1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This specialises functions with constant parameters. Constant parameters 10 // like function pointers and constant globals are propagated to the callee by 11 // specializing the function. The main benefit of this pass at the moment is 12 // that indirect calls are transformed into direct calls, which provides inline 13 // opportunities that the inliner would not have been able to achieve. That's 14 // why function specialisation is run before the inliner in the optimisation 15 // pipeline; that is by design. Otherwise, we would only benefit from constant 16 // passing, which is a valid use-case too, but hasn't been explored much in 17 // terms of performance uplifts, cost-model and compile-time impact. 18 // 19 // Current limitations: 20 // - It does not yet handle integer ranges. We do support "literal constants", 21 // but that's off by default under an option. 22 // - The cost-model could be further looked into (it mainly focuses on inlining 23 // benefits), 24 // 25 // Ideas: 26 // - With a function specialization attribute for arguments, we could have 27 // a direct way to steer function specialization, avoiding the cost-model, 28 // and thus control compile-times / code-size. 29 // 30 // Todos: 31 // - Specializing recursive functions relies on running the transformation a 32 // number of times, which is controlled by option 33 // `func-specialization-max-iters`. Thus, increasing this value and the 34 // number of iterations, will linearly increase the number of times recursive 35 // functions get specialized, see also the discussion in 36 // https://reviews.llvm.org/D106426 for details. Perhaps there is a 37 // compile-time friendlier way to control/limit the number of specialisations 38 // for recursive functions. 39 // - Don't transform the function if function specialization does not trigger; 40 // the SCCPSolver may make IR changes. 41 // 42 // References: 43 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable 44 // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/Transforms/IPO/FunctionSpecialization.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/CodeMetrics.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/InlineCost.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Analysis/ValueLattice.h" 56 #include "llvm/Analysis/ValueLatticeUtils.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/Transforms/Scalar/SCCP.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/SCCPSolver.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include <cmath> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "function-specialization" 68 69 STATISTIC(NumSpecsCreated, "Number of specializations created"); 70 71 static cl::opt<bool> ForceSpecialization( 72 "force-specialization", cl::init(false), cl::Hidden, cl::desc( 73 "Force function specialization for every call site with a constant " 74 "argument")); 75 76 static cl::opt<unsigned> MaxClones( 77 "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( 78 "The maximum number of clones allowed for a single function " 79 "specialization")); 80 81 static cl::opt<unsigned> MaxIncomingPhiValues( 82 "funcspec-max-incoming-phi-values", cl::init(4), cl::Hidden, cl::desc( 83 "The maximum number of incoming values a PHI node can have to be " 84 "considered during the specialization bonus estimation")); 85 86 static cl::opt<unsigned> MaxBlockPredecessors( 87 "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc( 88 "The maximum number of predecessors a basic block can have to be " 89 "considered during the estimation of dead code")); 90 91 static cl::opt<unsigned> MinFunctionSize( 92 "funcspec-min-function-size", cl::init(300), cl::Hidden, cl::desc( 93 "Don't specialize functions that have less than this number of " 94 "instructions")); 95 96 static cl::opt<unsigned> MinCodeSizeSavings( 97 "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, cl::desc( 98 "Reject specializations whose codesize savings are less than this" 99 "much percent of the original function size")); 100 101 static cl::opt<unsigned> MinLatencySavings( 102 "funcspec-min-latency-savings", cl::init(70), cl::Hidden, cl::desc( 103 "Reject specializations whose latency savings are less than this" 104 "much percent of the original function size")); 105 106 static cl::opt<unsigned> MinInliningBonus( 107 "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, cl::desc( 108 "Reject specializations whose inlining bonus is less than this" 109 "much percent of the original function size")); 110 111 static cl::opt<bool> SpecializeOnAddress( 112 "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( 113 "Enable function specialization on the address of global values")); 114 115 // Disabled by default as it can significantly increase compilation times. 