1358   if (LHS->hasOneUse()) {
1359     // If the LHS is only used in this chain and the RHS is used outside of it,
1360     // reuse the RHS min/max because that will eliminate the LHS.
1361     if (D == A || C == A) {
1362       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1363       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1364       MinMaxOp = RHS;
1365       ThirdOp = B;
1366     } else if (D == B || C == B) {
1367       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1368       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1369       MinMaxOp = RHS;
1370       ThirdOp = A;
1371     }
1372   } else {
1373     assert(RHS->hasOneUse() && "Expected one-use operand");
1374     // Reuse the LHS. This will eliminate the RHS.
1375     if (D == A || D == B) {
1376       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1377       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1378       MinMaxOp = LHS;
1379       ThirdOp = C;
1380     } else if (C == A || C == B) {
1381       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1382       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1383       MinMaxOp = LHS;
1384       ThirdOp = D;
1385     }
1386   }
1387 
1388   if (!MinMaxOp || !ThirdOp)
1389     return nullptr;
1390 
1391   Module *Mod = II->getModule();
1392   Function *MinMax =
1393       Intrinsic::getOrInsertDeclaration(Mod, MinMaxID, II->getType());
1394   return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1395 }
1396 
1397 /// If all arguments of the intrinsic are unary shuffles with the same mask,
1398 /// try to shuffle after the intrinsic.
1399 static Instruction *
1400 foldShuffledIntrinsicOperands(IntrinsicInst *II,
1401                               InstCombiner::BuilderTy &Builder) {
1402   // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1403   //       etc. Use llvm::isTriviallyVectorizable() and related to determine
1404   //       which intrinsics are safe to shuffle?
1405   switch (II->getIntrinsicID()) {
1406   case Intrinsic::smax:
1407   case Intrinsic::smin:
1408   case Intrinsic::umax:
1409   case Intrinsic::umin:
1410   case Intrinsic::fma:
1411   case Intrinsic::fshl:
1412   case Intrinsic::fshr:
1413     break;
1414   default:
1415     return nullptr;
1416   }
1417 
1418   Value *X;
1419   ArrayRef<int> Mask;
1420   if (!match(II->getArgOperand(0),
1421              m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1422     return nullptr;
1423 
1424   // At least 1 operand must have 1 use because we are creating 2 instructions.
1425   if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1426     return nullptr;
1427 
1428   // See if all arguments are shuffled with the same mask.
1429   SmallVector<Value *, 4> NewArgs(II->arg_size());
1430   NewArgs[0] = X;
1431   Type *SrcTy = X->getType();
1432   for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1433     if (!match(II->getArgOperand(i),
1434                m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1435         X->getType() != SrcTy)
1436       return nullptr;
1437     NewArgs[i] = X;
1438   }
1439 
1440   // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1441   Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1442   Value *NewIntrinsic =
1443       Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1444   return new ShuffleVectorInst(NewIntrinsic, Mask);
1445 }
1446 
1447 /// Fold the following cases and accepts bswap and bitreverse intrinsics:
1448 ///   bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1449 ///   bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1450 template <Intrinsic::ID IntrID>
1451 static Instruction *foldBitOrderCrossLogicOp(Value *V,
1452                                              InstCombiner::BuilderTy &Builder) {
1453   static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1454                 "This helper only supports BSWAP and BITREVERSE intrinsics");
1455 
1456   Value *X, *Y;
1457   // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1458   // don't match ConstantExpr that aren't meaningful for this transform.
1459   if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) &&
1460       isa<BinaryOperator>(V)) {
1461     Value *OldReorderX, *OldReorderY;
1462     BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode();
1463 
1464     // If both X and Y are bswap/bitreverse, the transform reduces the number
1465     // of instructions even if there's multiuse.
1466     // If only one operand is bswap/bitreverse, we need to ensure the operand
1467     // have only one use.
1468     if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1469         match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1470       return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1471     }
1472 
1473     if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1474       Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1475       return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1476     }
1477 
1478     if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1479       Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1480       return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1481     }
1482   }
1483   return nullptr;
1484 }
1485 
1486 static Value *simplifyReductionOperand(Value *Arg, bool CanReorderLanes) {
1487   if (!CanReorderLanes)
1488     return nullptr;
1489 
1490   Value *V;
1491   if (match(Arg, m_VecReverse(m_Value(V))))
1492     return V;
1493 
1494   ArrayRef<int> Mask;
1495   if (!isa<FixedVectorType>(Arg->getType()) ||
1496       !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
1497       !cast<ShuffleVectorInst>(Arg)->isSingleSource())
1498     return nullptr;
1499 
1500   int Sz = Mask.size();
1501   SmallBitVector UsedIndices(Sz);
1502   for (int Idx : Mask) {
1503     if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
1504       return nullptr;
1505     UsedIndices.set(Idx);
1506   }
1507 
1508   // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
1509   // other changes.
1510   return UsedIndices.all() ? V : nullptr;
1511 }
1512 
1513 /// Fold an unsigned minimum of trailing or leading zero bits counts:
1514 ///   umin(cttz(CtOp, ZeroUndef), ConstOp) --> cttz(CtOp | (1 << ConstOp))
1515 ///   umin(ctlz(CtOp, ZeroUndef), ConstOp) --> ctlz(CtOp | (SignedMin
1516 ///                                              >> ConstOp))
1517 template <Intrinsic::ID IntrID>
1518 static Value *
1519 foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1,
1520                                           const DataLayout &DL,
1521                                           InstCombiner::BuilderTy &Builder) {
1522   static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1523                 "This helper only supports cttz and ctlz intrinsics");
1524 
1525   Value *CtOp;
1526   Value *ZeroUndef;
1527   if (!match(I0,
1528              m_OneUse(m_Intrinsic<IntrID>(m_Value(CtOp), m_Value(ZeroUndef)))))
1529     return nullptr;
1530 
1531   unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1532   auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); };
1533   if (!match(I1, m_CheckedInt(LessBitWidth)))
1534     // We have a constant >= BitWidth (which can be handled by CVP)
1535     // or a non-splat vector with elements < and >= BitWidth
1536     return nullptr;
1537 
1538   Type *Ty = I1->getType();
1539   Constant *NewConst = ConstantFoldBinaryOpOperands(
1540       IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1541       IntrID == Intrinsic::cttz
1542           ? ConstantInt::get(Ty, 1)
1543           : ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)),
1544       cast<Constant>(I1), DL);
1545   return Builder.CreateBinaryIntrinsic(
1546       IntrID, Builder.CreateOr(CtOp, NewConst),
1547       ConstantInt::getTrue(ZeroUndef->getType()));
1548 }
1549 
1550 /// Return whether "X LOp (Y ROp Z)" is always equal to
1551 /// "(X LOp Y) ROp (X LOp Z)".
1552 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW,
1553                                      bool HasNSW, Intrinsic::ID ROp) {
1554   switch (ROp) {
1555   case Intrinsic::umax:
1556   case Intrinsic::umin:
1557     return HasNUW && LOp == Instruction::Add;
1558   case Intrinsic::smax:
1559   case Intrinsic::smin:
1560     return HasNSW && LOp == Instruction::Add;
1561   default:
1562     return false;
1563   }
1564 }
1565 
1566 // Attempts to factorise a common term
1567 // in an instruction that has the form "(A op' B) op (C op' D)
1568 // where op is an intrinsic and op' is a binop
1569 static Value *
1570 foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II,
1571                                    InstCombiner::BuilderTy &Builder) {
1572   Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1573   Intrinsic::ID TopLevelOpcode = II->getIntrinsicID();
1574 
1575   OverflowingBinaryOperator *Op0 = dyn_cast<OverflowingBinaryOperator>(LHS);
1576   OverflowingBinaryOperator *Op1 = dyn_cast<OverflowingBinaryOperator>(RHS);
1577 
1578   if (!Op0 || !Op1)
1579     return nullptr;
1580 
1581   if (Op0->getOpcode() != Op1->getOpcode())
1582     return nullptr;
1583 
1584   if (!Op0->hasOneUse() || !Op1->hasOneUse())
1585     return nullptr;
1586 
1587   Instruction::BinaryOps InnerOpcode =
1588       static_cast<Instruction::BinaryOps>(Op0->getOpcode());
1589   bool HasNUW = Op0->hasNoUnsignedWrap() && Op1->hasNoUnsignedWrap();
1590   bool HasNSW = Op0->hasNoSignedWrap() && Op1->hasNoSignedWrap();
1591 
1592   if (!leftDistributesOverRight(InnerOpcode, HasNUW, HasNSW, TopLevelOpcode))
1593     return nullptr;
1594 
1595   assert(II->isCommutative() && Op0->isCommutative() &&
1596          "Only inner and outer commutative op codes are supported.");
1597 
1598   Value *A = Op0->getOperand(0);
1599   Value *B = Op0->getOperand(1);
1600   Value *C = Op1->getOperand(0);
1601   Value *D = Op1->getOperand(1);
1602 
1603   // Attempts to swap variables such that A always equals C
1604   if (A != C && A != D)
1605     std::swap(A, B);
1606   if (A == C || A == D) {
1607     if (A != C)
1608       std::swap(C, D);
1609     Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, B, D);
1610     BinaryOperator *NewBinop =
1611         cast<BinaryOperator>(Builder.CreateBinOp(InnerOpcode, NewIntrinsic, A));
1612     NewBinop->setHasNoSignedWrap(HasNSW);
1613     NewBinop->setHasNoUnsignedWrap(HasNUW);
1614     return NewBinop;
1615   }
1616 
1617   return nullptr;
1618 }
1619 
1620 /// CallInst simplification. This mostly only handles folding of intrinsic
1621 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1622 /// lifting.
1623 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1624   // Don't try to simplify calls without uses. It will not do anything useful,
1625   // but will result in the following folds being skipped.
1626   if (!CI.use_empty()) {
1627     SmallVector<Value *, 8> Args(CI.args());
1628     if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1629                                 SQ.getWithInstruction(&CI)))
1630       return replaceInstUsesWith(CI, V);
1631   }
1632 
1633   if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1634     return visitFree(CI, FreedOp);
1635 
1636   // If the caller function (i.e. us, the function that contains this CallInst)
1637   // is nounwind, mark the call as nounwind, even if the callee isn't.
1638   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1639     CI.setDoesNotThrow();
1640     return &CI;
1641   }
1642 
1643   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1644   if (!II) return visitCallBase(CI);
1645 
1646   // For atomic unordered mem intrinsics if len is not a positive or
1647   // not a multiple of element size then behavior is undefined.
1648   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1649     if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1650       if (NumBytes->isNegative() ||
1651           (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1652         CreateNonTerminatorUnreachable(AMI);
1653         assert(AMI->getType()->isVoidTy() &&
1654                "non void atomic unordered mem intrinsic");
1655         return eraseInstFromFunction(*AMI);
1656       }
1657 
1658   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1659   // instead of in visitCallBase.
1660   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1661     bool Changed = false;
1662 
1663     // memmove/cpy/set of zero bytes is a noop.
1664     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1665       if (NumBytes->isNullValue())
1666         return eraseInstFromFunction(CI);
1667     }
1668 
1669     // No other transformations apply to volatile transfers.
1670     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1671       if (M->isVolatile())
1672         return nullptr;
1673 
1674     // If we have a memmove and the source operation is a constant global,
1675     // then the source and dest pointers can't alias, so we can change this
1676     // into a call to memcpy.
1677     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1678       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1679         if (GVSrc->isConstant()) {
1680           Module *M = CI.getModule();
1681           Intrinsic::ID MemCpyID =
1682               isa<AtomicMemMoveInst>(MMI)
1683                   ? Intrinsic::memcpy_element_unordered_atomic
1684                   : Intrinsic::memcpy;
1685           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1686                            CI.getArgOperand(1)->getType(),
1687                            CI.getArgOperand(2)->getType() };
1688           CI.setCalledFunction(
1689               Intrinsic::getOrInsertDeclaration(M, MemCpyID, Tys));
1690           Changed = true;
1691         }
1692     }
1693 
1694     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1695       // memmove(x,x,size) -> noop.
1696       if (MTI->getSource() == MTI->getDest())
1697         return eraseInstFromFunction(CI);
1698     }
1699 
1700     auto IsPointerUndefined = [MI](Value *Ptr) {
1701       return isa<ConstantPointerNull>(Ptr) &&
1702              !NullPointerIsDefined(
1703                  MI->getFunction(),
1704                  cast<PointerType>(Ptr->getType())->getAddressSpace());
1705     };
1706     bool SrcIsUndefined = false;
1707     // If we can determine a pointer alignment that is bigger than currently
1708     // set, update the alignment.
1709     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1710       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1711         return I;
1712       SrcIsUndefined = IsPointerUndefined(MTI->getRawSource());
1713     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1714       if (Instruction *I = SimplifyAnyMemSet(MSI))
1715         return I;
1716     }
1717 
1718     // If src/dest is null, this memory intrinsic must be a noop.
1719     if (SrcIsUndefined || IsPointerUndefined(MI->getRawDest())) {
1720       Builder.CreateAssumption(Builder.CreateIsNull(MI->getLength()));
1721       return eraseInstFromFunction(CI);
1722     }
1723 
1724     if (Changed) return II;
1725   }
1726 
1727   // For fixed width vector result intrinsics, use the generic demanded vector
1728   // support.
1729   if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1730     auto VWidth = IIFVTy->getNumElements();
1731     APInt PoisonElts(VWidth, 0);
1732     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1733     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) {
1734       if (V != II)
1735         return replaceInstUsesWith(*II, V);
1736       return II;
1737     }
1738   }
1739 
1740   if (II->isCommutative()) {
1741     if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1742       replaceOperand(*II, 0, Pair->first);
1743       replaceOperand(*II, 1, Pair->second);
1744       return II;
1745     }
1746 
1747     if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1748       return NewCall;
1749   }
1750 
1751   // Unused constrained FP intrinsic calls may have declared side effect, which
1752   // prevents it from being removed. In some cases however the side effect is
1753   // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1754   // returns a replacement, the call may be removed.
1755   if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1756     if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1757       return eraseInstFromFunction(CI);
1758   }
1759 
1760   Intrinsic::ID IID = II->getIntrinsicID();
1761   switch (IID) {
1762   case Intrinsic::objectsize: {
1763     SmallVector<Instruction *> InsertedInstructions;
1764     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
1765                                        &InsertedInstructions)) {
1766       for (Instruction *Inserted : InsertedInstructions)
1767         Worklist.add(Inserted);
1768       return replaceInstUsesWith(CI, V);
1769     }
1770     return nullptr;
1771   }
1772   case Intrinsic::abs: {
1773     Value *IIOperand = II->getArgOperand(0);
1774     bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1775 
1776     // abs(-x) -> abs(x)
1777     // TODO: Copy nsw if it was present on the neg?
