xref: /llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision 52bffdf9f5bb72eb86249a012d08a40c90316dfb)
1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/Analysis/CodeMetrics.h"
12 #include "llvm/Analysis/ConstantFolding.h"
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueLattice.h"
17 #include "llvm/Analysis/ValueLatticeUtils.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/Transforms/Scalar/SCCP.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include "llvm/Transforms/Utils/SCCPSolver.h"
23 #include "llvm/Transforms/Utils/SizeOpts.h"
24 #include <cmath>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "function-specialization"
29 
30 STATISTIC(NumSpecsCreated, "Number of specializations created");
31 
32 static cl::opt<bool> ForceSpecialization(
33     "force-specialization", cl::init(false), cl::Hidden, cl::desc(
34     "Force function specialization for every call site with a constant "
35     "argument"));
36 
37 static cl::opt<unsigned> MaxClones(
38     "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
39     "The maximum number of clones allowed for a single function "
40     "specialization"));
41 
42 static cl::opt<unsigned>
43     MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100),
44                            cl::Hidden,
45                            cl::desc("The maximum number of iterations allowed "
46                                     "when searching for transitive "
47                                     "phis"));
48 
49 static cl::opt<unsigned> MaxIncomingPhiValues(
50     "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden,
51     cl::desc("The maximum number of incoming values a PHI node can have to be "
52              "considered during the specialization bonus estimation"));
53 
54 static cl::opt<unsigned> MaxBlockPredecessors(
55     "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc(
56     "The maximum number of predecessors a basic block can have to be "
57     "considered during the estimation of dead code"));
58 
59 static cl::opt<unsigned> MinFunctionSize(
60     "funcspec-min-function-size", cl::init(500), cl::Hidden,
61     cl::desc("Don't specialize functions that have less than this number of "
62              "instructions"));
63 
64 static cl::opt<unsigned> MaxCodeSizeGrowth(
65     "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc(
66     "Maximum codesize growth allowed per function"));
67 
68 static cl::opt<unsigned> MinCodeSizeSavings(
69     "funcspec-min-codesize-savings", cl::init(20), cl::Hidden,
70     cl::desc("Reject specializations whose codesize savings are less than this "
71              "much percent of the original function size"));
72 
73 static cl::opt<unsigned> MinLatencySavings(
74     "funcspec-min-latency-savings", cl::init(40), cl::Hidden,
75     cl::desc("Reject specializations whose latency savings are less than this "
76              "much percent of the original function size"));
77 
78 static cl::opt<unsigned> MinInliningBonus(
79     "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden,
80     cl::desc("Reject specializations whose inlining bonus is less than this "
81              "much percent of the original function size"));
82 
83 static cl::opt<bool> SpecializeOnAddress(
84     "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
85     "Enable function specialization on the address of global values"));
86 
87 static cl::opt<bool> SpecializeLiteralConstant(
88     "funcspec-for-literal-constant", cl::init(true), cl::Hidden,
89     cl::desc(
90         "Enable specialization of functions that take a literal constant as an "
91         "argument"));
92 
93 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB,
94                                             BasicBlock *Succ) const {
95   unsigned I = 0;
96   return all_of(predecessors(Succ), [&I, BB, Succ, this](BasicBlock *Pred) {
97     return I++ < MaxBlockPredecessors &&
98            (Pred == BB || Pred == Succ || !isBlockExecutable(Pred));
99   });
100 }
101 
102 // Estimates the codesize savings due to dead code after constant propagation.
103 // \p WorkList represents the basic blocks of a specialization which will
104 // eventually become dead once we replace instructions that are known to be
105 // constants. The successors of such blocks are added to the list as long as
106 // the \p Solver found they were executable prior to specialization, and only
107 // if all their predecessors are dead.
108 Cost InstCostVisitor::estimateBasicBlocks(
109                           SmallVectorImpl<BasicBlock *> &WorkList) {
110   Cost CodeSize = 0;
111   // Accumulate the codesize savings of each basic block.