116 // 117 // https://llvm-compile-time-tracker.com 118 // https://github.com/nikic/llvm-compile-time-tracker 119 static cl::opt<bool> SpecializeLiteralConstant( 120 "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc( 121 "Enable specialization of functions that take a literal constant as an " 122 "argument")); 123 124 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ, 125 DenseSet<BasicBlock *> &DeadBlocks) { 126 unsigned I = 0; 127 return all_of(predecessors(Succ), 128 [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) { 129 return I++ < MaxBlockPredecessors && 130 (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred)); 131 }); 132 } 133 134 // Estimates the codesize savings due to dead code after constant propagation. 135 // \p WorkList represents the basic blocks of a specialization which will 136 // eventually become dead once we replace instructions that are known to be 137 // constants. The successors of such blocks are added to the list as long as 138 // the \p Solver found they were executable prior to specialization, and only 139 // if all their predecessors are dead. 140 Cost InstCostVisitor::estimateBasicBlocks( 141 SmallVectorImpl<BasicBlock *> &WorkList) { 142 Cost CodeSize = 0; 143 // Accumulate the instruction cost of each basic block weighted by frequency. 144 while (!WorkList.empty()) { 145 BasicBlock *BB = WorkList.pop_back_val(); 146 147 // These blocks are considered dead as far as the InstCostVisitor 148 // is concerned. They haven't been proven dead yet by the Solver, 149 // but may become if we propagate the specialization arguments. 150 if (!DeadBlocks.insert(BB).second) 151 continue; 152 153 for (Instruction &I : *BB) { 154 // Disregard SSA copies. 155 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 156 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 157 continue; 158 // If it's a known constant we have already accounted for it. 159 if (KnownConstants.contains(&I)) 160 continue; 161 162 Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 163 164 LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C 165 << " for user " << I << "\n"); 166 CodeSize += C; 167 } 168 169 // Keep adding dead successors to the list as long as they are 170 // executable and only reachable from dead blocks. 171 for (BasicBlock *SuccBB : successors(BB)) 172 if (isBlockExecutable(SuccBB) && 173 canEliminateSuccessor(BB, SuccBB, DeadBlocks)) 174 WorkList.push_back(SuccBB); 175 } 176 return CodeSize; 177 } 178 179 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) { 180 if (auto *C = dyn_cast<Constant>(V)) 181 return C; 182 if (auto It = KnownConstants.find(V); It != KnownConstants.end()) 183 return It->second; 184 return nullptr; 185 } 186 187 Bonus InstCostVisitor::getBonusFromPendingPHIs() { 188 Bonus B; 189 while (!PendingPHIs.empty()) { 190 Instruction *Phi = PendingPHIs.pop_back_val(); 191 // The pending PHIs could have been proven dead by now. 192 if (isBlockExecutable(Phi->getParent())) 193 B += getUserBonus(Phi); 194 } 195 return B; 196 } 197 198 /// Compute a bonus for replacing argument \p A with constant \p C. 199 Bonus InstCostVisitor::getSpecializationBonus(Argument *A, Constant *C) { 200 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " 201 << C->getNameOrAsOperand() << "\n"); 202 Bonus B; 203 for (auto *U : A->users()) 204 if (auto *UI = dyn_cast<Instruction>(U)) 205 if (isBlockExecutable(UI->getParent())) 206 B += getUserBonus(UI, A, C); 207 208 LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = " 209 << B.CodeSize << ", Latency = " << B.Latency 210 << "} for argument " << *A << "\n"); 211 return B; 212 } 213 214 Bonus InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) { 215 // We have already propagated a constant for this user. 216 if (KnownConstants.contains(User)) 217 return {0, 0}; 218 219 // Cache the iterator before visiting. 220 LastVisited = Use ? KnownConstants.insert({Use, C}).first 221 : KnownConstants.end(); 222 223 Cost CodeSize = 0; 224 if (auto *I = dyn_cast<SwitchInst>(User)) { 225 CodeSize = estimateSwitchInst(*I); 226 } else if (auto *I = dyn_cast<BranchInst>(User)) { 227 CodeSize = estimateBranchInst(*I); 228 } else { 229 C = visit(*User); 230 if (!C) 231 return {0, 0}; 232 } 233 234 // Even though it doesn't make sense to bind switch and branch instructions 235 // with a constant, unlike any other instruction type, it prevents estimating 236 // their bonus multiple times. 