1778     Value *X;
1779     if (match(IIOperand, m_Neg(m_Value(X))))
1780       return replaceOperand(*II, 0, X);
1781     if (match(IIOperand, m_c_Select(m_Neg(m_Value(X)), m_Deferred(X))))
1782       return replaceOperand(*II, 0, X);
1783 
1784     Value *Y;
1785     // abs(a * abs(b)) -> abs(a * b)
1786     if (match(IIOperand,
1787               m_OneUse(m_c_Mul(m_Value(X),
1788                                m_Intrinsic<Intrinsic::abs>(m_Value(Y)))))) {
1789       bool NSW =
1790           cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
1791       auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y);
1792       return replaceOperand(*II, 0, XY);
1793     }
1794 
1795     if (std::optional<bool> Known =
1796             getKnownSignOrZero(IIOperand, SQ.getWithInstruction(II))) {
1797       // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
1798       // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
1799       if (!*Known)
1800         return replaceInstUsesWith(*II, IIOperand);
1801 
1802       // abs(x) -> -x if x < 0
1803       // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
1804       if (IntMinIsPoison)
1805         return BinaryOperator::CreateNSWNeg(IIOperand);
1806       return BinaryOperator::CreateNeg(IIOperand);
1807     }
1808 
1809     // abs (sext X) --> zext (abs X*)
1810     // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1811     if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1812       Value *NarrowAbs =
1813           Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1814       return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1815     }
1816 
1817     // Match a complicated way to check if a number is odd/even:
1818     // abs (srem X, 2) --> and X, 1
1819     const APInt *C;
1820     if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1821       return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1822 
1823     break;
1824   }
1825   case Intrinsic::umin: {
1826     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1827     // umin(x, 1) == zext(x != 0)
1828     if (match(I1, m_One())) {
1829       assert(II->getType()->getScalarSizeInBits() != 1 &&
1830              "Expected simplify of umin with max constant");
1831       Value *Zero = Constant::getNullValue(I0->getType());
1832       Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1833       return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1834     }
1835     // umin(cttz(x), const) --> cttz(x | (1 << const))
1836     if (Value *FoldedCttz =
1837             foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::cttz>(
1838                 I0, I1, DL, Builder))
1839       return replaceInstUsesWith(*II, FoldedCttz);
1840     // umin(ctlz(x), const) --> ctlz(x | (SignedMin >> const))
1841     if (Value *FoldedCtlz =
1842             foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::ctlz>(
1843                 I0, I1, DL, Builder))
1844       return replaceInstUsesWith(*II, FoldedCtlz);
1845     [[fallthrough]];
1846   }
1847   case Intrinsic::umax: {
1848     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1849     Value *X, *Y;
1850     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1851         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1852       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1853       return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1854     }
1855     Constant *C;
1856     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1857         I0->hasOneUse()) {
1858       if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) {
1859         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1860         return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1861       }
1862     }
1863     // If C is not 0:
1864     //   umax(nuw_shl(x, C), x + 1) -> x == 0 ? 1 : nuw_shl(x, C)
1865     // If C is not 0 or 1:
1866     //   umax(nuw_mul(x, C), x + 1) -> x == 0 ? 1 : nuw_mul(x, C)
1867     auto foldMaxMulShift = [&](Value *A, Value *B) -> Instruction * {
1868       const APInt *C;
1869       Value *X;
1870       if (!match(A, m_NUWShl(m_Value(X), m_APInt(C))) &&
1871           !(match(A, m_NUWMul(m_Value(X), m_APInt(C))) && !C->isOne()))
1872         return nullptr;
1873       if (C->isZero())
1874         return nullptr;
1875       if (!match(B, m_OneUse(m_Add(m_Specific(X), m_One()))))
1876         return nullptr;
1877 
1878       Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(X->getType(), 0));
1879       Value *NewSelect =
1880           Builder.CreateSelect(Cmp, ConstantInt::get(X->getType(), 1), A);
1881       return replaceInstUsesWith(*II, NewSelect);
1882     };
1883 
1884     if (IID == Intrinsic::umax) {
1885       if (Instruction *I = foldMaxMulShift(I0, I1))
1886         return I;
1887       if (Instruction *I = foldMaxMulShift(I1, I0))
1888         return I;
1889     }
1890     // If both operands of unsigned min/max are sign-extended, it is still ok
1891     // to narrow the operation.
1892     [[fallthrough]];
1893   }
1894   case Intrinsic::smax:
1895   case Intrinsic::smin: {
1896     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1897     Value *X, *Y;
1898     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1899         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1900       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1901       return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1902     }
1903 
1904     Constant *C;
1905     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1906         I0->hasOneUse()) {
1907       if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) {
1908         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1909         return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1910       }
1911     }
1912 
1913     // umin(i1 X, i1 Y) -> and i1 X, Y
1914     // smax(i1 X, i1 Y) -> and i1 X, Y
1915     if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
1916         II->getType()->isIntOrIntVectorTy(1)) {
1917       return BinaryOperator::CreateAnd(I0, I1);
1918     }
1919 
1920     // umax(i1 X, i1 Y) -> or i1 X, Y
1921     // smin(i1 X, i1 Y) -> or i1 X, Y
1922     if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
1923         II->getType()->isIntOrIntVectorTy(1)) {
1924       return BinaryOperator::CreateOr(I0, I1);
1925     }
1926 
1927     if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1928       // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1929       // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1930       // TODO: Canonicalize neg after min/max if I1 is constant.
1931       if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1932           (I0->hasOneUse() || I1->hasOneUse())) {
1933         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1934         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1935         return BinaryOperator::CreateNSWNeg(InvMaxMin);
1936       }
1937     }
1938 
1939     // (umax X, (xor X, Pow2))
1940     //      -> (or X, Pow2)
1941     // (umin X, (xor X, Pow2))
1942     //      -> (and X, ~Pow2)
1943     // (smax X, (xor X, Pos_Pow2))
1944     //      -> (or X, Pos_Pow2)
1945     // (smin X, (xor X, Pos_Pow2))
1946     //      -> (and X, ~Pos_Pow2)
1947     // (smax X, (xor X, Neg_Pow2))
1948     //      -> (and X, ~Neg_Pow2)
1949     // (smin X, (xor X, Neg_Pow2))
1950     //      -> (or X, Neg_Pow2)
1951     if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
1952          match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
1953         isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
1954       bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
1955       bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
1956 
1957       if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1958         auto KnownSign = getKnownSign(X, SQ.getWithInstruction(II));
1959         if (KnownSign == std::nullopt) {
1960           UseOr = false;
1961           UseAndN = false;
1962         } else if (*KnownSign /* true is Signed. */) {
1963           UseOr ^= true;
1964           UseAndN ^= true;
1965           Type *Ty = I0->getType();
1966           // Negative power of 2 must be IntMin. It's possible to be able to
1967           // prove negative / power of 2 without actually having known bits, so
1968           // just get the value by hand.
1969           X = Constant::getIntegerValue(
1970               Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
1971         }
1972       }
1973       if (UseOr)
1974         return BinaryOperator::CreateOr(I0, X);
1975       else if (UseAndN)
1976         return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
1977     }
1978 
1979     // If we can eliminate ~A and Y is free to invert:
1980     // max ~A, Y --> ~(min A, ~Y)
1981     //
1982     // Examples:
1983     // max ~A, ~Y --> ~(min A, Y)
1984     // max ~A, C --> ~(min A, ~C)
1985     // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1986     auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1987       Value *A;
1988       if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1989           !isFreeToInvert(A, A->hasOneUse())) {
1990         if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) {
1991           Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1992           Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1993           return BinaryOperator::CreateNot(InvMaxMin);
1994         }
1995       }
1996       return nullptr;
1997     };
1998 
1999     if (Instruction *I = moveNotAfterMinMax(I0, I1))
2000       return I;
2001     if (Instruction *I = moveNotAfterMinMax(I1, I0))
2002       return I;
2003 
2004     if (Instruction *I = moveAddAfterMinMax(II, Builder))
2005       return I;
2006 
2007     // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C
2008     const APInt *RHSC;
2009     if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) &&
2010         match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC)))))
2011       return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y),
2012                                        ConstantInt::get(II->getType(), *RHSC));
2013 
2014     // smax(X, -X) --> abs(X)
2015     // smin(X, -X) --> -abs(X)
2016     // umax(X, -X) --> -abs(X)
2017     // umin(X, -X) --> abs(X)
2018     if (isKnownNegation(I0, I1)) {
2019       // We can choose either operand as the input to abs(), but if we can
2020       // eliminate the only use of a value, that's better for subsequent
2021       // transforms/analysis.
2022       if (I0->hasOneUse() && !I1->hasOneUse())
2023         std::swap(I0, I1);
2024 
2025       // This is some variant of abs(). See if we can propagate 'nsw' to the abs
2026       // operation and potentially its negation.
2027       bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
2028       Value *Abs = Builder.CreateBinaryIntrinsic(
2029           Intrinsic::abs, I0,
2030           ConstantInt::getBool(II->getContext(), IntMinIsPoison));
2031 
2032       // We don't have a "nabs" intrinsic, so negate if needed based on the
2033       // max/min operation.
2034       if (IID == Intrinsic::smin || IID == Intrinsic::umax)
2035         Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison);
2036       return replaceInstUsesWith(CI, Abs);
2037     }
2038 
2039     if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
2040       return Sel;
2041 
2042     if (Instruction *SAdd = matchSAddSubSat(*II))
2043       return SAdd;
2044 
2045     if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ))
2046       return replaceInstUsesWith(*II, NewMinMax);
2047 
2048     if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
2049       return R;
2050 
2051     if (Instruction *NewMinMax = factorizeMinMaxTree(II))
2052        return NewMinMax;
2053 
2054     // Try to fold minmax with constant RHS based on range information
2055     if (match(I1, m_APIntAllowPoison(RHSC))) {
2056       ICmpInst::Predicate Pred =
2057           ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
2058       bool IsSigned = MinMaxIntrinsic::isSigned(IID);
2059       ConstantRange LHS_CR = computeConstantRangeIncludingKnownBits(
2060           I0, IsSigned, SQ.getWithInstruction(II));
2061       if (!LHS_CR.isFullSet()) {
2062         if (LHS_CR.icmp(Pred, *RHSC))
2063           return replaceInstUsesWith(*II, I0);
2064         if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC))
2065           return replaceInstUsesWith(*II,
2066                                      ConstantInt::get(II->getType(), *RHSC));
2067       }
2068     }
2069 
2070     if (Value *V = foldIntrinsicUsingDistributiveLaws(II, Builder))
2071       return replaceInstUsesWith(*II, V);
2072 
2073     break;
2074   }
2075   case Intrinsic::scmp: {
2076     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2077     Value *LHS, *RHS;
2078     if (match(I0, m_NSWSub(m_Value(LHS), m_Value(RHS))) && match(I1, m_Zero()))
2079       return replaceInstUsesWith(
2080           CI,
2081           Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {LHS, RHS}));
2082     break;
2083   }
2084   case Intrinsic::bitreverse: {
2085     Value *IIOperand = II->getArgOperand(0);
2086     // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
2087     Value *X;
2088     if (match(IIOperand, m_ZExt(m_Value(X))) &&
2089         X->getType()->isIntOrIntVectorTy(1)) {
2090       Type *Ty = II->getType();
2091       APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
2092       return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
2093                                 ConstantInt::getNullValue(Ty));
2094     }
2095 
2096     if (Instruction *crossLogicOpFold =
2097         foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder))
2098       return crossLogicOpFold;
2099 
2100     break;
2101   }
2102   case Intrinsic::bswap: {
2103     Value *IIOperand = II->getArgOperand(0);
2104 
2105     // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
2106     // inverse-shift-of-bswap:
2107     // bswap (shl X, Y) --> lshr (bswap X), Y
2108     // bswap (lshr X, Y) --> shl (bswap X), Y
2109     Value *X, *Y;
2110     if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
2111       unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
2112       if (MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
2113         Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
2114         BinaryOperator::BinaryOps InverseShift =
2115             cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
2116                 ? Instruction::LShr
2117                 : Instruction::Shl;
2118         return BinaryOperator::Create(InverseShift, NewSwap, Y);
2119       }
2120     }
2121 
2122     KnownBits Known = computeKnownBits(IIOperand, 0, II);
2123     uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
2124     uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
2125     unsigned BW = Known.getBitWidth();
2126 
2127     // bswap(x) -> shift(x) if x has exactly one "active byte"
2128     if (BW - LZ - TZ == 8) {
2129       assert(LZ != TZ && "active byte cannot be in the middle");
2130       if (LZ > TZ)  // -> shl(x) if the "active byte" is in the low part of x
2131         return BinaryOperator::CreateNUWShl(
2132             IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
2133       // -> lshr(x) if the "active byte" is in the high part of x
2134       return BinaryOperator::CreateExactLShr(
2135             IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
2136     }
2137 
2138     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
2139     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
2140       unsigned C = X->getType()->getScalarSizeInBits() - BW;
2141       Value *CV = ConstantInt::get(X->getType(), C);
2142       Value *V = Builder.CreateLShr(X, CV);
2143       return new TruncInst(V, IIOperand->getType());
2144     }
2145 
2146     if (Instruction *crossLogicOpFold =
2147             foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) {
2148       return crossLogicOpFold;
2149     }
2150 
2151     // Try to fold into bitreverse if bswap is the root of the expression tree.
2152     if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false,
2153                                                     /*MatchBitReversals*/ true))
2154       return BitOp;
2155     break;
2156   }
2157   case Intrinsic::masked_load:
2158     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
2159       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
2160     break;
2161   case Intrinsic::masked_store:
2162     return simplifyMaskedStore(*II);
2163   case Intrinsic::masked_gather:
2164     return simplifyMaskedGather(*II);
2165   case Intrinsic::masked_scatter:
2166     return simplifyMaskedScatter(*II);
2167   case Intrinsic::launder_invariant_group:
2168   case Intrinsic::strip_invariant_group:
2169     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
2170       return replaceInstUsesWith(*II, SkippedBarrier);
2171     break;
2172   case Intrinsic::powi:
2173     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2174       // 0 and 1 are handled in instsimplify
2175       // powi(x, -1) -> 1/x
2176       if (Power->isMinusOne())
2177         return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
2178                                              II->getArgOperand(0), II);
2179       // powi(x, 2) -> x*x
2180       if (Power->equalsInt(2))
2181         return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
2182                                              II->getArgOperand(0), II);
2183 
2184       if (!Power->getValue()[0]) {
2185         Value *X;
2186         // If power is even:
2187         // powi(-x, p) -> powi(x, p)
2188         // powi(fabs(x), p) -> powi(x, p)
2189         // powi(copysign(x, y), p) -> powi(x, p)
2190         if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
2191             match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
2192             match(II->getArgOperand(0),
2193                   m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
2194           return replaceOperand(*II, 0, X);
2195       }
2196     }
2197     break;
2198 
2199   case Intrinsic::cttz:
2200   case Intrinsic::ctlz:
2201     if (auto *I = foldCttzCtlz(*II, *this))
2202       return I;
2203     break;
2204 
2205   case Intrinsic::ctpop:
2206     if (auto *I = foldCtpop(*II, *this))
2207       return I;
2208     break;
2209 
2210   case Intrinsic::fshl:
2211   case Intrinsic::fshr: {
2212     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
2213     Type *Ty = II->getType();
2214     unsigned BitWidth = Ty->getScalarSizeInBits();
2215     Constant *ShAmtC;
2216     if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
2217       // Canonicalize a shift amount constant operand to modulo the bit-width.