112   while (!WorkList.empty()) {
113     BasicBlock *BB = WorkList.pop_back_val();
114 
115     // These blocks are considered dead as far as the InstCostVisitor
116     // is concerned. They haven't been proven dead yet by the Solver,
117     // but may become if we propagate the specialization arguments.
118     assert(Solver.isBlockExecutable(BB) && "BB already found dead by IPSCCP!");
119     if (!DeadBlocks.insert(BB).second)
120       continue;
121 
122     for (Instruction &I : *BB) {
123       // If it's a known constant we have already accounted for it.
124       if (KnownConstants.contains(&I))
125         continue;
126 
127       Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
128 
129       LLVM_DEBUG(dbgs() << "FnSpecialization:     CodeSize " << C
130                         << " for user " << I << "\n");
131       CodeSize += C;
132     }
133 
134     // Keep adding dead successors to the list as long as they are
135     // executable and only reachable from dead blocks.
136     for (BasicBlock *SuccBB : successors(BB))
137       if (isBlockExecutable(SuccBB) && canEliminateSuccessor(BB, SuccBB))
138         WorkList.push_back(SuccBB);
139   }
140   return CodeSize;
141 }
142 
143 Constant *InstCostVisitor::findConstantFor(Value *V) const {
144   if (auto *C = dyn_cast<Constant>(V))
145     return C;
146   if (auto *C = Solver.getConstantOrNull(V))
147     return C;
148   return KnownConstants.lookup(V);
149 }
150 
151 Cost InstCostVisitor::getCodeSizeSavingsFromPendingPHIs() {
152   Cost CodeSize;
153   while (!PendingPHIs.empty()) {
154     Instruction *Phi = PendingPHIs.pop_back_val();
155     // The pending PHIs could have been proven dead by now.
156     if (isBlockExecutable(Phi->getParent()))
157       CodeSize += getCodeSizeSavingsForUser(Phi);
158   }
159   return CodeSize;
160 }
161 
162 /// Compute the codesize savings for replacing argument \p A with constant \p C.
163 Cost InstCostVisitor::getCodeSizeSavingsForArg(Argument *A, Constant *C) {
164   LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
165                     << C->getNameOrAsOperand() << "\n");
166   Cost CodeSize;
167   for (auto *U : A->users())
168     if (auto *UI = dyn_cast<Instruction>(U))
169       if (isBlockExecutable(UI->getParent()))
170         CodeSize += getCodeSizeSavingsForUser(UI, A, C);
171 
172   LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated bonus {CodeSize = "
173                     << CodeSize << "} for argument " << *A << "\n");
174   return CodeSize;
175 }
176 
177 /// Compute the latency savings from replacing all arguments with constants for
178 /// a specialization candidate. As this function computes the latency savings
179 /// for all Instructions in KnownConstants at once, it should be called only
180 /// after every instruction has been visited, i.e. after:
181 ///
182 /// * getCodeSizeSavingsForArg has been run for every constant argument of a
183 ///   specialization candidate
184 ///
185 /// * getCodeSizeSavingsFromPendingPHIs has been run
186 ///
187 /// to ensure that the latency savings are calculated for all Instructions we
188 /// have visited and found to be constant.
189 Cost InstCostVisitor::getLatencySavingsForKnownConstants() {
190   auto &BFI = GetBFI(*F);
191   Cost TotalLatency = 0;
192 
193   for (auto Pair : KnownConstants) {
194     Instruction *I = dyn_cast<Instruction>(Pair.first);
195     if (!I)
196       continue;
197 
198     uint64_t Weight = BFI.getBlockFreq(I->getParent()).getFrequency() /
199                       BFI.getEntryFreq().getFrequency();
200 
201     Cost Latency =
202         Weight * TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
203 
204     LLVM_DEBUG(dbgs() << "FnSpecialization:     {Latency = " << Latency
205                       << "} for instruction " << *I << "\n");
206 
207     TotalLatency += Latency;
208   }
209 
210   return TotalLatency;
211 }
212 
213 Cost InstCostVisitor::getCodeSizeSavingsForUser(Instruction *User, Value *Use,
214                                                 Constant *C) {
215   // We have already propagated a constant for this user.