237 KnownConstants.insert({User, C}); 238 239 CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); 240 241 uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() / 242 BFI.getEntryFreq(); 243 244 Cost Latency = Weight * 245 TTI.getInstructionCost(User, TargetTransformInfo::TCK_Latency); 246 247 LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize 248 << ", Latency = " << Latency << "} for user " 249 << *User << "\n"); 250 251 Bonus B(CodeSize, Latency); 252 for (auto *U : User->users()) 253 if (auto *UI = dyn_cast<Instruction>(U)) 254 if (UI != User && isBlockExecutable(UI->getParent())) 255 B += getUserBonus(UI, User, C); 256 257 return B; 258 } 259 260 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { 261 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 262 263 if (I.getCondition() != LastVisited->first) 264 return 0; 265 266 auto *C = dyn_cast<ConstantInt>(LastVisited->second); 267 if (!C) 268 return 0; 269 270 BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); 271 // Initialize the worklist with the dead basic blocks. These are the 272 // destination labels which are different from the one corresponding 273 // to \p C. They should be executable and have a unique predecessor. 274 SmallVector<BasicBlock *> WorkList; 275 for (const auto &Case : I.cases()) { 276 BasicBlock *BB = Case.getCaseSuccessor(); 277 if (BB != Succ && isBlockExecutable(BB) && 278 canEliminateSuccessor(I.getParent(), BB, DeadBlocks)) 279 WorkList.push_back(BB); 280 } 281 282 return estimateBasicBlocks(WorkList); 283 } 284 285 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { 286 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 287 288 if (I.getCondition() != LastVisited->first) 289 return 0; 290 291 BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); 292 // Initialize the worklist with the dead successor as long as 293 // it is executable and has a unique predecessor. 294 SmallVector<BasicBlock *> WorkList; 295 if (isBlockExecutable(Succ) && 296 canEliminateSuccessor(I.getParent(), Succ, DeadBlocks)) 297 WorkList.push_back(Succ); 298 299 return estimateBasicBlocks(WorkList); 300 } 301 302 Constant *InstCostVisitor::visitPHINode(PHINode &I) { 303 if (I.getNumIncomingValues() > MaxIncomingPhiValues) 304 return nullptr; 305 306 bool Inserted = VisitedPHIs.insert(&I).second; 307 Constant *Const = nullptr; 308 309 for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { 310 Value *V = I.getIncomingValue(Idx); 311 if (auto *Inst = dyn_cast<Instruction>(V)) 312 if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx))) 313 continue; 314 Constant *C = findConstantFor(V, KnownConstants); 315 if (!C) { 316 if (Inserted) 317 PendingPHIs.push_back(&I); 318 return nullptr; 319 } 320 if (!Const) 321 Const = C; 322 else if (C != Const) 323 return nullptr; 324 } 325 return Const; 326 } 327 328 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { 329 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 330 331 if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) 332 return LastVisited->second; 333 return nullptr; 334 } 335 336 Constant *InstCostVisitor::visitCallBase(CallBase &I) { 337 Function *F = I.getCalledFunction(); 338 if (!F || !canConstantFoldCallTo(&I, F)) 339 return nullptr; 340 341 SmallVector<Constant *, 8> Operands; 342 Operands.reserve(I.getNumOperands()); 343 344 for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { 345 Value *V = I.getOperand(Idx); 346 Constant *C = findConstantFor(V, KnownConstants); 347 if (!C) 348 return nullptr; 349 Operands.push_back(C); 350 } 351 352 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 353 return ConstantFoldCall(&I, F, Ops); 354 } 355 356 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { 357 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 358 359 if (isa<ConstantPointerNull>(LastVisited->second)) 360 return nullptr; 361 return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); 362 } 363 364 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 365 SmallVector<Constant *, 8> Operands; 366 Operands.reserve(I.getNumOperands()); 367 368 for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { 369 Value *V = I.getOperand(Idx); 370 Constant *C = findConstantFor(V, KnownConstants); 371 if (!C) 372 return nullptr; 373 Operands.push_back(C); 374 } 375 376 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 377 return ConstantFoldInstOperands(&I, Ops, DL); 378 } 379 380 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { 381 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 382 383 if (I.getCondition() != LastVisited->first) 384 return nullptr; 385 386 Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() 387 : I.getTrueValue(); 388 Constant *C = findConstantFor(V, KnownConstants); 389 return C; 390 } 391 392 Constant *InstCostVisitor::visitCastInst(CastInst &I) { 393 return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, 394 I.getType(), DL); 395 } 396 397 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { 398 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 399 400 bool Swap = I.getOperand(1) == LastVisited->first; 401 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 402 Constant *Other = findConstantFor(V, KnownConstants); 403 if (!Other) 404 return nullptr; 405 406 Constant *Const = LastVisited->second; 407 return Swap ? 