2218       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
2219       Constant *ModuloC =
2220           ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
2221       if (!ModuloC)
2222         return nullptr;
2223       if (ModuloC != ShAmtC)
2224         return replaceOperand(*II, 2, ModuloC);
2225 
2226       assert(match(ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, WidthC,
2227                                                    ShAmtC, DL),
2228                    m_One()) &&
2229              "Shift amount expected to be modulo bitwidth");
2230 
2231       // Canonicalize funnel shift right by constant to funnel shift left. This
2232       // is not entirely arbitrary. For historical reasons, the backend may
2233       // recognize rotate left patterns but miss rotate right patterns.
2234       if (IID == Intrinsic::fshr) {
2235         // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero.
2236         if (!isKnownNonZero(ShAmtC, SQ.getWithInstruction(II)))
2237           return nullptr;
2238 
2239         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
2240         Module *Mod = II->getModule();
2241         Function *Fshl =
2242             Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::fshl, Ty);
2243         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
2244       }
2245       assert(IID == Intrinsic::fshl &&
2246              "All funnel shifts by simple constants should go left");
2247 
2248       // fshl(X, 0, C) --> shl X, C
2249       // fshl(X, undef, C) --> shl X, C
2250       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
2251         return BinaryOperator::CreateShl(Op0, ShAmtC);
2252 
2253       // fshl(0, X, C) --> lshr X, (BW-C)
2254       // fshl(undef, X, C) --> lshr X, (BW-C)
2255       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
2256         return BinaryOperator::CreateLShr(Op1,
2257                                           ConstantExpr::getSub(WidthC, ShAmtC));
2258 
2259       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2260       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
2261         Module *Mod = II->getModule();
2262         Function *Bswap =
2263             Intrinsic::getOrInsertDeclaration(Mod, Intrinsic::bswap, Ty);
2264         return CallInst::Create(Bswap, { Op0 });
2265       }
2266       if (Instruction *BitOp =
2267               matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
2268                                      /*MatchBitReversals*/ true))
2269         return BitOp;
2270     }
2271 
2272     // fshl(X, 0, Y) --> shl(X, and(Y, BitWidth - 1)) if bitwidth is a
2273     // power-of-2
2274     if (IID == Intrinsic::fshl && isPowerOf2_32(BitWidth) &&
2275         match(Op1, m_ZeroInt())) {
2276       Value *Op2 = II->getArgOperand(2);
2277       Value *And = Builder.CreateAnd(Op2, ConstantInt::get(Ty, BitWidth - 1));
2278       return BinaryOperator::CreateShl(Op0, And);
2279     }
2280 
2281     // Left or right might be masked.
2282     if (SimplifyDemandedInstructionBits(*II))
2283       return &CI;
2284 
2285     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2286     // so only the low bits of the shift amount are demanded if the bitwidth is
2287     // a power-of-2.
2288     if (!isPowerOf2_32(BitWidth))
2289       break;
2290     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
2291     KnownBits Op2Known(BitWidth);
2292     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2293       return &CI;
2294     break;
2295   }
2296   case Intrinsic::ptrmask: {
2297     unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2298     KnownBits Known(BitWidth);
2299     if (SimplifyDemandedInstructionBits(*II, Known))
2300       return II;
2301 
2302     Value *InnerPtr, *InnerMask;
2303     bool Changed = false;
2304     // Combine:
2305     // (ptrmask (ptrmask p, A), B)
2306     //    -> (ptrmask p, (and A, B))
2307     if (match(II->getArgOperand(0),
2308               m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr),
2309                                                        m_Value(InnerMask))))) {
2310       assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2311              "Mask types must match");
2312       // TODO: If InnerMask == Op1, we could copy attributes from inner
2313       // callsite -> outer callsite.
2314       Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2315       replaceOperand(CI, 0, InnerPtr);
2316       replaceOperand(CI, 1, NewMask);
2317       Changed = true;
2318     }
2319 
2320     // See if we can deduce non-null.
2321     if (!CI.hasRetAttr(Attribute::NonNull) &&
2322         (Known.isNonZero() ||
2323          isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) {
2324       CI.addRetAttr(Attribute::NonNull);
2325       Changed = true;
2326     }
2327 
2328     unsigned NewAlignmentLog =
2329         std::min(Value::MaxAlignmentExponent,
2330                  std::min(BitWidth - 1, Known.countMinTrailingZeros()));
2331     // Known bits will capture if we had alignment information associated with
2332     // the pointer argument.
2333     if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) {
2334       CI.addRetAttr(Attribute::getWithAlignment(
2335           CI.getContext(), Align(uint64_t(1) << NewAlignmentLog)));
2336       Changed = true;
2337     }
2338     if (Changed)
2339       return &CI;
2340     break;
2341   }
2342   case Intrinsic::uadd_with_overflow:
2343   case Intrinsic::sadd_with_overflow: {
2344     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2345       return I;
2346 
2347     // Given 2 constant operands whose sum does not overflow:
2348     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2349     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2350     Value *X;
2351     const APInt *C0, *C1;
2352     Value *Arg0 = II->getArgOperand(0);
2353     Value *Arg1 = II->getArgOperand(1);
2354     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2355     bool HasNWAdd = IsSigned
2356                         ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0)))
2357                         : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0)));
2358     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2359       bool Overflow;
2360       APInt NewC =
2361           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2362       if (!Overflow)
2363         return replaceInstUsesWith(
2364             *II, Builder.CreateBinaryIntrinsic(
2365                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2366     }
2367     break;
2368   }
2369 
2370   case Intrinsic::umul_with_overflow:
2371   case Intrinsic::smul_with_overflow:
2372   case Intrinsic::usub_with_overflow:
2373     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2374       return I;
2375     break;
2376 
2377   case Intrinsic::ssub_with_overflow: {
2378     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2379       return I;
2380 
2381     Constant *C;
2382     Value *Arg0 = II->getArgOperand(0);
2383     Value *Arg1 = II->getArgOperand(1);
2384     // Given a constant C that is not the minimum signed value
2385     // for an integer of a given bit width:
2386     //
2387     // ssubo X, C -> saddo X, -C
2388     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2389       Value *NegVal = ConstantExpr::getNeg(C);
2390       // Build a saddo call that is equivalent to the discovered
2391       // ssubo call.
2392       return replaceInstUsesWith(
2393           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2394                                              Arg0, NegVal));
2395     }
2396 
2397     break;
2398   }
2399 
2400   case Intrinsic::uadd_sat:
2401   case Intrinsic::sadd_sat:
2402   case Intrinsic::usub_sat:
2403   case Intrinsic::ssub_sat: {
2404     SaturatingInst *SI = cast<SaturatingInst>(II);
2405     Type *Ty = SI->getType();
2406     Value *Arg0 = SI->getLHS();
2407     Value *Arg1 = SI->getRHS();
2408 
2409     // Make use of known overflow information.
2410     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2411                                         Arg0, Arg1, SI);
2412     switch (OR) {
2413       case OverflowResult::MayOverflow:
2414         break;
2415       case OverflowResult::NeverOverflows:
2416         if (SI->isSigned())
2417           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2418         else
2419           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2420       case OverflowResult::AlwaysOverflowsLow: {
2421         unsigned BitWidth = Ty->getScalarSizeInBits();
2422         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2423         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2424       }
2425       case OverflowResult::AlwaysOverflowsHigh: {
2426         unsigned BitWidth = Ty->getScalarSizeInBits();
2427         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2428         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2429       }
2430     }
2431 
2432     // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A)
2433     // which after that:
2434     // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C
2435     // usub_sat((sub nuw C, A), C1) -> 0 otherwise
2436     Constant *C, *C1;
2437     Value *A;
2438     if (IID == Intrinsic::usub_sat &&
2439         match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) &&
2440         match(Arg1, m_ImmConstant(C1))) {
2441       auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2442       auto *NewSub =
2443           Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2444       return replaceInstUsesWith(*SI, NewSub);
2445     }
2446 
2447     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2448     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2449         C->isNotMinSignedValue()) {
2450       Value *NegVal = ConstantExpr::getNeg(C);
2451       return replaceInstUsesWith(
2452           *II, Builder.CreateBinaryIntrinsic(
2453               Intrinsic::sadd_sat, Arg0, NegVal));
2454     }
2455 
2456     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2457     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2458     // if Val and Val2 have the same sign
2459     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2460       Value *X;
2461       const APInt *Val, *Val2;
2462       APInt NewVal;
2463       bool IsUnsigned =
2464           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2465       if (Other->getIntrinsicID() == IID &&
2466           match(Arg1, m_APInt(Val)) &&
2467           match(Other->getArgOperand(0), m_Value(X)) &&
2468           match(Other->getArgOperand(1), m_APInt(Val2))) {
2469         if (IsUnsigned)
2470           NewVal = Val->uadd_sat(*Val2);
2471         else if (Val->isNonNegative() == Val2->isNonNegative()) {
2472           bool Overflow;
2473           NewVal = Val->sadd_ov(*Val2, Overflow);
2474           if (Overflow) {
2475             // Both adds together may add more than SignedMaxValue
2476             // without saturating the final result.
2477             break;
2478           }
2479         } else {
2480           // Cannot fold saturated addition with different signs.
2481           break;
2482         }
2483 
2484         return replaceInstUsesWith(
2485             *II, Builder.CreateBinaryIntrinsic(
2486                      IID, X, ConstantInt::get(II->getType(), NewVal)));
2487       }
2488     }
2489     break;
2490   }
2491 
2492   case Intrinsic::minnum:
2493   case Intrinsic::maxnum:
2494   case Intrinsic::minimum:
2495   case Intrinsic::maximum: {
2496     Value *Arg0 = II->getArgOperand(0);
2497     Value *Arg1 = II->getArgOperand(1);
2498     Value *X, *Y;
2499     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2500         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2501       // If both operands are negated, invert the call and negate the result:
2502       // min(-X, -Y) --> -(max(X, Y))
2503       // max(-X, -Y) --> -(min(X, Y))
2504       Intrinsic::ID NewIID;
2505       switch (IID) {
2506       case Intrinsic::maxnum:
2507         NewIID = Intrinsic::minnum;
2508         break;
2509       case Intrinsic::minnum:
2510         NewIID = Intrinsic::maxnum;
2511         break;
2512       case Intrinsic::maximum:
2513         NewIID = Intrinsic::minimum;
2514         break;
2515       case Intrinsic::minimum:
2516         NewIID = Intrinsic::maximum;
2517         break;
2518       default:
2519         llvm_unreachable("unexpected intrinsic ID");
2520       }
2521       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2522       Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2523       FNeg->copyIRFlags(II);
2524       return FNeg;
2525     }
2526 
2527     // m(m(X, C2), C1) -> m(X, C)
2528     const APFloat *C1, *C2;
2529     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2530       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2531           ((match(M->getArgOperand(0), m_Value(X)) &&
2532             match(M->getArgOperand(1), m_APFloat(C2))) ||
2533            (match(M->getArgOperand(1), m_Value(X)) &&
2534             match(M->getArgOperand(0), m_APFloat(C2))))) {
2535         APFloat Res(0.0);
2536         switch (IID) {
2537         case Intrinsic::maxnum:
2538           Res = maxnum(*C1, *C2);
2539           break;
2540         case Intrinsic::minnum:
2541           Res = minnum(*C1, *C2);
2542           break;
2543         case Intrinsic::maximum:
2544           Res = maximum(*C1, *C2);
2545           break;
2546         case Intrinsic::minimum:
2547           Res = minimum(*C1, *C2);
2548           break;
2549         default:
2550           llvm_unreachable("unexpected intrinsic ID");
2551         }
2552         // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2553         //       was a simplification (so Arg0 and its original flags could
2554         //       propagate?)
2555         Value *V = Builder.CreateBinaryIntrinsic(
2556             IID, X, ConstantFP::get(Arg0->getType(), Res),
2557             FMFSource::intersect(II, M));
2558         return replaceInstUsesWith(*II, V);
2559       }
2560     }
2561 
2562     // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2563     if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2564         match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2565         X->getType() == Y->getType()) {
2566       Value *NewCall =
2567           Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2568       return new FPExtInst(NewCall, II->getType());
2569     }
2570 
2571     // max X, -X --> fabs X
2572     // min X, -X --> -(fabs X)
2573     // TODO: Remove one-use limitation? That is obviously better for max,
2574     // hence why we don't check for one-use for that. However,
2575     // it would be an extra instruction for min (fnabs), but
2576     // that is still likely better for analysis and codegen.
2577     auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2578       if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X)))
2579         return Op0->hasOneUse() ||
2580                (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2581       return false;
2582     };
2583 
2584     if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2585       Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2586       if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2587         R = Builder.CreateFNegFMF(R, II);
2588       return replaceInstUsesWith(*II, R);
2589     }
2590 
2591     break;
2592   }
2593   case Intrinsic::matrix_multiply: {
2594     // Optimize negation in matrix multiplication.
2595 
2596     // -A * -B -> A * B
2597     Value *A, *B;
2598     if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2599         match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2600       replaceOperand(*II, 0, A);
2601       replaceOperand(*II, 1, B);
2602       return II;
2603     }
2604 
2605     Value *Op0 = II->getOperand(0);
2606     Value *Op1 = II->getOperand(1);
2607     Value *OpNotNeg, *NegatedOp;
2608     unsigned NegatedOpArg, OtherOpArg;
2609     if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2610       NegatedOp = Op0;
2611       NegatedOpArg = 0;
2612       OtherOpArg = 1;
2613     } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2614       NegatedOp = Op1;
2615       NegatedOpArg = 1;
2616       OtherOpArg = 0;
2617     } else
2618       // Multiplication doesn't have a negated operand.
2619       break;
2620 
2621     // Only optimize if the negated operand has only one use.
2622     if (!NegatedOp->hasOneUse())
2623       break;
2624 
2625     Value *OtherOp = II->getOperand(OtherOpArg);
2626     VectorType *RetTy = cast<VectorType>(II->getType());
2627     VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2628     VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2629     ElementCount NegatedCount = NegatedOpTy->getElementCount();
2630     ElementCount OtherCount = OtherOpTy->getElementCount();
2631     ElementCount RetCount = RetTy->getElementCount();
2632     // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2633     if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2634         ElementCount::isKnownLT(OtherCount, RetCount)) {
2635       Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2636       replaceOperand(*II, NegatedOpArg, OpNotNeg);
2637       replaceOperand(*II, OtherOpArg, InverseOtherOp);
2638       return II;
2639     }
2640     // (-A) * B -> -(A * B), if it is cheaper to negate the result
2641     if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2642       SmallVector<Value *, 5> NewArgs(II->args());
2643       NewArgs[NegatedOpArg] = OpNotNeg;
2644       Instruction *NewMul =
2645           Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2646       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2647     }
2648     break;
2649   }
2650   case Intrinsic::fmuladd: {
2651     // Try to simplify the underlying FMul.