216   if (KnownConstants.contains(User))
217     return 0;
218 
219   // Cache the iterator before visiting.
220   LastVisited = Use ? KnownConstants.insert({Use, C}).first
221                     : KnownConstants.end();
222 
223   Cost CodeSize = 0;
224   if (auto *I = dyn_cast<SwitchInst>(User)) {
225     CodeSize = estimateSwitchInst(*I);
226   } else if (auto *I = dyn_cast<BranchInst>(User)) {
227     CodeSize = estimateBranchInst(*I);
228   } else {
229     C = visit(*User);
230     if (!C)
231       return 0;
232   }
233 
234   // Even though it doesn't make sense to bind switch and branch instructions
235   // with a constant, unlike any other instruction type, it prevents estimating
236   // their bonus multiple times.
237   KnownConstants.insert({User, C});
238 
239   CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize);
240 
241   LLVM_DEBUG(dbgs() << "FnSpecialization:     {CodeSize = " << CodeSize
242                     << "} for user " << *User << "\n");
243 
244   for (auto *U : User->users())
245     if (auto *UI = dyn_cast<Instruction>(U))
246       if (UI != User && isBlockExecutable(UI->getParent()))
247         CodeSize += getCodeSizeSavingsForUser(UI, User, C);
248 
249   return CodeSize;
250 }
251 
252 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
253   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
254 
255   if (I.getCondition() != LastVisited->first)
256     return 0;
257 
258   auto *C = dyn_cast<ConstantInt>(LastVisited->second);
259   if (!C)
260     return 0;
261 
262   BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
263   // Initialize the worklist with the dead basic blocks. These are the
264   // destination labels which are different from the one corresponding
265   // to \p C. They should be executable and have a unique predecessor.
266   SmallVector<BasicBlock *> WorkList;
267   for (const auto &Case : I.cases()) {
268     BasicBlock *BB = Case.getCaseSuccessor();
269     if (BB != Succ && isBlockExecutable(BB) &&
270         canEliminateSuccessor(I.getParent(), BB))
271       WorkList.push_back(BB);
272   }
273 
274   return estimateBasicBlocks(WorkList);
275 }
276 
277 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
278   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
279 
280   if (I.getCondition() != LastVisited->first)
281     return 0;
282 
283   BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
284   // Initialize the worklist with the dead successor as long as
285   // it is executable and has a unique predecessor.
286   SmallVector<BasicBlock *> WorkList;
287   if (isBlockExecutable(Succ) && canEliminateSuccessor(I.getParent(), Succ))
288     WorkList.push_back(Succ);
289 
290   return estimateBasicBlocks(WorkList);
291 }
292 
293 bool InstCostVisitor::discoverTransitivelyIncomingValues(
294     Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) {
295 
296   SmallVector<PHINode *, 64> WorkList;
297   WorkList.push_back(Root);
298   unsigned Iter = 0;
299 
300   while (!WorkList.empty()) {
301     PHINode *PN = WorkList.pop_back_val();
302 
303     if (++Iter > MaxDiscoveryIterations ||
304         PN->getNumIncomingValues() > MaxIncomingPhiValues)
305       return false;
306 
307     if (!TransitivePHIs.insert(PN).second)
308       continue;
309 
310     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
311       Value *V = PN->getIncomingValue(I);
312 
313       // Disregard self-references and dead incoming values.
314       if (auto *Inst = dyn_cast<Instruction>(V))
315         if (Inst == PN || !isBlockExecutable(PN->getIncomingBlock(I)))
316           continue;
317 
318       if (Constant *C = findConstantFor(V)) {
319         // Not all incoming values are the same constant. Bail immediately.
320         if (C != Const)
321           return false;
322         continue;
323       }
324 
325       if (auto *Phi = dyn_cast<PHINode>(V)) {
326         WorkList.push_back(Phi);
327         continue;
328       }
329 
330       // We can't reason about anything else.