408 ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL) 409 : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); 410 } 411 412 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { 413 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 414 415 return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); 416 } 417 418 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { 419 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 420 421 bool Swap = I.getOperand(1) == LastVisited->first; 422 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 423 Constant *Other = findConstantFor(V, KnownConstants); 424 if (!Other) 425 return nullptr; 426 427 Constant *Const = LastVisited->second; 428 return dyn_cast_or_null<Constant>(Swap ? 429 simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL)) 430 : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL))); 431 } 432 433 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, 434 CallInst *Call) { 435 Value *StoreValue = nullptr; 436 for (auto *User : Alloca->users()) { 437 // We can't use llvm::isAllocaPromotable() as that would fail because of 438 // the usage in the CallInst, which is what we check here. 439 if (User == Call) 440 continue; 441 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 442 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 443 return nullptr; 444 continue; 445 } 446 447 if (auto *Store = dyn_cast<StoreInst>(User)) { 448 // This is a duplicate store, bail out. 449 if (StoreValue || Store->isVolatile()) 450 return nullptr; 451 StoreValue = Store->getValueOperand(); 452 continue; 453 } 454 // Bail if there is any other unknown usage. 455 return nullptr; 456 } 457 458 if (!StoreValue) 459 return nullptr; 460 461 return getCandidateConstant(StoreValue); 462 } 463 464 // A constant stack value is an AllocaInst that has a single constant 465 // value stored to it. Return this constant if such an alloca stack value 466 // is a function argument. 467 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, 468 Value *Val) { 469 if (!Val) 470 return nullptr; 471 Val = Val->stripPointerCasts(); 472 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 473 return ConstVal; 474 auto *Alloca = dyn_cast<AllocaInst>(Val); 475 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 476 return nullptr; 477 return getPromotableAlloca(Alloca, Call); 478 } 479 480 // To support specializing recursive functions, it is important to propagate 481 // constant arguments because after a first iteration of specialisation, a 482 // reduced example may look like this: 483 // 484 // define internal void @RecursiveFn(i32* arg1) { 485 // %temp = alloca i32, align 4 486 // store i32 2 i32* %temp, align 4 487 // call void @RecursiveFn.1(i32* nonnull %temp) 488 // ret void 489 // } 490 // 491 // Before a next iteration, we need to propagate the constant like so 492 // which allows further specialization in next iterations. 493 // 494 // @funcspec.arg = internal constant i32 2 495 // 496 // define internal void @someFunc(i32* arg1) { 497 // call void @otherFunc(i32* nonnull @funcspec.arg) 498 // ret void 499 // } 500 // 501 // See if there are any new constant values for the callers of \p F via 502 // stack variables and promote them to global variables. 503 void FunctionSpecializer::promoteConstantStackValues(Function *F) { 504 for (User *U : F->users()) { 505 506 auto *Call = dyn_cast<CallInst>(U); 507 if (!Call) 508 continue; 509 510 if (!Solver.isBlockExecutable(Call->getParent())) 511 continue; 512 513 for (const Use &U : Call->args()) { 514 unsigned Idx = Call->getArgOperandNo(&U); 515 Value *ArgOp = Call->getArgOperand(Idx); 516 Type *ArgOpType = ArgOp->getType(); 517 518 if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) 519 continue; 520 521 auto *ConstVal = getConstantStackValue(Call, ArgOp); 522 if (!ConstVal) 523 continue; 524 525 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 526 GlobalValue::InternalLinkage, ConstVal, 527 "funcspec.arg"); 528 if (ArgOpType != ConstVal->getType()) 529 GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType); 530 531 Call->setArgOperand(Idx, GV); 532 } 533 } 534 } 535 536 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 537 // interfere with the promoteConstantStackValues() optimization. 538 static void removeSSACopy(Function &F) { 539 for (BasicBlock &BB : F) { 540 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 541 auto *II = dyn_cast<IntrinsicInst>(&Inst); 542 if (!II) 543 continue; 544 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 545 continue; 546 Inst.replaceAllUsesWith(II->getOperand(0)); 547 Inst.eraseFromParent(); 548 } 549 } 550 } 551 552 /// Remove any ssa_copy intrinsics that may have been introduced. 