2652     if (Value *V =
2653             simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2654                              II->getFastMathFlags(), SQ.getWithInstruction(II)))
2655       return BinaryOperator::CreateFAddFMF(V, II->getArgOperand(2),
2656                                            II->getFastMathFlags());
2657 
2658     [[fallthrough]];
2659   }
2660   case Intrinsic::fma: {
2661     // fma fneg(x), fneg(y), z -> fma x, y, z
2662     Value *Src0 = II->getArgOperand(0);
2663     Value *Src1 = II->getArgOperand(1);
2664     Value *Src2 = II->getArgOperand(2);
2665     Value *X, *Y;
2666     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2667       replaceOperand(*II, 0, X);
2668       replaceOperand(*II, 1, Y);
2669       return II;
2670     }
2671 
2672     // fma fabs(x), fabs(x), z -> fma x, x, z
2673     if (match(Src0, m_FAbs(m_Value(X))) &&
2674         match(Src1, m_FAbs(m_Specific(X)))) {
2675       replaceOperand(*II, 0, X);
2676       replaceOperand(*II, 1, X);
2677       return II;
2678     }
2679 
2680     // Try to simplify the underlying FMul. We can only apply simplifications
2681     // that do not require rounding.
2682     if (Value *V = simplifyFMAFMul(Src0, Src1, II->getFastMathFlags(),
2683                                    SQ.getWithInstruction(II)))
2684       return BinaryOperator::CreateFAddFMF(V, Src2, II->getFastMathFlags());
2685 
2686     // fma x, y, 0 -> fmul x, y
2687     // This is always valid for -0.0, but requires nsz for +0.0 as
2688     // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2689     if (match(Src2, m_NegZeroFP()) ||
2690         (match(Src2, m_PosZeroFP()) && II->getFastMathFlags().noSignedZeros()))
2691       return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2692 
2693     // fma x, -1.0, y -> fsub y, x
2694     if (match(Src1, m_SpecificFP(-1.0)))
2695       return BinaryOperator::CreateFSubFMF(Src2, Src0, II);
2696 
2697     break;
2698   }
2699   case Intrinsic::copysign: {
2700     Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
2701     if (std::optional<bool> KnownSignBit = computeKnownFPSignBit(
2702             Sign, /*Depth=*/0, getSimplifyQuery().getWithInstruction(II))) {
2703       if (*KnownSignBit) {
2704         // If we know that the sign argument is negative, reduce to FNABS:
2705         // copysign Mag, -Sign --> fneg (fabs Mag)
2706         Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2707         return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
2708       }
2709 
2710       // If we know that the sign argument is positive, reduce to FABS:
2711       // copysign Mag, +Sign --> fabs Mag
2712       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2713       return replaceInstUsesWith(*II, Fabs);
2714     }
2715 
2716     // Propagate sign argument through nested calls:
2717     // copysign Mag, (copysign ?, X) --> copysign Mag, X
2718     Value *X;
2719     if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) {
2720       Value *CopySign =
2721           Builder.CreateCopySign(Mag, X, FMFSource::intersect(II, Sign));
2722       return replaceInstUsesWith(*II, CopySign);
2723     }
2724 
2725     // Clear sign-bit of constant magnitude:
2726     // copysign -MagC, X --> copysign MagC, X
2727     // TODO: Support constant folding for fabs
2728     const APFloat *MagC;
2729     if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) {
2730       APFloat PosMagC = *MagC;
2731       PosMagC.clearSign();
2732       return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC));
2733     }
2734 
2735     // Peek through changes of magnitude's sign-bit. This call rewrites those:
2736     // copysign (fabs X), Sign --> copysign X, Sign
2737     // copysign (fneg X), Sign --> copysign X, Sign
2738     if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
2739       return replaceOperand(*II, 0, X);
2740 
2741     break;
2742   }
2743   case Intrinsic::fabs: {
2744     Value *Cond, *TVal, *FVal;
2745     Value *Arg = II->getArgOperand(0);
2746     Value *X;
2747     // fabs (-X) --> fabs (X)
2748     if (match(Arg, m_FNeg(m_Value(X)))) {
2749         CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2750         return replaceInstUsesWith(CI, Fabs);
2751     }
2752 
2753     if (match(Arg, m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
2754       // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
2755       if (Arg->hasOneUse() ? (isa<Constant>(TVal) || isa<Constant>(FVal))
2756                            : (isa<Constant>(TVal) && isa<Constant>(FVal))) {
2757         CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
2758         CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
2759         SelectInst *SI = SelectInst::Create(Cond, AbsT, AbsF);
2760         FastMathFlags FMF1 = II->getFastMathFlags();
2761         FastMathFlags FMF2 = cast<SelectInst>(Arg)->getFastMathFlags();
2762         FMF2.setNoSignedZeros(false);
2763         SI->setFastMathFlags(FMF1 | FMF2);
2764         return SI;
2765       }
2766       // fabs (select Cond, -FVal, FVal) --> fabs FVal
2767       if (match(TVal, m_FNeg(m_Specific(FVal))))
2768         return replaceOperand(*II, 0, FVal);
2769       // fabs (select Cond, TVal, -TVal) --> fabs TVal
2770       if (match(FVal, m_FNeg(m_Specific(TVal))))
2771         return replaceOperand(*II, 0, TVal);
2772     }
2773 
2774     Value *Magnitude, *Sign;
2775     if (match(II->getArgOperand(0),
2776               m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
2777       // fabs (copysign x, y) -> (fabs x)
2778       CallInst *AbsSign =
2779           Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude, II);
2780       return replaceInstUsesWith(*II, AbsSign);
2781     }
2782 
2783     [[fallthrough]];
2784   }
2785   case Intrinsic::ceil:
2786   case Intrinsic::floor:
2787   case Intrinsic::round:
2788   case Intrinsic::roundeven:
2789   case Intrinsic::nearbyint:
2790   case Intrinsic::rint:
2791   case Intrinsic::trunc: {
2792     Value *ExtSrc;
2793     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2794       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2795       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2796       return new FPExtInst(NarrowII, II->getType());
2797     }
2798     break;
2799   }
2800   case Intrinsic::cos:
2801   case Intrinsic::amdgcn_cos: {
2802     Value *X, *Sign;
2803     Value *Src = II->getArgOperand(0);
2804     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) ||
2805         match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) {
2806       // cos(-x) --> cos(x)
2807       // cos(fabs(x)) --> cos(x)
2808       // cos(copysign(x, y)) --> cos(x)
2809       return replaceOperand(*II, 0, X);
2810     }
2811     break;
2812   }
2813   case Intrinsic::sin:
2814   case Intrinsic::amdgcn_sin: {
2815     Value *X;
2816     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2817       // sin(-x) --> -sin(x)
2818       Value *NewSin = Builder.CreateUnaryIntrinsic(IID, X, II);
2819       return UnaryOperator::CreateFNegFMF(NewSin, II);
2820     }
2821     break;
2822   }
2823   case Intrinsic::ldexp: {
2824     // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
2825     //
2826     // The danger is if the first ldexp would overflow to infinity or underflow
2827     // to zero, but the combined exponent avoids it. We ignore this with
2828     // reassoc.
2829     //
2830     // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
2831     // it would just double down on the overflow/underflow which would occur
2832     // anyway.
2833     //
2834     // TODO: Could do better if we had range tracking for the input value
2835     // exponent. Also could broaden sign check to cover == 0 case.
2836     Value *Src = II->getArgOperand(0);
2837     Value *Exp = II->getArgOperand(1);
2838     Value *InnerSrc;
2839     Value *InnerExp;
2840     if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>(
2841                        m_Value(InnerSrc), m_Value(InnerExp)))) &&
2842         Exp->getType() == InnerExp->getType()) {
2843       FastMathFlags FMF = II->getFastMathFlags();
2844       FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
2845 
2846       if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
2847           signBitMustBeTheSame(Exp, InnerExp, SQ.getWithInstruction(II))) {
2848         // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
2849         // width.
2850         Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
2851         II->setArgOperand(1, NewExp);
2852         II->setFastMathFlags(InnerFlags); // Or the inner flags.
2853         return replaceOperand(*II, 0, InnerSrc);
2854       }
2855     }
2856 
2857     // ldexp(x, zext(i1 y)) -> fmul x, (select y, 2.0, 1.0)
2858     // ldexp(x, sext(i1 y)) -> fmul x, (select y, 0.5, 1.0)
2859     Value *ExtSrc;
2860     if (match(Exp, m_ZExt(m_Value(ExtSrc))) &&
2861         ExtSrc->getType()->getScalarSizeInBits() == 1) {
2862       Value *Select =
2863           Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0),
2864                                ConstantFP::get(II->getType(), 1.0));
2865       return BinaryOperator::CreateFMulFMF(Src, Select, II);
2866     }
2867     if (match(Exp, m_SExt(m_Value(ExtSrc))) &&
2868         ExtSrc->getType()->getScalarSizeInBits() == 1) {
2869       Value *Select =
2870           Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5),
2871                                ConstantFP::get(II->getType(), 1.0));
2872       return BinaryOperator::CreateFMulFMF(Src, Select, II);
2873     }
2874 
2875     // ldexp(x, c ? exp : 0) -> c ? ldexp(x, exp) : x
2876     // ldexp(x, c ? 0 : exp) -> c ? x : ldexp(x, exp)
2877     ///
2878     // TODO: If we cared, should insert a canonicalize for x
2879     Value *SelectCond, *SelectLHS, *SelectRHS;
2880     if (match(II->getArgOperand(1),
2881               m_OneUse(m_Select(m_Value(SelectCond), m_Value(SelectLHS),
2882                                 m_Value(SelectRHS))))) {
2883       Value *NewLdexp = nullptr;
2884       Value *Select = nullptr;
2885       if (match(SelectRHS, m_ZeroInt())) {
2886         NewLdexp = Builder.CreateLdexp(Src, SelectLHS, II);
2887         Select = Builder.CreateSelect(SelectCond, NewLdexp, Src);
2888       } else if (match(SelectLHS, m_ZeroInt())) {
2889         NewLdexp = Builder.CreateLdexp(Src, SelectRHS, II);
2890         Select = Builder.CreateSelect(SelectCond, Src, NewLdexp);
2891       }
2892 
2893       if (NewLdexp) {
2894         Select->takeName(II);
2895         return replaceInstUsesWith(*II, Select);
2896       }
2897     }
2898 
2899     break;
2900   }
2901   case Intrinsic::ptrauth_auth:
2902   case Intrinsic::ptrauth_resign: {
2903     // (sign|resign) + (auth|resign) can be folded by omitting the middle
2904     // sign+auth component if the key and discriminator match.
2905     bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
2906     Value *Ptr = II->getArgOperand(0);
2907     Value *Key = II->getArgOperand(1);
2908     Value *Disc = II->getArgOperand(2);
2909 
2910     // AuthKey will be the key we need to end up authenticating against in
2911     // whatever we replace this sequence with.
2912     Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
2913     if (const auto *CI = dyn_cast<CallBase>(Ptr)) {
2914       BasePtr = CI->getArgOperand(0);
2915       if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
2916         if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
2917           break;
2918       } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
2919         if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
2920           break;
2921         AuthKey = CI->getArgOperand(1);
2922         AuthDisc = CI->getArgOperand(2);
2923       } else
2924         break;
2925     } else if (const auto *PtrToInt = dyn_cast<PtrToIntOperator>(Ptr)) {
2926       // ptrauth constants are equivalent to a call to @llvm.ptrauth.sign for
2927       // our purposes, so check for that too.
2928       const auto *CPA = dyn_cast<ConstantPtrAuth>(PtrToInt->getOperand(0));
2929       if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL))
2930         break;
2931 
2932       // resign(ptrauth(p,ks,ds),ks,ds,kr,dr) -> ptrauth(p,kr,dr)
2933       if (NeedSign && isa<ConstantInt>(II->getArgOperand(4))) {
2934         auto *SignKey = cast<ConstantInt>(II->getArgOperand(3));
2935         auto *SignDisc = cast<ConstantInt>(II->getArgOperand(4));
2936         auto *SignAddrDisc = ConstantPointerNull::get(Builder.getPtrTy());
2937         auto *NewCPA = ConstantPtrAuth::get(CPA->getPointer(), SignKey,
2938                                             SignDisc, SignAddrDisc);
2939         replaceInstUsesWith(
2940             *II, ConstantExpr::getPointerCast(NewCPA, II->getType()));
2941         return eraseInstFromFunction(*II);
2942       }
2943 
2944       // auth(ptrauth(p,k,d),k,d) -> p
2945       BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType());
2946     } else
2947       break;
2948 
2949     unsigned NewIntrin;
2950     if (AuthKey && NeedSign) {
2951       // resign(0,1) + resign(1,2) = resign(0, 2)
2952       NewIntrin = Intrinsic::ptrauth_resign;
2953     } else if (AuthKey) {
2954       // resign(0,1) + auth(1) = auth(0)
2955       NewIntrin = Intrinsic::ptrauth_auth;
2956     } else if (NeedSign) {
2957       // sign(0) + resign(0, 1) = sign(1)
2958       NewIntrin = Intrinsic::ptrauth_sign;
2959     } else {
2960       // sign(0) + auth(0) = nop
2961       replaceInstUsesWith(*II, BasePtr);
2962       return eraseInstFromFunction(*II);
2963     }
2964 
2965     SmallVector<Value *, 4> CallArgs;
2966     CallArgs.push_back(BasePtr);
2967     if (AuthKey) {
2968       CallArgs.push_back(AuthKey);
2969       CallArgs.push_back(AuthDisc);
2970     }
2971 
2972     if (NeedSign) {
2973       CallArgs.push_back(II->getArgOperand(3));
2974       CallArgs.push_back(II->getArgOperand(4));
2975     }
2976 
2977     Function *NewFn =
2978         Intrinsic::getOrInsertDeclaration(II->getModule(), NewIntrin);
2979     return CallInst::Create(NewFn, CallArgs);
2980   }
2981   case Intrinsic::arm_neon_vtbl1:
2982   case Intrinsic::aarch64_neon_tbl1:
2983     if (Value *V = simplifyNeonTbl1(*II, Builder))
2984       return replaceInstUsesWith(*II, V);
2985     break;
2986 
2987   case Intrinsic::arm_neon_vmulls:
2988   case Intrinsic::arm_neon_vmullu:
2989   case Intrinsic::aarch64_neon_smull:
2990   case Intrinsic::aarch64_neon_umull: {
2991     Value *Arg0 = II->getArgOperand(0);
2992     Value *Arg1 = II->getArgOperand(1);
2993 
2994     // Handle mul by zero first:
2995     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2996       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
2997     }
2998 
2999     // Check for constant LHS & RHS - in this case we just simplify.