331       return false;
332     }
333   }
334   return true;
335 }
336 
337 Constant *InstCostVisitor::visitPHINode(PHINode &I) {
338   if (I.getNumIncomingValues() > MaxIncomingPhiValues)
339     return nullptr;
340 
341   bool Inserted = VisitedPHIs.insert(&I).second;
342   Constant *Const = nullptr;
343   bool HaveSeenIncomingPHI = false;
344 
345   for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
346     Value *V = I.getIncomingValue(Idx);
347 
348     // Disregard self-references and dead incoming values.
349     if (auto *Inst = dyn_cast<Instruction>(V))
350       if (Inst == &I || !isBlockExecutable(I.getIncomingBlock(Idx)))
351         continue;
352 
353     if (Constant *C = findConstantFor(V)) {
354       if (!Const)
355         Const = C;
356       // Not all incoming values are the same constant. Bail immediately.
357       if (C != Const)
358         return nullptr;
359       continue;
360     }
361 
362     if (Inserted) {
363       // First time we are seeing this phi. We will retry later, after
364       // all the constant arguments have been propagated. Bail for now.
365       PendingPHIs.push_back(&I);
366       return nullptr;
367     }
368 
369     if (isa<PHINode>(V)) {
370       // Perhaps it is a Transitive Phi. We will confirm later.
371       HaveSeenIncomingPHI = true;
372       continue;
373     }
374 
375     // We can't reason about anything else.
376     return nullptr;
377   }
378 
379   if (!Const)
380     return nullptr;
381 
382   if (!HaveSeenIncomingPHI)
383     return Const;
384 
385   DenseSet<PHINode *> TransitivePHIs;
386   if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs))
387     return nullptr;
388 
389   return Const;
390 }
391 
392 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
393   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
394 
395   if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
396     return LastVisited->second;
397   return nullptr;
398 }
399 
400 Constant *InstCostVisitor::visitCallBase(CallBase &I) {
401   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
402 
403   // Look through calls to ssa_copy intrinsics.
404   if (auto *II = dyn_cast<IntrinsicInst>(&I);
405       II && II->getIntrinsicID() == Intrinsic::ssa_copy) {
406     return LastVisited->second;
407   }
408 
409   Function *F = I.getCalledFunction();
410   if (!F || !canConstantFoldCallTo(&I, F))
411     return nullptr;
412 
413   SmallVector<Constant *, 8> Operands;
414   Operands.reserve(I.getNumOperands());
415 
416   for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
417     Value *V = I.getOperand(Idx);
418     if (isa<MetadataAsValue>(V))
419       return nullptr;
420     Constant *C = findConstantFor(V);
421     if (!C)
422       return nullptr;
423     Operands.push_back(C);
424   }
425 
426   auto Ops = ArrayRef(Operands.begin(), Operands.end());
427   return ConstantFoldCall(&I, F, Ops);
428 }
429 
430 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
431   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
432 
433   if (isa<ConstantPointerNull>(LastVisited->second))
434     return nullptr;
435   return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
436 }
437 
438 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
439   SmallVector<Constant *, 8> Operands;
440   Operands.reserve(I.getNumOperands());
441 
442   for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
443     Value *V = I.getOperand(Idx);
444     Constant *C = findConstantFor(V);
445     if (!C)
446       return nullptr;
447     Operands.push_back(C);
448   }
449 
450   auto Ops = ArrayRef(Operands.begin(), Operands.end());
451   return ConstantFoldInstOperands(&I, Ops, DL);
452 }
453 
454 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
455   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
456 
457   if (I.getCondition() == LastVisited->first) {
458     Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
459                                                   : I.getTrueValue();
460     return findConstantFor(V);
461   }
462   if (Constant *Condition = findConstantFor(I.getCondition()))
463     if ((I.getTrueValue() == LastVisited->first && Condition->isOneValue()) ||
464         (I.getFalseValue() == LastVisited->first && Condition->isZeroValue()))
465       return LastVisited->second;
466   return nullptr;
467 }
468 
469 Constant *InstCostVisitor::visitCastInst(CastInst &I) {
470   return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
471                                  I.getType(), DL);
472 }
473 
474 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
475   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
476 
477   Constant *Const = LastVisited->second;
478   bool ConstOnRHS = I.getOperand(1) == LastVisited->first;
479   Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1);
480   Constant *Other = findConstantFor(V);
481 
482   if (Other) {
483     if (ConstOnRHS)
484       std::swap(Const, Other);
485     return ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
486   }
487 
488   // If we haven't found Other to be a specific constant value, we may still be
489   // able to constant fold using information from the lattice value.