553 void FunctionSpecializer::cleanUpSSA() { 554 for (Function *F : Specializations) 555 removeSSACopy(*F); 556 } 557 558 559 template <> struct llvm::DenseMapInfo<SpecSig> { 560 static inline SpecSig getEmptyKey() { return {~0U, {}}; } 561 562 static inline SpecSig getTombstoneKey() { return {~1U, {}}; } 563 564 static unsigned getHashValue(const SpecSig &S) { 565 return static_cast<unsigned>(hash_value(S)); 566 } 567 568 static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { 569 return LHS == RHS; 570 } 571 }; 572 573 FunctionSpecializer::~FunctionSpecializer() { 574 LLVM_DEBUG( 575 if (NumSpecsCreated > 0) 576 dbgs() << "FnSpecialization: Created " << NumSpecsCreated 577 << " specializations in module " << M.getName() << "\n"); 578 // Eliminate dead code. 579 removeDeadFunctions(); 580 cleanUpSSA(); 581 } 582 583 /// Attempt to specialize functions in the module to enable constant 584 /// propagation across function boundaries. 585 /// 586 /// \returns true if at least one function is specialized. 587 bool FunctionSpecializer::run() { 588 // Find possible specializations for each function. 589 SpecMap SM; 590 SmallVector<Spec, 32> AllSpecs; 591 unsigned NumCandidates = 0; 592 for (Function &F : M) { 593 if (!isCandidateFunction(&F)) 594 continue; 595 596 auto [It, Inserted] = FunctionMetrics.try_emplace(&F); 597 CodeMetrics &Metrics = It->second; 598 //Analyze the function. 599 if (Inserted) { 600 SmallPtrSet<const Value *, 32> EphValues; 601 CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); 602 for (BasicBlock &BB : F) 603 Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); 604 } 605 606 // If the code metrics reveal that we shouldn't duplicate the function, 607 // or if the code size implies that this function is easy to get inlined, 608 // then we shouldn't specialize it. 609 if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || 610 (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) && 611 Metrics.NumInsts < MinFunctionSize)) 612 continue; 613 614 // TODO: For now only consider recursive functions when running multiple 615 // times. This should change if specialization on literal constants gets 616 // enabled. 617 if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant) 618 continue; 619 620 int64_t Sz = *Metrics.NumInsts.getValue(); 621 assert(Sz > 0 && "CodeSize should be positive"); 622 // It is safe to down cast from int64_t, NumInsts is always positive. 623 unsigned FuncSize = static_cast<unsigned>(Sz); 624 625 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " 626 << F.getName() << " is " << FuncSize << "\n"); 627 628 if (Inserted && Metrics.isRecursive) 629 promoteConstantStackValues(&F); 630 631 if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) { 632 LLVM_DEBUG( 633 dbgs() << "FnSpecialization: No possible specializations found for " 634 << F.getName() << "\n"); 635 continue; 636 } 637 638 ++NumCandidates; 639 } 640 641 if (!NumCandidates) { 642 LLVM_DEBUG( 643 dbgs() 644 << "FnSpecialization: No possible specializations found in module\n"); 645 return false; 646 } 647 648 // Choose the most profitable specialisations, which fit in the module 649 // specialization budget, which is derived from maximum number of 650 // specializations per specialization candidate function. 651 auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { 652 return AllSpecs[I].Score > AllSpecs[J].Score; 653 }; 654 const unsigned NSpecs = 655 std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); 656 SmallVector<unsigned> BestSpecs(NSpecs + 1); 657 std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); 658 if (AllSpecs.size() > NSpecs) { 659 LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " 660 << "the maximum number of clones threshold.\n" 661 << "FnSpecialization: Specializing the " 662 << NSpecs 663 << " most profitable candidates.\n"); 664 std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); 665 for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { 666 BestSpecs[NSpecs] = I; 667 std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 668 std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 669 } 670 } 671 672 LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; 673 for (unsigned I = 0; I < NSpecs; ++I) { 674 const Spec &S = AllSpecs[BestSpecs[I]]; 675 dbgs() << "FnSpecialization: Function " << S.F->getName() 676 << " , score " << S.Score << "\n"; 677 for (const ArgInfo &Arg : S.Sig.Args) 678 dbgs() << "FnSpecialization: FormalArg = " 679 << Arg.Formal->getNameOrAsOperand() 680 << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() 681 << "\n"; 682 }); 683 684 // Create the chosen specializations. 