3000     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3001                  IID == Intrinsic::aarch64_neon_umull);
3002     VectorType *NewVT = cast<VectorType>(II->getType());
3003     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3004       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3005         Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
3006         Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
3007         return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
3008       }
3009 
3010       // Couldn't simplify - canonicalize constant to the RHS.
3011       std::swap(Arg0, Arg1);
3012     }
3013 
3014     // Handle mul by one:
3015     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3016       if (ConstantInt *Splat =
3017               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3018         if (Splat->isOne())
3019           return CastInst::CreateIntegerCast(Arg0, II->getType(),
3020                                              /*isSigned=*/!Zext);
3021 
3022     break;
3023   }
3024   case Intrinsic::arm_neon_aesd:
3025   case Intrinsic::arm_neon_aese:
3026   case Intrinsic::aarch64_crypto_aesd:
3027   case Intrinsic::aarch64_crypto_aese: {
3028     Value *DataArg = II->getArgOperand(0);
3029     Value *KeyArg  = II->getArgOperand(1);
3030 
3031     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3032     Value *Data, *Key;
3033     if (match(KeyArg, m_ZeroInt()) &&
3034         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3035       replaceOperand(*II, 0, Data);
3036       replaceOperand(*II, 1, Key);
3037       return II;
3038     }
3039     break;
3040   }
3041   case Intrinsic::hexagon_V6_vandvrt:
3042   case Intrinsic::hexagon_V6_vandvrt_128B: {
3043     // Simplify Q -> V -> Q conversion.
3044     if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3045       Intrinsic::ID ID0 = Op0->getIntrinsicID();
3046       if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
3047           ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
3048         break;
3049       Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
3050       uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
3051       uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
3052       // Check if every byte has common bits in Bytes and Mask.
3053       uint64_t C = Bytes1 & Mask1;
3054       if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
3055         return replaceInstUsesWith(*II, Op0->getArgOperand(0));
3056     }
3057     break;
3058   }
3059   case Intrinsic::stackrestore: {
3060     enum class ClassifyResult {
3061       None,
3062       Alloca,
3063       StackRestore,
3064       CallWithSideEffects,
3065     };
3066     auto Classify = [](const Instruction *I) {
3067       if (isa<AllocaInst>(I))
3068         return ClassifyResult::Alloca;
3069 
3070       if (auto *CI = dyn_cast<CallInst>(I)) {
3071         if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
3072           if (II->getIntrinsicID() == Intrinsic::stackrestore)
3073             return ClassifyResult::StackRestore;
3074 
3075           if (II->mayHaveSideEffects())
3076             return ClassifyResult::CallWithSideEffects;
3077         } else {
3078           // Consider all non-intrinsic calls to be side effects
3079           return ClassifyResult::CallWithSideEffects;
3080         }
3081       }
3082 
3083       return ClassifyResult::None;
3084     };
3085 
3086     // If the stacksave and the stackrestore are in the same BB, and there is
3087     // no intervening call, alloca, or stackrestore of a different stacksave,
3088     // remove the restore. This can happen when variable allocas are DCE'd.
3089     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3090       if (SS->getIntrinsicID() == Intrinsic::stacksave &&
3091           SS->getParent() == II->getParent()) {
3092         BasicBlock::iterator BI(SS);
3093         bool CannotRemove = false;
3094         for (++BI; &*BI != II; ++BI) {
3095           switch (Classify(&*BI)) {
3096           case ClassifyResult::None:
3097             // So far so good, look at next instructions.
3098             break;
3099 
3100           case ClassifyResult::StackRestore:
3101             // If we found an intervening stackrestore for a different
3102             // stacksave, we can't remove the stackrestore. Otherwise, continue.
3103             if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
3104               CannotRemove = true;
3105             break;
3106 
3107           case ClassifyResult::Alloca:
3108           case ClassifyResult::CallWithSideEffects:
3109             // If we found an alloca, a non-intrinsic call, or an intrinsic
3110             // call with side effects, we can't remove the stackrestore.
3111             CannotRemove = true;
3112             break;
3113           }
3114           if (CannotRemove)
3115             break;
3116         }
3117 
3118         if (!CannotRemove)
3119           return eraseInstFromFunction(CI);
3120       }
3121     }
3122 
3123     // Scan down this block to see if there is another stack restore in the
3124     // same block without an intervening call/alloca.
3125     BasicBlock::iterator BI(II);
3126     Instruction *TI = II->getParent()->getTerminator();
3127     bool CannotRemove = false;
3128     for (++BI; &*BI != TI; ++BI) {
3129       switch (Classify(&*BI)) {
3130       case ClassifyResult::None:
3131         // So far so good, look at next instructions.
3132         break;
3133 
3134       case ClassifyResult::StackRestore:
3135         // If there is a stackrestore below this one, remove this one.
3136         return eraseInstFromFunction(CI);
3137 
3138       case ClassifyResult::Alloca:
3139       case ClassifyResult::CallWithSideEffects:
3140         // If we found an alloca, a non-intrinsic call, or an intrinsic call
3141         // with side effects (such as llvm.stacksave and llvm.read_register),
3142         // we can't remove the stack restore.
3143         CannotRemove = true;
3144         break;
3145       }
3146       if (CannotRemove)
3147         break;
3148     }
3149 
3150     // If the stack restore is in a return, resume, or unwind block and if there
3151     // are no allocas or calls between the restore and the return, nuke the
3152     // restore.
3153     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3154       return eraseInstFromFunction(CI);
3155     break;
3156   }
3157   case Intrinsic::lifetime_end:
3158     // Asan needs to poison memory to detect invalid access which is possible
3159     // even for empty lifetime range.
3160     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3161         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3162         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3163       break;
3164 
3165     if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
3166           return I.getIntrinsicID() == Intrinsic::lifetime_start;
3167         }))
3168       return nullptr;
3169     break;
3170   case Intrinsic::assume: {
3171     Value *IIOperand = II->getArgOperand(0);
3172     SmallVector<OperandBundleDef, 4> OpBundles;
3173     II->getOperandBundlesAsDefs(OpBundles);
3174 
3175     /// This will remove the boolean Condition from the assume given as
3176     /// argument and remove the assume if it becomes useless.
3177     /// always returns nullptr for use as a return values.
3178     auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
3179       assert(isa<AssumeInst>(Assume));
3180       if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
3181         return eraseInstFromFunction(CI);
3182       replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
3183       return nullptr;
3184     };
3185     // Remove an assume if it is followed by an identical assume.
3186     // TODO: Do we need this? Unless there are conflicting assumptions, the
3187     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3188     Instruction *Next = II->getNextNonDebugInstruction();
3189     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3190       return RemoveConditionFromAssume(Next);
3191 
3192     // Canonicalize assume(a && b) -> assume(a); assume(b);
3193     // Note: New assumption intrinsics created here are registered by
3194     // the InstCombineIRInserter object.
3195     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3196     Value *AssumeIntrinsic = II->getCalledOperand();
3197     Value *A, *B;
3198     if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3199       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
3200                          II->getName());
3201       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3202       return eraseInstFromFunction(*II);
3203     }
3204     // assume(!(a || b)) -> assume(!a); assume(!b);
3205     if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
3206       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3207                          Builder.CreateNot(A), OpBundles, II->getName());
3208       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3209                          Builder.CreateNot(B), II->getName());
3210       return eraseInstFromFunction(*II);
3211     }
3212 
3213     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3214     // (if assume is valid at the load)
3215     Instruction *LHS;
3216     if (match(IIOperand, m_SpecificICmp(ICmpInst::ICMP_NE, m_Instruction(LHS),
3217                                         m_Zero())) &&
3218         LHS->getOpcode() == Instruction::Load &&
3219         LHS->getType()->isPointerTy() &&
3220         isValidAssumeForContext(II, LHS, &DT)) {
3221       MDNode *MD = MDNode::get(II->getContext(), {});
3222       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3223       LHS->setMetadata(LLVMContext::MD_noundef, MD);
3224       return RemoveConditionFromAssume(II);
3225 
3226       // TODO: apply nonnull return attributes to calls and invokes
3227       // TODO: apply range metadata for range check patterns?
3228     }
3229 
3230     // Separate storage assumptions apply to the underlying allocations, not any
3231     // particular pointer within them. When evaluating the hints for AA purposes
3232     // we getUnderlyingObject them; by precomputing the answers here we can
3233     // avoid having to do so repeatedly there.
3234     for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3235       OperandBundleUse OBU = II->getOperandBundleAt(Idx);
3236       if (OBU.getTagName() == "separate_storage") {
3237         assert(OBU.Inputs.size() == 2);
3238         auto MaybeSimplifyHint = [&](const Use &U) {
3239           Value *Hint = U.get();
3240           // Not having a limit is safe because InstCombine removes unreachable
3241           // code.
3242           Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
3243           if (Hint != UnderlyingObject)
3244             replaceUse(const_cast<Use &>(U), UnderlyingObject);
3245         };
3246         MaybeSimplifyHint(OBU.Inputs[0]);
3247         MaybeSimplifyHint(OBU.Inputs[1]);
3248       }
3249     }
3250 
3251     // Convert nonnull assume like:
3252     // %A = icmp ne i32* %PTR, null
3253     // call void @llvm.assume(i1 %A)
3254     // into
3255     // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
3256     if (EnableKnowledgeRetention &&
3257         match(IIOperand,
3258               m_SpecificICmp(ICmpInst::ICMP_NE, m_Value(A), m_Zero())) &&
3259         A->getType()->isPointerTy()) {
3260       if (auto *Replacement = buildAssumeFromKnowledge(
3261               {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
3262 
3263         Replacement->insertBefore(Next->getIterator());
3264         AC.registerAssumption(Replacement);
3265         return RemoveConditionFromAssume(II);
3266       }
3267     }
3268 
3269     // Convert alignment assume like:
3270     // %B = ptrtoint i32* %A to i64
3271     // %C = and i64 %B, Constant
3272     // %D = icmp eq i64 %C, 0
3273     // call void @llvm.assume(i1 %D)
3274     // into
3275     // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64  Constant + 1)]
3276     uint64_t AlignMask = 1;
3277     if (EnableKnowledgeRetention &&
3278         (match(IIOperand, m_Not(m_Trunc(m_Value(A)))) ||
3279          match(IIOperand,
3280                m_SpecificICmp(ICmpInst::ICMP_EQ,
3281                               m_And(m_Value(A), m_ConstantInt(AlignMask)),
3282                               m_Zero())))) {
3283       if (isPowerOf2_64(AlignMask + 1)) {
3284         uint64_t Offset = 0;
3285         match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
3286         if (match(A, m_PtrToInt(m_Value(A)))) {
3287           /// Note: this doesn't preserve the offset information but merges
3288           /// offset and alignment.
3289           /// TODO: we can generate a GEP instead of merging the alignment with
3290           /// the offset.
3291           RetainedKnowledge RK{Attribute::Alignment,
3292                                (unsigned)MinAlign(Offset, AlignMask + 1), A};
3293           if (auto *Replacement =
3294                   buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
3295 
3296             Replacement->insertAfter(II->getIterator());
3297             AC.registerAssumption(Replacement);
3298           }
3299           return RemoveConditionFromAssume(II);
3300         }
3301       }
3302     }
3303 
3304     /// Canonicalize Knowledge in operand bundles.
3305     if (EnableKnowledgeRetention && II->hasOperandBundles()) {
3306       for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3307         auto &BOI = II->bundle_op_info_begin()[Idx];
3308         RetainedKnowledge RK =
3309           llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
3310         if (BOI.End - BOI.Begin > 2)
3311           continue; // Prevent reducing knowledge in an align with offset since
3312                     // extracting a RetainedKnowledge from them looses offset
3313                     // information
3314         RetainedKnowledge CanonRK =
3315           llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
3316                                           &getAssumptionCache(),
3317                                           &getDominatorTree());
3318         if (CanonRK == RK)
3319           continue;
3320         if (!CanonRK) {
3321           if (BOI.End - BOI.Begin > 0) {
3322             Worklist.pushValue(II->op_begin()[BOI.Begin]);
3323             Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
3324           }
3325           continue;
3326         }
3327         assert(RK.AttrKind == CanonRK.AttrKind);
3328         if (BOI.End - BOI.Begin > 0)
3329           II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3330         if (BOI.End - BOI.Begin > 1)
3331           II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3332               Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
3333         if (RK.WasOn)
3334           Worklist.pushValue(RK.WasOn);
3335         return II;
3336       }
3337     }
3338 
3339     // If there is a dominating assume with the same condition as this one,
3340     // then this one is redundant, and should be removed.
3341     KnownBits Known(1);
3342     computeKnownBits(IIOperand, Known, 0, II);
3343     if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
3344       return eraseInstFromFunction(*II);
3345 
3346     // assume(false) is unreachable.
3347     if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
3348       CreateNonTerminatorUnreachable(II);
3349       return eraseInstFromFunction(*II);
3350     }
3351 
3352     // Update the cache of affected values for this assumption (we might be
3353     // here because we just simplified the condition).
3354     AC.updateAffectedValues(cast<AssumeInst>(II));
3355     break;
3356   }
3357   case Intrinsic::experimental_guard: {
3358     // Is this guard followed by another guard?  We scan forward over a small
3359     // fixed window of instructions to handle common cases with conditions
3360     // computed between guards.
3361     Instruction *NextInst = II->getNextNonDebugInstruction();
3362     for (unsigned i = 0; i < GuardWideningWindow; i++) {
3363       // Note: Using context-free form to avoid compile time blow up
3364       if (!isSafeToSpeculativelyExecute(NextInst))
3365         break;
3366       NextInst = NextInst->getNextNonDebugInstruction();
3367     }
3368     Value *NextCond = nullptr;
3369     if (match(NextInst,
3370               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3371       Value *CurrCond = II->getArgOperand(0);
3372 
3373       // Remove a guard that it is immediately preceded by an identical guard.
3374       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3375       if (CurrCond != NextCond) {
3376         Instruction *MoveI = II->getNextNonDebugInstruction();
3377         while (MoveI != NextInst) {
3378           auto *Temp = MoveI;
3379           MoveI = MoveI->getNextNonDebugInstruction();
3380           Temp->moveBefore(II->getIterator());
3381         }
3382         replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
3383       }
3384       eraseInstFromFunction(*NextInst);
3385       return II;
3386     }
3387     break;
3388   }
3389   case Intrinsic::vector_insert: {
3390     Value *Vec = II->getArgOperand(0);
3391     Value *SubVec = II->getArgOperand(1);
3392     Value *Idx = II->getArgOperand(2);
3393     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
3394     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3395     auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
3396 
3397     // Only canonicalize if the destination vector, Vec, and SubVec are all
3398     // fixed vectors.