490   const ValueLatticeElement &ConstLV = ValueLatticeElement::get(Const);
491   const ValueLatticeElement &OtherLV = Solver.getLatticeValueFor(V);
492   auto &V1State = ConstOnRHS ? OtherLV : ConstLV;
493   auto &V2State = ConstOnRHS ? ConstLV : OtherLV;
494   return V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
495 }
496 
497 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
498   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
499 
500   return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
501 }
502 
503 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
504   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
505 
506   bool ConstOnRHS = I.getOperand(1) == LastVisited->first;
507   Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1);
508   Constant *Other = findConstantFor(V);
509   Value *OtherVal = Other ? Other : V;
510   Value *ConstVal = LastVisited->second;
511 
512   if (ConstOnRHS)
513     std::swap(ConstVal, OtherVal);
514 
515   return dyn_cast_or_null<Constant>(
516       simplifyBinOp(I.getOpcode(), ConstVal, OtherVal, SimplifyQuery(DL)));
517 }
518 
519 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
520                                                    CallInst *Call) {
521   Value *StoreValue = nullptr;
522   for (auto *User : Alloca->users()) {
523     // We can't use llvm::isAllocaPromotable() as that would fail because of
524     // the usage in the CallInst, which is what we check here.
525     if (User == Call)
526       continue;
527 
528     if (auto *Store = dyn_cast<StoreInst>(User)) {
529       // This is a duplicate store, bail out.
530       if (StoreValue || Store->isVolatile())
531         return nullptr;
532       StoreValue = Store->getValueOperand();
533       continue;
534     }
535     // Bail if there is any other unknown usage.
536     return nullptr;
537   }
538 
539   if (!StoreValue)
540     return nullptr;
541 
542   return getCandidateConstant(StoreValue);
543 }
544 
545 // A constant stack value is an AllocaInst that has a single constant
546 // value stored to it. Return this constant if such an alloca stack value
547 // is a function argument.
548 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
549                                                      Value *Val) {
550   if (!Val)
551     return nullptr;
552   Val = Val->stripPointerCasts();
553   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
554     return ConstVal;
555   auto *Alloca = dyn_cast<AllocaInst>(Val);
556   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
557     return nullptr;
558   return getPromotableAlloca(Alloca, Call);
559 }
560 
561 // To support specializing recursive functions, it is important to propagate
562 // constant arguments because after a first iteration of specialisation, a
563 // reduced example may look like this:
564 //
565 //     define internal void @RecursiveFn(i32* arg1) {
566 //       %temp = alloca i32, align 4
567 //       store i32 2 i32* %temp, align 4
568 //       call void @RecursiveFn.1(i32* nonnull %temp)
569 //       ret void
570 //     }
571 //
572 // Before a next iteration, we need to propagate the constant like so
573 // which allows further specialization in next iterations.
574 //
575 //     @funcspec.arg = internal constant i32 2
576 //
577 //     define internal void @someFunc(i32* arg1) {
578 //       call void @otherFunc(i32* nonnull @funcspec.arg)
579 //       ret void
580 //     }
581 //
582 // See if there are any new constant values for the callers of \p F via
583 // stack variables and promote them to global variables.