685 SmallPtrSet<Function *, 8> OriginalFuncs; 686 SmallVector<Function *> Clones; 687 for (unsigned I = 0; I < NSpecs; ++I) { 688 Spec &S = AllSpecs[BestSpecs[I]]; 689 S.Clone = createSpecialization(S.F, S.Sig); 690 691 // Update the known call sites to call the clone. 692 for (CallBase *Call : S.CallSites) { 693 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call 694 << " to call " << S.Clone->getName() << "\n"); 695 Call->setCalledFunction(S.Clone); 696 } 697 698 Clones.push_back(S.Clone); 699 OriginalFuncs.insert(S.F); 700 } 701 702 Solver.solveWhileResolvedUndefsIn(Clones); 703 704 // Update the rest of the call sites - these are the recursive calls, calls 705 // to discarded specialisations and calls that may match a specialisation 706 // after the solver runs. 707 for (Function *F : OriginalFuncs) { 708 auto [Begin, End] = SM[F]; 709 updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); 710 } 711 712 for (Function *F : Clones) { 713 if (F->getReturnType()->isVoidTy()) 714 continue; 715 if (F->getReturnType()->isStructTy()) { 716 auto *STy = cast<StructType>(F->getReturnType()); 717 if (!Solver.isStructLatticeConstant(F, STy)) 718 continue; 719 } else { 720 auto It = Solver.getTrackedRetVals().find(F); 721 assert(It != Solver.getTrackedRetVals().end() && 722 "Return value ought to be tracked"); 723 if (SCCPSolver::isOverdefined(It->second)) 724 continue; 725 } 726 for (User *U : F->users()) { 727 if (auto *CS = dyn_cast<CallBase>(U)) { 728 //The user instruction does not call our function. 729 if (CS->getCalledFunction() != F) 730 continue; 731 Solver.resetLatticeValueFor(CS); 732 } 733 } 734 } 735 736 // Rerun the solver to notify the users of the modified callsites. 737 Solver.solveWhileResolvedUndefs(); 738 739 for (Function *F : OriginalFuncs) 740 if (FunctionMetrics[F].isRecursive) 741 promoteConstantStackValues(F); 742 743 return true; 744 } 745 746 void FunctionSpecializer::removeDeadFunctions() { 747 for (Function *F : FullySpecialized) { 748 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " 749 << F->getName() << "\n"); 750 if (FAM) 751 FAM->clear(*F, F->getName()); 752 F->eraseFromParent(); 753 } 754 FullySpecialized.clear(); 755 } 756 757 /// Clone the function \p F and remove the ssa_copy intrinsics added by 758 /// the SCCPSolver in the cloned version. 759 static Function *cloneCandidateFunction(Function *F) { 760 ValueToValueMapTy Mappings; 761 Function *Clone = CloneFunction(F, Mappings); 762 removeSSACopy(*Clone); 763 return Clone; 764 } 765 766 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize, 767 SmallVectorImpl<Spec> &AllSpecs, 768 SpecMap &SM) { 769 // A mapping from a specialisation signature to the index of the respective 770 // entry in the all specialisation array. Used to ensure uniqueness of 771 // specialisations. 772 DenseMap<SpecSig, unsigned> UniqueSpecs; 773 774 // Get a list of interesting arguments. 775 SmallVector<Argument *> Args; 776 for (Argument &Arg : F->args()) 777 if (isArgumentInteresting(&Arg)) 778 Args.push_back(&Arg); 779 780 if (Args.empty()) 781 return false; 782 783 for (User *U : F->users()) { 784 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 785 continue; 786 auto &CS = *cast<CallBase>(U); 787 788 // The user instruction does not call our function. 789 if (CS.getCalledFunction() != F) 790 continue; 791 792 // If the call site has attribute minsize set, that callsite won't be 793 // specialized. 794 if (CS.hasFnAttr(Attribute::MinSize)) 795 continue; 796 797 // If the parent of the call site will never be executed, we don't need 798 // to worry about the passed value. 799 if (!Solver.isBlockExecutable(CS.getParent())) 800 continue; 801 802 // Examine arguments and create a specialisation candidate from the 803 // constant operands of this call site. 804 SpecSig S; 805 for (Argument *A : Args) { 806 Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); 807 if (!C) 808 continue; 809 LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " 810 << A->getName() << " : " << C->getNameOrAsOperand() 811 << "\n"); 812 S.Args.push_back({A, C}); 813 } 814 815 if (S.Args.empty()) 816 continue; 817 818 // Check if we have encountered the same specialisation already. 819 if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { 820 // Existing specialisation. Add the call to the list to rewrite, unless 821 // it's a recursive call. A specialisation, generated because of a 822 // recursive call may end up as not the best specialisation for all 823 // the cloned instances of this call, which result from specialising 824 // functions. Hence we don't rewrite the call directly, but match it with 825 // the best specialisation once all specialisations are known. 