3399     if (DstTy && VecTy && SubVecTy) {
3400       unsigned DstNumElts = DstTy->getNumElements();
3401       unsigned VecNumElts = VecTy->getNumElements();
3402       unsigned SubVecNumElts = SubVecTy->getNumElements();
3403       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3404 
3405       // An insert that entirely overwrites Vec with SubVec is a nop.
3406       if (VecNumElts == SubVecNumElts)
3407         return replaceInstUsesWith(CI, SubVec);
3408 
3409       // Widen SubVec into a vector of the same width as Vec, since
3410       // shufflevector requires the two input vectors to be the same width.
3411       // Elements beyond the bounds of SubVec within the widened vector are
3412       // undefined.
3413       SmallVector<int, 8> WidenMask;
3414       unsigned i;
3415       for (i = 0; i != SubVecNumElts; ++i)
3416         WidenMask.push_back(i);
3417       for (; i != VecNumElts; ++i)
3418         WidenMask.push_back(PoisonMaskElem);
3419 
3420       Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3421 
3422       SmallVector<int, 8> Mask;
3423       for (unsigned i = 0; i != IdxN; ++i)
3424         Mask.push_back(i);
3425       for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3426         Mask.push_back(i);
3427       for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3428         Mask.push_back(i);
3429 
3430       Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3431       return replaceInstUsesWith(CI, Shuffle);
3432     }
3433     break;
3434   }
3435   case Intrinsic::vector_extract: {
3436     Value *Vec = II->getArgOperand(0);
3437     Value *Idx = II->getArgOperand(1);
3438 
3439     Type *ReturnType = II->getType();
3440     // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3441     // ExtractIdx)
3442     unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
3443     Value *InsertTuple, *InsertIdx, *InsertValue;
3444     if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
3445                                                          m_Value(InsertValue),
3446                                                          m_Value(InsertIdx))) &&
3447         InsertValue->getType() == ReturnType) {
3448       unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
3449       // Case where we get the same index right after setting it.
3450       // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3451       // InsertValue
3452       if (ExtractIdx == Index)
3453         return replaceInstUsesWith(CI, InsertValue);
3454       // If we are getting a different index than what was set in the
3455       // insert.vector intrinsic. We can just set the input tuple to the one up
3456       // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3457       // InsertIndex), ExtractIndex)
3458       // --> extract.vector(InsertTuple, ExtractIndex)
3459       else
3460         return replaceOperand(CI, 0, InsertTuple);
3461     }
3462 
3463     auto *DstTy = dyn_cast<VectorType>(ReturnType);
3464     auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3465 
3466     if (DstTy && VecTy) {
3467       auto DstEltCnt = DstTy->getElementCount();
3468       auto VecEltCnt = VecTy->getElementCount();
3469       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3470 
3471       // Extracting the entirety of Vec is a nop.
3472       if (DstEltCnt == VecTy->getElementCount()) {
3473         replaceInstUsesWith(CI, Vec);
3474         return eraseInstFromFunction(CI);
3475       }
3476 
3477       // Only canonicalize to shufflevector if the destination vector and
3478       // Vec are fixed vectors.
3479       if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3480         break;
3481 
3482       SmallVector<int, 8> Mask;
3483       for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3484         Mask.push_back(IdxN + i);
3485 
3486       Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3487       return replaceInstUsesWith(CI, Shuffle);
3488     }
3489     break;
3490   }
3491   case Intrinsic::vector_reverse: {
3492     Value *BO0, *BO1, *X, *Y;
3493     Value *Vec = II->getArgOperand(0);
3494     if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
3495       auto *OldBinOp = cast<BinaryOperator>(Vec);
3496       if (match(BO0, m_VecReverse(m_Value(X)))) {
3497         // rev(binop rev(X), rev(Y)) --> binop X, Y
3498         if (match(BO1, m_VecReverse(m_Value(Y))))
3499           return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
3500                                              OldBinOp->getOpcode(), X, Y,
3501                                              OldBinOp, OldBinOp->getName(),
3502                                              II->getIterator()));
3503         // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
3504         if (isSplatValue(BO1))
3505           return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
3506                                              OldBinOp->getOpcode(), X, BO1,
3507                                              OldBinOp, OldBinOp->getName(),
3508                                              II->getIterator()));
3509       }
3510       // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
3511       if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0))
3512         return replaceInstUsesWith(CI,
3513                                    BinaryOperator::CreateWithCopiedFlags(
3514                                        OldBinOp->getOpcode(), BO0, Y, OldBinOp,
3515                                        OldBinOp->getName(), II->getIterator()));
3516     }
3517     // rev(unop rev(X)) --> unop X
3518     if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) {
3519       auto *OldUnOp = cast<UnaryOperator>(Vec);
3520       auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
3521           OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(),
3522           II->getIterator());
3523       return replaceInstUsesWith(CI, NewUnOp);
3524     }
3525     break;
3526   }
3527   case Intrinsic::vector_reduce_or:
3528   case Intrinsic::vector_reduce_and: {
3529     // Canonicalize logical or/and reductions:
3530     // Or reduction for i1 is represented as:
3531     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3532     // %res = cmp ne iReduxWidth %val, 0
3533     // And reduction for i1 is represented as:
3534     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3535     // %res = cmp eq iReduxWidth %val, 11111
3536     Value *Arg = II->getArgOperand(0);
3537     Value *Vect;
3538 
3539     if (Value *NewOp =
3540             simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3541       replaceUse(II->getOperandUse(0), NewOp);
3542       return II;
3543     }
3544 
3545     if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3546       if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3547         if (FTy->getElementType() == Builder.getInt1Ty()) {
3548           Value *Res = Builder.CreateBitCast(
3549               Vect, Builder.getIntNTy(FTy->getNumElements()));
3550           if (IID == Intrinsic::vector_reduce_and) {
3551             Res = Builder.CreateICmpEQ(
3552                 Res, ConstantInt::getAllOnesValue(Res->getType()));
3553           } else {
3554             assert(IID == Intrinsic::vector_reduce_or &&
3555                    "Expected or reduction.");
3556             Res = Builder.CreateIsNotNull(Res);
3557           }
3558           if (Arg != Vect)
3559             Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3560                                      II->getType());
3561           return replaceInstUsesWith(CI, Res);
3562         }
3563     }
3564     [[fallthrough]];
3565   }
3566   case Intrinsic::vector_reduce_add: {
3567     if (IID == Intrinsic::vector_reduce_add) {
3568       // Convert vector_reduce_add(ZExt(<n x i1>)) to
3569       // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3570       // Convert vector_reduce_add(SExt(<n x i1>)) to
3571       // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3572       // Convert vector_reduce_add(<n x i1>) to
3573       // Trunc(ctpop(bitcast <n x i1> to in)).
3574       Value *Arg = II->getArgOperand(0);
3575       Value *Vect;
3576 
3577       if (Value *NewOp =
3578               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3579         replaceUse(II->getOperandUse(0), NewOp);
3580         return II;
3581       }
3582 
3583       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3584         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3585           if (FTy->getElementType() == Builder.getInt1Ty()) {
3586             Value *V = Builder.CreateBitCast(
3587                 Vect, Builder.getIntNTy(FTy->getNumElements()));
3588             Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3589             if (Res->getType() != II->getType())
3590               Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3591             if (Arg != Vect &&
3592                 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3593               Res = Builder.CreateNeg(Res);
3594             return replaceInstUsesWith(CI, Res);
3595           }
3596       }
3597     }
3598     [[fallthrough]];
3599   }
3600   case Intrinsic::vector_reduce_xor: {
3601     if (IID == Intrinsic::vector_reduce_xor) {
3602       // Exclusive disjunction reduction over the vector with
3603       // (potentially-extended) i1 element type is actually a
3604       // (potentially-extended) arithmetic `add` reduction over the original
3605       // non-extended value:
3606       //   vector_reduce_xor(?ext(<n x i1>))
3607       //     -->
3608       //   ?ext(vector_reduce_add(<n x i1>))
3609       Value *Arg = II->getArgOperand(0);
3610       Value *Vect;
3611 
3612       if (Value *NewOp =
3613               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3614         replaceUse(II->getOperandUse(0), NewOp);
3615         return II;
3616       }
3617 
3618       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3619         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3620           if (VTy->getElementType() == Builder.getInt1Ty()) {
3621             Value *Res = Builder.CreateAddReduce(Vect);
3622             if (Arg != Vect)
3623               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3624                                        II->getType());
3625             return replaceInstUsesWith(CI, Res);
3626           }
3627       }
3628     }
3629     [[fallthrough]];
3630   }
3631   case Intrinsic::vector_reduce_mul: {
3632     if (IID == Intrinsic::vector_reduce_mul) {
3633       // Multiplicative reduction over the vector with (potentially-extended)
3634       // i1 element type is actually a (potentially zero-extended)
3635       // logical `and` reduction over the original non-extended value:
3636       //   vector_reduce_mul(?ext(<n x i1>))
3637       //     -->
3638       //   zext(vector_reduce_and(<n x i1>))
3639       Value *Arg = II->getArgOperand(0);
3640       Value *Vect;
3641 
3642       if (Value *NewOp =
3643               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3644         replaceUse(II->getOperandUse(0), NewOp);
3645         return II;
3646       }
3647 
3648       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3649         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3650           if (VTy->getElementType() == Builder.getInt1Ty()) {
3651             Value *Res = Builder.CreateAndReduce(Vect);
3652             if (Res->getType() != II->getType())
3653               Res = Builder.CreateZExt(Res, II->getType());
3654             return replaceInstUsesWith(CI, Res);
3655           }
3656       }
3657     }
3658     [[fallthrough]];
3659   }
3660   case Intrinsic::vector_reduce_umin:
3661   case Intrinsic::vector_reduce_umax: {
3662     if (IID == Intrinsic::vector_reduce_umin ||
3663         IID == Intrinsic::vector_reduce_umax) {
3664       // UMin/UMax reduction over the vector with (potentially-extended)
3665       // i1 element type is actually a (potentially-extended)
3666       // logical `and`/`or` reduction over the original non-extended value:
3667       //   vector_reduce_u{min,max}(?ext(<n x i1>))
3668       //     -->
3669       //   ?ext(vector_reduce_{and,or}(<n x i1>))
3670       Value *Arg = II->getArgOperand(0);
3671       Value *Vect;
3672 
3673       if (Value *NewOp =
3674               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3675         replaceUse(II->getOperandUse(0), NewOp);
3676         return II;
3677       }
3678 
3679       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3680         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3681           if (VTy->getElementType() == Builder.getInt1Ty()) {
3682             Value *Res = IID == Intrinsic::vector_reduce_umin
3683                              ? Builder.CreateAndReduce(Vect)
3684                              : Builder.CreateOrReduce(Vect);
3685             if (Arg != Vect)
3686               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3687                                        II->getType());
3688             return replaceInstUsesWith(CI, Res);
3689           }
3690       }
3691     }
3692     [[fallthrough]];
3693   }
3694   case Intrinsic::vector_reduce_smin:
3695   case Intrinsic::vector_reduce_smax: {
3696     if (IID == Intrinsic::vector_reduce_smin ||
3697         IID == Intrinsic::vector_reduce_smax) {
3698       // SMin/SMax reduction over the vector with (potentially-extended)
3699       // i1 element type is actually a (potentially-extended)
3700       // logical `and`/`or` reduction over the original non-extended value:
3701       //   vector_reduce_s{min,max}(<n x i1>)
3702       //     -->
3703       //   vector_reduce_{or,and}(<n x i1>)
3704       // and
3705       //   vector_reduce_s{min,max}(sext(<n x i1>))
3706       //     -->
3707       //   sext(vector_reduce_{or,and}(<n x i1>))
3708       // and
3709       //   vector_reduce_s{min,max}(zext(<n x i1>))
3710       //     -->
3711       //   zext(vector_reduce_{and,or}(<n x i1>))
3712       Value *Arg = II->getArgOperand(0);
3713       Value *Vect;
3714 
3715       if (Value *NewOp =
3716               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3717         replaceUse(II->getOperandUse(0), NewOp);
3718         return II;
3719       }
3720 
3721       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3722         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3723           if (VTy->getElementType() == Builder.getInt1Ty()) {
3724             Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
3725             if (Arg != Vect)
3726               ExtOpc = cast<CastInst>(Arg)->getOpcode();
3727             Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3728                           (ExtOpc == Instruction::CastOps::ZExt))
3729                              ? Builder.CreateAndReduce(Vect)
3730                              : Builder.CreateOrReduce(Vect);
3731             if (Arg != Vect)
3732               Res = Builder.CreateCast(ExtOpc, Res, II->getType());
3733             return replaceInstUsesWith(CI, Res);
3734           }
3735       }
3736     }
3737     [[fallthrough]];
3738   }
3739   case Intrinsic::vector_reduce_fmax:
3740   case Intrinsic::vector_reduce_fmin:
3741   case Intrinsic::vector_reduce_fadd:
3742   case Intrinsic::vector_reduce_fmul: {
3743     bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
3744                             IID != Intrinsic::vector_reduce_fmul) ||
3745                            II->hasAllowReassoc();
3746     const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3747                              IID == Intrinsic::vector_reduce_fmul)
3748                                 ? 1
3749                                 : 0;
3750     Value *Arg = II->getArgOperand(ArgIdx);
3751     if (Value *NewOp = simplifyReductionOperand(Arg, CanReorderLanes)) {
3752       replaceUse(II->getOperandUse(ArgIdx), NewOp);
3753       return nullptr;
3754     }
3755     break;
3756   }
3757   case Intrinsic::is_fpclass: {
3758     if (Instruction *I = foldIntrinsicIsFPClass(*II))
3759       return I;
3760     break;
3761   }
3762   case Intrinsic::threadlocal_address: {
3763     Align MinAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3764     MaybeAlign Align = II->getRetAlign();
3765     if (MinAlign > Align.valueOrOne()) {
3766       II->addRetAttr(Attribute::getWithAlignment(II->getContext(), MinAlign));
3767       return II;
3768     }
3769     break;
3770   }
3771   default: {
3772     // Handle target specific intrinsics
3773     std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
3774     if (V)
3775       return *V;
3776     break;
3777   }
3778   }
3779 
3780   // Try to fold intrinsic into select operands. This is legal if:
3781   //  * The intrinsic is speculatable.
3782   //  * The select condition is not a vector, or the intrinsic does not
3783   //    perform cross-lane operations.
3784   if (isSafeToSpeculativelyExecuteWithVariableReplaced(&CI) &&
3785       isNotCrossLaneOperation(II))
3786     for (Value *Op : II->args())
3787       if (auto *Sel = dyn_cast<SelectInst>(Op))
3788         if (Instruction *R = FoldOpIntoSelect(*II, Sel))
3789           return R;
3790 
3791   if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
3792     return Shuf;
3793 
3794   // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
3795   // context, so it is handled in visitCallBase and we should trigger it.