826 if (CS.getFunction() == F) 827 continue; 828 const unsigned Index = It->second; 829 AllSpecs[Index].CallSites.push_back(&CS); 830 } else { 831 // Calculate the specialisation gain. 832 Bonus B; 833 unsigned Score = 0; 834 InstCostVisitor Visitor = getInstCostVisitorFor(F); 835 for (ArgInfo &A : S.Args) { 836 B += Visitor.getSpecializationBonus(A.Formal, A.Actual); 837 Score += getInliningBonus(A.Formal, A.Actual); 838 } 839 B += Visitor.getBonusFromPendingPHIs(); 840 841 842 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization bonus {CodeSize = " 843 << B.CodeSize << ", Latency = " << B.Latency 844 << ", Inlining = " << Score << "}\n"); 845 846 auto IsProfitable = [&FuncSize](Bonus &B, unsigned Score) -> bool { 847 // No check required. 848 if (ForceSpecialization) 849 return true; 850 // Minimum inlining bonus. 851 if (Score > MinInliningBonus * FuncSize / 100) 852 return true; 853 // Minimum codesize savings. 854 if (B.CodeSize < MinCodeSizeSavings * FuncSize / 100) 855 return false; 856 // Minimum latency savings. 857 if (B.Latency < MinLatencySavings * FuncSize / 100) 858 return false; 859 return true; 860 }; 861 862 // Discard unprofitable specialisations. 863 if (!IsProfitable(B, Score)) 864 continue; 865 866 // Create a new specialisation entry. 867 Score += std::max(B.CodeSize, B.Latency); 868 auto &Spec = AllSpecs.emplace_back(F, S, Score); 869 if (CS.getFunction() != F) 870 Spec.CallSites.push_back(&CS); 871 const unsigned Index = AllSpecs.size() - 1; 872 UniqueSpecs[S] = Index; 873 if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) 874 It->second.second = Index + 1; 875 } 876 } 877 878 return !UniqueSpecs.empty(); 879 } 880 881 bool FunctionSpecializer::isCandidateFunction(Function *F) { 882 if (F->isDeclaration() || F->arg_empty()) 883 return false; 884 885 if (F->hasFnAttribute(Attribute::NoDuplicate)) 886 return false; 887 888 // Do not specialize the cloned function again. 889 if (Specializations.contains(F)) 890 return false; 891 892 // If we're optimizing the function for size, we shouldn't specialize it. 893 if (F->hasOptSize() || 894 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 895 return false; 896 897 // Exit if the function is not executable. There's no point in specializing 898 // a dead function. 899 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 900 return false; 901 902 // It wastes time to specialize a function which would get inlined finally. 903 if (F->hasFnAttribute(Attribute::AlwaysInline)) 904 return false; 905 906 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 907 << "\n"); 908 return true; 909 } 910 911 Function *FunctionSpecializer::createSpecialization(Function *F, 912 const SpecSig &S) { 913 Function *Clone = cloneCandidateFunction(F); 914 915 // The original function does not neccessarily have internal linkage, but the 916 // clone must. 917 Clone->setLinkage(GlobalValue::InternalLinkage); 918 919 // Initialize the lattice state of the arguments of the function clone, 920 // marking the argument on which we specialized the function constant 921 // with the given value. 922 Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); 923 Solver.markBlockExecutable(&Clone->front()); 924 Solver.addArgumentTrackedFunction(Clone); 925 Solver.addTrackedFunction(Clone); 926 927 // Mark all the specialized functions 928 Specializations.insert(Clone); 929 ++NumSpecsCreated; 930 931 return Clone; 932 } 933 934 /// Compute the inlining bonus for replacing argument \p A with constant \p C. 935 /// The below heuristic is only concerned with exposing inlining 936 /// opportunities via indirect call promotion. If the argument is not a 937 /// (potentially casted) function pointer, give up. 938 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) { 939 Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); 940 if (!CalledFunction) 941 return 0; 942 943 // Get TTI for the called function (used for the inline cost). 944 auto &CalleeTTI = (GetTTI)(*CalledFunction); 945 946 // Look at all the call sites whose called value is the argument. 947 // Specializing the function on the argument would allow these indirect 948 // calls to be promoted to direct calls. If the indirect call promotion 949 // would likely enable the called function to be inlined, specializing is a 950 // good idea. 951 int InliningBonus = 0; 952 for (User *U : A->users()) { 953 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 954 continue; 955 auto *CS = cast<CallBase>(U); 956 if (CS->getCalledOperand() != A) 957 continue; 958 if (CS->getFunctionType() != CalledFunction->getFunctionType()) 959 continue; 960 961 // Get the cost of inlining the called function at this call site. Note 962 // that this is only an estimate. The called function may eventually 963 // change in a way that leads to it not being inlined here, even though 964 // inlining looks profitable now. For example, one of its called 965 // functions may be inlined into it, making the called function too large 966 // to be inlined into this call site. 967 // 968 // We apply a boost for performing indirect call promotion by increasing 969 // the default threshold by the threshold for indirect calls. 970 auto Params = getInlineParams(); 971 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 972 InlineCost IC = 973 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 974 975 // We clamp the bonus for this call to be between zero and the default 976 // threshold. 977 if (IC.isAlways()) 978 InliningBonus += Params.DefaultThreshold; 979 else if (IC.isVariable() && IC.getCostDelta() > 0) 980 InliningBonus += IC.getCostDelta(); 981 982 LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus 983 << " for user " << *U << "\n"); 984 } 985 986 return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0; 987 } 988 989 /// Determine if it is possible to specialise the function for constant values 990 /// of the formal parameter \p A. 991 bool FunctionSpecializer::isArgumentInteresting(Argument *A) { 992 // No point in specialization if the argument is unused. 993 if (A->user_empty()) 994 return false; 995 996 Type *Ty = A->getType(); 997 if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || 998 (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) 999 return false; 1000 1001 // SCCP solver does not record an argument that will be constructed on 1002 // stack. 1003 if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) 1004 return false; 1005 1006 // For non-argument-tracked functions every argument is overdefined. 1007 if (!Solver.isArgumentTrackedFunction(A->getParent())) 1008 return true; 1009 1010 // Check the lattice value and decide if we should attemt to specialize, 1011 // based on this argument. No point in specialization, if the lattice value 1012 // is already a constant. 1013 bool IsOverdefined = Ty->isStructTy() 1014 ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) 1015 : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); 1016 1017 LLVM_DEBUG( 1018 if (IsOverdefined) 1019 dbgs() << "FnSpecialization: Found interesting parameter " 1020 << A->getNameOrAsOperand() << "\n"; 1021 else 1022 dbgs() << "FnSpecialization: Nothing to do, parameter " 1023 << A->getNameOrAsOperand() << " is already constant\n"; 1024 ); 1025 return IsOverdefined; 1026 } 1027 1028 /// Check if the value \p V (an actual argument) is a constant or can only 1029 /// have a constant value. Return that constant. 1030 Constant *FunctionSpecializer::getCandidateConstant(Value *V) { 1031 if (isa<PoisonValue>(V)) 1032 return nullptr; 1033 1034 // Select for possible specialisation values that are constants or 1035 // are deduced to be constants or constant ranges with a single element. 1036 Constant *C = dyn_cast<Constant>(V); 1037 if (!C) 1038 C = Solver.getConstantOrNull(V); 1039 1040 // Don't specialize on (anything derived from) the address of a non-constant 1041 // global variable, unless explicitly enabled. 1042 if (C && C->getType()->isPointerTy() && !C->isNullValue()) 1043 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 1044 GV && !(GV->isConstant() || SpecializeOnAddress)) 1045 return nullptr; 1046 1047 return C; 1048 } 1049 1050 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, 1051 const Spec *End) { 1052 // Collect the call sites that need updating. 1053 SmallVector<CallBase *> ToUpdate; 1054 for (User *U : F->users()) 1055 if (auto *CS = dyn_cast<CallBase>(U); 1056 CS && CS->getCalledFunction() == F && 1057 Solver.isBlockExecutable(CS->getParent())) 1058 ToUpdate.push_back(CS); 1059 1060 unsigned NCallsLeft = ToUpdate.size(); 1061 for (CallBase *CS : ToUpdate) { 1062 bool ShouldDecrementCount = CS->getFunction() == F; 1063 1064 // Find the best matching specialisation. 1065 const Spec *BestSpec = nullptr; 1066 for (const Spec &S : make_range(Begin, End)) { 1067 if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) 1068 continue; 1069 1070 if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { 1071 unsigned ArgNo = Arg.Formal->getArgNo(); 1072 return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; 1073 })) 1074 continue; 1075 1076 BestSpec = &S; 1077 } 1078 1079 if (BestSpec) { 1080 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS 1081 << " to call " << BestSpec->Clone->getName() << "\n"); 1082 CS->setCalledFunction(BestSpec->Clone); 1083 ShouldDecrementCount = true; 1084 } 1085 1086 if (ShouldDecrementCount) 1087 --NCallsLeft; 1088 } 1089 1090 // If the function has been completely specialized, the original function 1091 // is no longer needed. Mark it unreachable. 1092 if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { 1093 Solver.markFunctionUnreachable(F); 1094 FullySpecialized.insert(F); 1095 } 1096 } 1097