3796   return visitCallBase(*II);
3797 }
3798 
3799 // Fence instruction simplification
3800 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
3801   auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
3802   // This check is solely here to handle arbitrary target-dependent syncscopes.
3803   // TODO: Can remove if does not matter in practice.
3804   if (NFI && FI.isIdenticalTo(NFI))
3805     return eraseInstFromFunction(FI);
3806 
3807   // Returns true if FI1 is identical or stronger fence than FI2.
3808   auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
3809     auto FI1SyncScope = FI1->getSyncScopeID();
3810     // Consider same scope, where scope is global or single-thread.
3811     if (FI1SyncScope != FI2->getSyncScopeID() ||
3812         (FI1SyncScope != SyncScope::System &&
3813          FI1SyncScope != SyncScope::SingleThread))
3814       return false;
3815 
3816     return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
3817   };
3818   if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
3819     return eraseInstFromFunction(FI);
3820 
3821   if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
3822     if (isIdenticalOrStrongerFence(PFI, &FI))
3823       return eraseInstFromFunction(FI);
3824   return nullptr;
3825 }
3826 
3827 // InvokeInst simplification
3828 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
3829   return visitCallBase(II);
3830 }
3831 
3832 // CallBrInst simplification
3833 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
3834   return visitCallBase(CBI);
3835 }
3836 
3837 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
3838   if (!CI->getCalledFunction()) return nullptr;
3839 
3840   // Skip optimizing notail and musttail calls so
3841   // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
3842   // LibCallSimplifier::optimizeCall should try to preserve tail calls though.
3843   if (CI->isMustTailCall() || CI->isNoTailCall())
3844     return nullptr;
3845 
3846   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3847     replaceInstUsesWith(*From, With);
3848   };
3849   auto InstCombineErase = [this](Instruction *I) {
3850     eraseInstFromFunction(*I);
3851   };
3852   LibCallSimplifier Simplifier(DL, &TLI, &DT, &DC, &AC, ORE, BFI, PSI,
3853                                InstCombineRAUW, InstCombineErase);
3854   if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
3855     ++NumSimplified;
3856     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
3857   }
3858 
3859   return nullptr;
3860 }
3861 
3862 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
3863   // Strip off at most one level of pointer casts, looking for an alloca.  This
3864   // is good enough in practice and simpler than handling any number of casts.
3865   Value *Underlying = TrampMem->stripPointerCasts();
3866   if (Underlying != TrampMem &&
3867       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3868     return nullptr;
3869   if (!isa<AllocaInst>(Underlying))
3870     return nullptr;
3871 
3872   IntrinsicInst *InitTrampoline = nullptr;
3873   for (User *U : TrampMem->users()) {
3874     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3875     if (!II)
3876       return nullptr;
3877     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3878       if (InitTrampoline)
3879         // More than one init_trampoline writes to this value.  Give up.
3880         return nullptr;
3881       InitTrampoline = II;
3882       continue;
3883     }
3884     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3885       // Allow any number of calls to adjust.trampoline.
3886       continue;
3887     return nullptr;
3888   }
3889 
3890   // No call to init.trampoline found.
3891   if (!InitTrampoline)
3892     return nullptr;
3893 
3894   // Check that the alloca is being used in the expected way.
3895   if (InitTrampoline->getOperand(0) != TrampMem)
3896     return nullptr;
3897 
3898   return InitTrampoline;
3899 }
3900 
3901 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3902                                                Value *TrampMem) {
3903   // Visit all the previous instructions in the basic block, and try to find a
3904   // init.trampoline which has a direct path to the adjust.trampoline.
3905   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3906                             E = AdjustTramp->getParent()->begin();
3907        I != E;) {
3908     Instruction *Inst = &*--I;
3909     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3910       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3911           II->getOperand(0) == TrampMem)
3912         return II;
3913     if (Inst->mayWriteToMemory())
3914       return nullptr;
3915   }
3916   return nullptr;
3917 }
3918 
3919 // Given a call to llvm.adjust.trampoline, find and return the corresponding
3920 // call to llvm.init.trampoline if the call to the trampoline can be optimized
3921 // to a direct call to a function.  Otherwise return NULL.
3922 static IntrinsicInst *findInitTrampoline(Value *Callee) {
3923   Callee = Callee->stripPointerCasts();
3924   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3925   if (!AdjustTramp ||
3926       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3927     return nullptr;
3928 
3929   Value *TrampMem = AdjustTramp->getOperand(0);
3930 
3931   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3932     return IT;
3933   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3934     return IT;
3935   return nullptr;
3936 }
3937 
3938 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
3939                                             const TargetLibraryInfo *TLI) {
3940   // Note: We only handle cases which can't be driven from generic attributes
3941   // here.  So, for example, nonnull and noalias (which are common properties
3942   // of some allocation functions) are expected to be handled via annotation
3943   // of the respective allocator declaration with generic attributes.
3944   bool Changed = false;
3945 
3946   if (!Call.getType()->isPointerTy())
3947     return Changed;
3948 
3949   std::optional<APInt> Size = getAllocSize(&Call, TLI);
3950   if (Size && *Size != 0) {
3951     // TODO: We really should just emit deref_or_null here and then
3952     // let the generic inference code combine that with nonnull.
3953     if (Call.hasRetAttr(Attribute::NonNull)) {
3954       Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
3955       Call.addRetAttr(Attribute::getWithDereferenceableBytes(
3956           Call.getContext(), Size->getLimitedValue()));
3957     } else {
3958       Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
3959       Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
3960           Call.getContext(), Size->getLimitedValue()));
3961     }
3962   }
3963 
3964   // Add alignment attribute if alignment is a power of two constant.
3965   Value *Alignment = getAllocAlignment(&Call, TLI);
3966   if (!Alignment)
3967     return Changed;
3968 
3969   ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
3970   if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
3971     uint64_t AlignmentVal = AlignOpC->getZExtValue();
3972     if (llvm::isPowerOf2_64(AlignmentVal)) {
3973       Align ExistingAlign = Call.getRetAlign().valueOrOne();
3974       Align NewAlign = Align(AlignmentVal);
3975       if (NewAlign > ExistingAlign) {
3976         Call.addRetAttr(
3977             Attribute::getWithAlignment(Call.getContext(), NewAlign));
3978         Changed = true;
3979       }
3980     }
3981   }
3982   return Changed;
3983 }
3984 
3985 /// Improvements for call, callbr and invoke instructions.
3986 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
3987   bool Changed = annotateAnyAllocSite(Call, &TLI);
3988 
3989   // Mark any parameters that are known to be non-null with the nonnull
3990   // attribute.  This is helpful for inlining calls to functions with null
3991   // checks on their arguments.
3992   SmallVector<unsigned, 4> ArgNos;
3993   unsigned ArgNo = 0;
3994 
3995   for (Value *V : Call.args()) {
3996     if (V->getType()->isPointerTy() &&
3997         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
3998         isKnownNonZero(V, getSimplifyQuery().getWithInstruction(&Call)))
3999       ArgNos.push_back(ArgNo);
4000     ArgNo++;
4001   }
4002 
4003   assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
4004 
4005   if (!ArgNos.empty()) {
4006     AttributeList AS = Call.getAttributes();
4007     LLVMContext &Ctx = Call.getContext();
4008     AS = AS.addParamAttribute(Ctx, ArgNos,
4009                               Attribute::get(Ctx, Attribute::NonNull));
4010     Call.setAttributes(AS);
4011     Changed = true;
4012   }
4013 
4014   // If the callee is a pointer to a function, attempt to move any casts to the
4015   // arguments of the call/callbr/invoke.
4016   Value *Callee = Call.getCalledOperand();
4017   Function *CalleeF = dyn_cast<Function>(Callee);
4018   if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
4019       transformConstExprCastCall(Call))
4020     return nullptr;
4021 
4022   if (CalleeF) {
4023     // Remove the convergent attr on calls when the callee is not convergent.
4024     if (Call.isConvergent() && !CalleeF->isConvergent() &&
4025         !CalleeF->isIntrinsic()) {
4026       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4027                         << "\n");
4028       Call.setNotConvergent();
4029       return &Call;
4030     }
4031 
4032     // If the call and callee calling conventions don't match, and neither one
4033     // of the calling conventions is compatible with C calling convention
4034     // this call must be unreachable, as the call is undefined.
4035     if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
4036          !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
4037            TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
4038          !(Call.getCallingConv() == llvm::CallingConv::C &&
4039            TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
4040         // Only do this for calls to a function with a body.  A prototype may
4041         // not actually end up matching the implementation's calling conv for a
4042         // variety of reasons (e.g. it may be written in assembly).
4043         !CalleeF->isDeclaration()) {
4044       Instruction *OldCall = &Call;
4045       CreateNonTerminatorUnreachable(OldCall);
4046       // If OldCall does not return void then replaceInstUsesWith poison.
4047       // This allows ValueHandlers and custom metadata to adjust itself.
4048       if (!OldCall->getType()->isVoidTy())
4049         replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
4050       if (isa<CallInst>(OldCall))
4051         return eraseInstFromFunction(*OldCall);
4052 
4053       // We cannot remove an invoke or a callbr, because it would change thexi
4054       // CFG, just change the callee to a null pointer.
4055       cast<CallBase>(OldCall)->setCalledFunction(
4056           CalleeF->getFunctionType(),
4057           Constant::getNullValue(CalleeF->getType()));
4058       return nullptr;
4059     }
4060   }
4061 
4062   // Calling a null function pointer is undefined if a null address isn't
4063   // dereferenceable.
4064   if ((isa<ConstantPointerNull>(Callee) &&
4065        !NullPointerIsDefined(Call.getFunction())) ||
4066       isa<UndefValue>(Callee)) {
4067     // If Call does not return void then replaceInstUsesWith poison.
4068     // This allows ValueHandlers and custom metadata to adjust itself.
4069     if (!Call.getType()->isVoidTy())
4070       replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
4071 
4072     if (Call.isTerminator()) {
4073       // Can't remove an invoke or callbr because we cannot change the CFG.
4074       return nullptr;
4075     }
4076 
4077     // This instruction is not reachable, just remove it.
4078     CreateNonTerminatorUnreachable(&Call);
4079     return eraseInstFromFunction(Call);
4080   }
4081 
4082   if (IntrinsicInst *II = findInitTrampoline(Callee))
4083     return transformCallThroughTrampoline(Call, *II);
4084 
4085   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4086     InlineAsm *IA = cast<InlineAsm>(Callee);
4087     if (!IA->canThrow()) {
4088       // Normal inline asm calls cannot throw - mark them
4089       // 'nounwind'.
4090       Call.setDoesNotThrow();
4091       Changed = true;
4092     }
4093   }
4094 
4095   // Try to optimize the call if possible, we require DataLayout for most of
4096   // this.  None of these calls are seen as possibly dead so go ahead and
4097   // delete the instruction now.
4098   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4099     Instruction *I = tryOptimizeCall(CI);
4100     // If we changed something return the result, etc. Otherwise let
4101     // the fallthrough check.
4102     if (I) return eraseInstFromFunction(*I);
4103   }
4104 
4105   if (!Call.use_empty() && !Call.isMustTailCall())
4106     if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
4107       Type *CallTy = Call.getType();
4108       Type *RetArgTy = ReturnedArg->getType();
4109       if (RetArgTy->canLosslesslyBitCastTo(CallTy))
4110         return replaceInstUsesWith(
4111             Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4112     }
4113 
4114   // Drop unnecessary kcfi operand bundles from calls that were converted
4115   // into direct calls.
4116   auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi);
4117   if (Bundle && !Call.isIndirectCall()) {
4118     DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
4119       if (CalleeF) {
4120         ConstantInt *FunctionType = nullptr;
4121         ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
4122 
4123         if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
4124           FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
4125 
4126         if (FunctionType &&
4127             FunctionType->getZExtValue() != ExpectedType->getZExtValue())
4128           dbgs() << Call.getModule()->getName()
4129                  << ": warning: kcfi: " << Call.getCaller()->getName()
4130                  << ": call to " << CalleeF->getName()
4131                  << " using a mismatching function pointer type\n";
4132       }
4133     });
4134 
4135     return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi);
4136   }
4137 
4138   if (isRemovableAlloc(&Call, &TLI))
4139     return visitAllocSite(Call);
4140 
4141   // Handle intrinsics which can be used in both call and invoke context.
4142   switch (Call.getIntrinsicID()) {
4143   case Intrinsic::experimental_gc_statepoint: {
4144     GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
4145     SmallPtrSet<Value *, 32> LiveGcValues;
4146     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4147       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4148 
4149       // Remove the relocation if unused.
4150       if (GCR.use_empty()) {
4151         eraseInstFromFunction(GCR);
4152         continue;
4153       }
4154 
4155       Value *DerivedPtr = GCR.getDerivedPtr();
4156       Value *BasePtr = GCR.getBasePtr();
4157 
4158       // Undef is undef, even after relocation.
4159       if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
4160         replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
4161         eraseInstFromFunction(GCR);
4162         continue;
4163       }
4164 
4165       if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
4166         // The relocation of null will be null for most any collector.
4167         // TODO: provide a hook for this in GCStrategy.  There might be some
4168         // weird collector this property does not hold for.
4169         if (isa<ConstantPointerNull>(DerivedPtr)) {
4170           // Use null-pointer of gc_relocate's type to replace it.
4171           replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
4172           eraseInstFromFunction(GCR);
4173           continue;
4174         }
4175 
4176         // isKnownNonNull -> nonnull attribute
4177         if (!GCR.hasRetAttr(Attribute::NonNull) &&
4178             isKnownNonZero(DerivedPtr,
4179                            getSimplifyQuery().getWithInstruction(&Call))) {
4180           GCR.addRetAttr(Attribute::NonNull);
4181           // We discovered new fact, re-check users.
4182           Worklist.pushUsersToWorkList(GCR);
4183         }
4184       }
4185 
4186       // If we have two copies of the same pointer in the statepoint argument
4187       // list, canonicalize to one.  This may let us common gc.relocates.
4188       if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
4189           GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
4190         auto *OpIntTy = GCR.getOperand(2)->getType();
4191         GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
4192       }
4193 
4194       // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4195       // Canonicalize on the type from the uses to the defs
4196 
4197       // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4198       LiveGcValues.insert(BasePtr);
4199       LiveGcValues.insert(DerivedPtr);
4200     }
4201     std::optional<OperandBundleUse> Bundle =
4202         GCSP.getOperandBundle(LLVMContext::OB_gc_live);
4203     unsigned NumOfGCLives = LiveGcValues.size();
4204     if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4205       break;
4206     // We can reduce the size of gc live bundle.
4207     DenseMap<Value *, unsigned> Val2Idx;
4208     std::vector<Value *> NewLiveGc;
4209     for (Value *V : Bundle->Inputs) {
4210       auto [It, Inserted] = Val2Idx.try_emplace(V);
4211       if (!Inserted)
4212         continue;
4213       if (LiveGcValues.count(V)) {
4214         It->second = NewLiveGc.size();
4215         NewLiveGc.push_back(V);
4216       } else
4217         It->second = NumOfGCLives;
4218     }
4219     // Update all gc.relocates
4220     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4221       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4222       Value *BasePtr = GCR.getBasePtr();
4223       assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4224              "Missed live gc for base pointer");
4225       auto *OpIntTy1 = GCR.getOperand(1)->getType();
4226       GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4227       Value *DerivedPtr = GCR.getDerivedPtr();
4228       assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4229              "Missed live gc for derived pointer");
4230       auto *OpIntTy2 = GCR.getOperand(2)->getType();
4231       GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4232     }
4233     // Create new statepoint instruction.
4234     OperandBundleDef NewBundle("gc-live", NewLiveGc);
4235     return CallBase::Create(&Call, NewBundle);
4236   }
4237   default: { break; }
4238   }
4239 
4240   return Changed ? &Call : nullptr;
4241 }
4242 
4243 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4244 /// the arguments of the call/invoke.
4245 /// CallBrInst is not supported.
4246 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
4247   auto *Callee =
4248       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
4249   if (!Callee)
4250     return false;
4251 
4252   assert(!isa<CallBrInst>(Call) &&
4253          "CallBr's don't have a single point after a def to insert at");
4254 
4255   // Don't perform the transform for declarations, which may not be fully
4256   // accurate. For example, void @foo() is commonly used as a placeholder for
4257   // unknown prototypes.
4258   if (Callee->isDeclaration())
4259     return false;
4260 
4261   // If this is a call to a thunk function, don't remove the cast. Thunks are
4262   // used to transparently forward all incoming parameters and outgoing return
4263   // values, so it's important to leave the cast in place.
4264   if (Callee->hasFnAttribute("thunk"))
4265     return false;
4266 
4267   // If this is a call to a naked function, the assembly might be
4268   // using an argument, or otherwise rely on the frame layout,
4269   // the function prototype will mismatch.
4270   if (Callee->hasFnAttribute(Attribute::Naked))
4271     return false;
4272 
4273   // If this is a musttail call, the callee's prototype must match the caller's
4274   // prototype with the exception of pointee types. The code below doesn't
4275   // implement that, so we can't do this transform.
4276   // TODO: Do the transform if it only requires adding pointer casts.
4277   if (Call.isMustTailCall())
4278     return false;
4279 
4280   Instruction *Caller = &Call;
4281   const AttributeList &CallerPAL = Call.getAttributes();
4282 
4283   // Okay, this is a cast from a function to a different type.  Unless doing so
4284   // would cause a type conversion of one of our arguments, change this call to
4285   // be a direct call with arguments casted to the appropriate types.
4286   FunctionType *FT = Callee->getFunctionType();
4287   Type *OldRetTy = Caller->getType();
4288   Type *NewRetTy = FT->getReturnType();
4289 
4290   // Check to see if we are changing the return type...
4291   if (OldRetTy != NewRetTy) {
4292 
4293     if (NewRetTy->isStructTy())
4294       return false; // TODO: Handle multiple return values.
4295 
4296     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4297       if (!Caller->use_empty())
4298         return false;   // Cannot transform this return value.
4299     }
4300 
4301     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4302       AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4303       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(
4304               NewRetTy, CallerPAL.getRetAttrs())))
4305         return false;   // Attribute not compatible with transformed value.
4306     }
4307 
4308     // If the callbase is an invoke instruction, and the return value is
4309     // used by a PHI node in a successor, we cannot change the return type of
4310     // the call because there is no place to put the cast instruction (without
4311     // breaking the critical edge).  Bail out in this case.
4312     if (!Caller->use_empty()) {
4313       BasicBlock *PhisNotSupportedBlock = nullptr;
4314       if (auto *II = dyn_cast<InvokeInst>(Caller))
4315         PhisNotSupportedBlock = II->getNormalDest();
4316       if (PhisNotSupportedBlock)
4317         for (User *U : Caller->users())
4318           if (PHINode *PN = dyn_cast<PHINode>(U))
4319             if (PN->getParent() == PhisNotSupportedBlock)
4320               return false;
4321     }
4322   }
4323 
4324   unsigned NumActualArgs = Call.arg_size();
4325   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4326 
4327   // Prevent us turning:
4328   // declare void @takes_i32_inalloca(i32* inalloca)
4329   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4330   //
4331   // into:
4332   //  call void @takes_i32_inalloca(i32* null)
4333   //
4334   //  Similarly, avoid folding away bitcasts of byval calls.
4335   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4336       Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4337     return false;
4338 
4339   auto AI = Call.arg_begin();
4340   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4341     Type *ParamTy = FT->getParamType(i);
4342     Type *ActTy = (*AI)->getType();
4343 
4344     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4345       return false;   // Cannot transform this parameter value.
4346 
4347     // Check if there are any incompatible attributes we cannot drop safely.
4348     if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4349             .overlaps(AttributeFuncs::typeIncompatible(
4350                 ParamTy, CallerPAL.getParamAttrs(i),
4351                 AttributeFuncs::ASK_UNSAFE_TO_DROP)))
4352       return false;   // Attribute not compatible with transformed value.
4353 
4354     if (Call.isInAllocaArgument(i) ||
4355         CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4356       return false; // Cannot transform to and from inalloca/preallocated.
4357 
4358     if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4359       return false;
4360 
4361     if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4362         Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4363       return false; // Cannot transform to or from byval.
4364   }
4365 
4366   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4367       !CallerPAL.isEmpty()) {
4368     // In this case we have more arguments than the new function type, but we
4369     // won't be dropping them.  Check that these extra arguments have attributes
4370     // that are compatible with being a vararg call argument.
4371     unsigned SRetIdx;
4372     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4373         SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4374       return false;
4375   }
4376 
4377   // Okay, we decided that this is a safe thing to do: go ahead and start
4378   // inserting cast instructions as necessary.
4379   SmallVector<Value *, 8> Args;
4380   SmallVector<AttributeSet, 8> ArgAttrs;
4381   Args.reserve(NumActualArgs);
4382   ArgAttrs.reserve(NumActualArgs);
4383 
4384   // Get any return attributes.
4385   AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4386 
4387   // If the return value is not being used, the type may not be compatible
4388   // with the existing attributes.  Wipe out any problematic attributes.
4389   RAttrs.remove(
4390       AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs()));
4391 
4392   LLVMContext &Ctx = Call.getContext();
4393   AI = Call.arg_begin();
4394   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4395     Type *ParamTy = FT->getParamType(i);
4396 
4397     Value *NewArg = *AI;
4398     if ((*AI)->getType() != ParamTy)
4399       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4400     Args.push_back(NewArg);
4401 
4402     // Add any parameter attributes except the ones incompatible with the new
4403     // type. Note that we made sure all incompatible ones are safe to drop.
4404     AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
4405         ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP);
4406     ArgAttrs.push_back(
4407         CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
4408   }
4409 
4410   // If the function takes more arguments than the call was taking, add them
4411   // now.
4412   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4413     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4414     ArgAttrs.push_back(AttributeSet());
4415   }
4416 
4417   // If we are removing arguments to the function, emit an obnoxious warning.
4418   if (FT->getNumParams() < NumActualArgs) {
4419     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4420     if (FT->isVarArg()) {
4421       // Add all of the arguments in their promoted form to the arg list.
4422       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4423         Type *PTy = getPromotedType((*AI)->getType());
4424         Value *NewArg = *AI;
4425         if (PTy != (*AI)->getType()) {
4426           // Must promote to pass through va_arg area!
4427           Instruction::CastOps opcode =
4428             CastInst::getCastOpcode(*AI, false, PTy, false);
4429           NewArg = Builder.CreateCast(opcode, *AI, PTy);
4430         }
4431         Args.push_back(NewArg);
4432 
4433         // Add any parameter attributes.
4434         ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
4435       }
4436     }
4437   }
4438 
4439   AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4440 
4441   if (NewRetTy->isVoidTy())
4442     Caller->setName("");   // Void type should not have a name.
4443 
4444   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4445          "missing argument attributes");
4446   AttributeList NewCallerPAL = AttributeList::get(
4447       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4448 
4449   SmallVector<OperandBundleDef, 1> OpBundles;
4450   Call.getOperandBundlesAsDefs(OpBundles);
4451 
4452   CallBase *NewCall;
4453   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4454     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4455                                    II->getUnwindDest(), Args, OpBundles);
4456   } else {
4457     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4458     cast<CallInst>(NewCall)->setTailCallKind(
4459         cast<CallInst>(Caller)->getTailCallKind());
4460   }
4461   NewCall->takeName(Caller);
4462   NewCall->setCallingConv(Call.getCallingConv());
4463   NewCall->setAttributes(NewCallerPAL);
4464 
4465   // Preserve prof metadata if any.
4466   NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
4467 
4468   // Insert a cast of the return type as necessary.
4469   Instruction *NC = NewCall;
4470   Value *NV = NC;
4471   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4472     assert(!NV->getType()->isVoidTy());
4473     NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4474     NC->setDebugLoc(Caller->getDebugLoc());
4475 
4476     auto OptInsertPt = NewCall->getInsertionPointAfterDef();
4477     assert(OptInsertPt && "No place to insert cast");
4478     InsertNewInstBefore(NC, *OptInsertPt);
4479     Worklist.pushUsersToWorkList(*Caller);
4480   }
4481 
4482   if (!Caller->use_empty())
4483     replaceInstUsesWith(*Caller, NV);
4484   else if (Caller->hasValueHandle()) {
4485     if (OldRetTy == NV->getType())
4486       ValueHandleBase::ValueIsRAUWd(Caller, NV);
4487     else
4488       // We cannot call ValueIsRAUWd with a different type, and the
4489       // actual tracked value will disappear.
4490       ValueHandleBase::ValueIsDeleted(Caller);
4491   }
4492 
4493   eraseInstFromFunction(*Caller);
4494   return true;
4495 }
4496 
4497 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4498 /// intrinsic pair into a direct call to the underlying function.
4499 Instruction *
4500 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
4501                                                  IntrinsicInst &Tramp) {
4502   FunctionType *FTy = Call.getFunctionType();
4503   AttributeList Attrs = Call.getAttributes();
4504 
4505   // If the call already has the 'nest' attribute somewhere then give up -
4506   // otherwise 'nest' would occur twice after splicing in the chain.
4507   if (Attrs.hasAttrSomewhere(Attribute::Nest))
4508     return nullptr;
4509 
4510   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4511   FunctionType *NestFTy = NestF->getFunctionType();
4512 
4513   AttributeList NestAttrs = NestF->getAttributes();
4514   if (!NestAttrs.isEmpty()) {
4515     unsigned NestArgNo = 0;
4516     Type *NestTy = nullptr;
4517     AttributeSet NestAttr;
4518 
4519     // Look for a parameter marked with the 'nest' attribute.
4520     for (FunctionType::param_iterator I = NestFTy->param_begin(),
4521                                       E = NestFTy->param_end();
4522          I != E; ++NestArgNo, ++I) {
4523       AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
4524       if (AS.hasAttribute(Attribute::Nest)) {
4525         // Record the parameter type and any other attributes.
4526         NestTy = *I;
4527         NestAttr = AS;
4528         break;
4529       }
4530     }
4531 
4532     if (NestTy) {
4533       std::vector<Value*> NewArgs;
4534       std::vector<AttributeSet> NewArgAttrs;
4535       NewArgs.reserve(Call.arg_size() + 1);
4536       NewArgAttrs.reserve(Call.arg_size());
4537 
4538       // Insert the nest argument into the call argument list, which may
4539       // mean appending it.  Likewise for attributes.
4540 
4541       {
4542         unsigned ArgNo = 0;
4543         auto I = Call.arg_begin(), E = Call.arg_end();
4544         do {
4545           if (ArgNo == NestArgNo) {
4546             // Add the chain argument and attributes.
4547             Value *NestVal = Tramp.getArgOperand(2);
4548             if (NestVal->getType() != NestTy)
4549               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4550             NewArgs.push_back(NestVal);
4551             NewArgAttrs.push_back(NestAttr);
4552           }
4553 
4554           if (I == E)
4555             break;
4556 
4557           // Add the original argument and attributes.
4558           NewArgs.push_back(*I);
4559           NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
4560 
4561           ++ArgNo;
4562           ++I;
4563         } while (true);
4564       }
4565 
4566       // The trampoline may have been bitcast to a bogus type (FTy).
4567       // Handle this by synthesizing a new function type, equal to FTy
4568       // with the chain parameter inserted.
4569 
4570       std::vector<Type*> NewTypes;
4571       NewTypes.reserve(FTy->getNumParams()+1);
4572 
4573       // Insert the chain's type into the list of parameter types, which may
4574       // mean appending it.
4575       {
4576         unsigned ArgNo = 0;
4577         FunctionType::param_iterator I = FTy->param_begin(),
4578           E = FTy->param_end();
4579 
4580         do {
4581           if (ArgNo == NestArgNo)
4582             // Add the chain's type.
4583             NewTypes.push_back(NestTy);
4584 
4585           if (I == E)
4586             break;
4587 
4588           // Add the original type.
4589           NewTypes.push_back(*I);
4590 
4591           ++ArgNo;
4592           ++I;
4593         } while (true);
4594       }
4595 
4596       // Replace the trampoline call with a direct call.  Let the generic
4597       // code sort out any function type mismatches.
4598       FunctionType *NewFTy =
4599           FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
4600       AttributeList NewPAL =
4601           AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
4602                              Attrs.getRetAttrs(), NewArgAttrs);
4603 
4604       SmallVector<OperandBundleDef, 1> OpBundles;
4605       Call.getOperandBundlesAsDefs(OpBundles);
4606 
4607       Instruction *NewCaller;
4608       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4609         NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
4610                                        II->getUnwindDest(), NewArgs, OpBundles);
4611         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4612         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4613       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4614         NewCaller =
4615             CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
4616                                CBI->getIndirectDests(), NewArgs, OpBundles);
4617         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4618         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4619       } else {
4620         NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
4621         cast<CallInst>(NewCaller)->setTailCallKind(
4622             cast<CallInst>(Call).getTailCallKind());
4623         cast<CallInst>(NewCaller)->setCallingConv(
4624             cast<CallInst>(Call).getCallingConv());
4625         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4626       }
4627       NewCaller->setDebugLoc(Call.getDebugLoc());
4628 
4629       return NewCaller;
4630     }
4631   }
4632 
4633   // Replace the trampoline call with a direct call.  Since there is no 'nest'
4634   // parameter, there is no need to adjust the argument list.  Let the generic
4635   // code sort out any function type mismatches.
4636   Call.setCalledFunction(FTy, NestF);
4637   return &Call;
4638 }
4639