584 void FunctionSpecializer::promoteConstantStackValues(Function *F) {
585   for (User *U : F->users()) {
586 
587     auto *Call = dyn_cast<CallInst>(U);
588     if (!Call)
589       continue;
590 
591     if (!Solver.isBlockExecutable(Call->getParent()))
592       continue;
593 
594     for (const Use &U : Call->args()) {
595       unsigned Idx = Call->getArgOperandNo(&U);
596       Value *ArgOp = Call->getArgOperand(Idx);
597       Type *ArgOpType = ArgOp->getType();
598 
599       if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
600         continue;
601 
602       auto *ConstVal = getConstantStackValue(Call, ArgOp);
603       if (!ConstVal)
604         continue;
605 
606       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
607                                      GlobalValue::InternalLinkage, ConstVal,
608                                      "specialized.arg." + Twine(++NGlobals));
609       Call->setArgOperand(Idx, GV);
610     }
611   }
612 }
613 
614 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
615 // interfere with the promoteConstantStackValues() optimization.
616 static void removeSSACopy(Function &F) {
617   for (BasicBlock &BB : F) {
618     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
619       auto *II = dyn_cast<IntrinsicInst>(&Inst);
620       if (!II)
621         continue;
622       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
623         continue;
624       Inst.replaceAllUsesWith(II->getOperand(0));
625       Inst.eraseFromParent();
626     }
627   }
628 }
629 
630 /// Remove any ssa_copy intrinsics that may have been introduced.
631 void FunctionSpecializer::cleanUpSSA() {
632   for (Function *F : Specializations)
633     removeSSACopy(*F);
634 }
635 
636 
637 template <> struct llvm::DenseMapInfo<SpecSig> {
638   static inline SpecSig getEmptyKey() { return {~0U, {}}; }
639 
640   static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
641 
642   static unsigned getHashValue(const SpecSig &S) {
643     return static_cast<unsigned>(hash_value(S));
644   }
645 
646   static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
647     return LHS == RHS;
648   }
649 };
650 
651 FunctionSpecializer::~FunctionSpecializer() {
652   LLVM_DEBUG(
653     if (NumSpecsCreated > 0)
654       dbgs() << "FnSpecialization: Created " << NumSpecsCreated
655              << " specializations in module " << M.getName() << "\n");
656   // Eliminate dead code.
657   removeDeadFunctions();
658   cleanUpSSA();
659 }
660 
661 /// Get the unsigned Value of given Cost object. Assumes the Cost is always
662 /// non-negative, which is true for both TCK_CodeSize and TCK_Latency, and
663 /// always Valid.
664 static unsigned getCostValue(const Cost &C) {
665   int64_t Value = *C.getValue();
666 
667   assert(Value >= 0 && "CodeSize and Latency cannot be negative");
668   // It is safe to down cast since we know the arguments cannot be negative and
669   // Cost is of type int64_t.
670   return static_cast<unsigned>(Value);
671 }
672 
673 /// Attempt to specialize functions in the module to enable constant
674 /// propagation across function boundaries.
675 ///
676 /// \returns true if at least one function is specialized.
677 bool FunctionSpecializer::run() {
678   // Find possible specializations for each function.
679   SpecMap SM;
680   SmallVector<Spec, 32> AllSpecs;
681   unsigned NumCandidates = 0;
682   for (Function &F : M) {
683     if (!isCandidateFunction(&F))
684       continue;
685 
686     auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
687     CodeMetrics &Metrics = It->second;
688     //Analyze the function.
689     if (Inserted) {
690       SmallPtrSet<const Value *, 32> EphValues;
691       CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
692       for (BasicBlock &BB : F)
693         Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
694     }
695 
696     // When specializing literal constants is enabled, always require functions
697     // to be larger than MinFunctionSize, to prevent excessive specialization.
698     const bool RequireMinSize =
699         !ForceSpecialization &&
700         (SpecializeLiteralConstant || !F.hasFnAttribute(Attribute::NoInline));
701 
702     // If the code metrics reveal that we shouldn't duplicate the function,
703     // or if the code size implies that this function is easy to get inlined,
704     // then we shouldn't specialize it.
705     if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
706         (RequireMinSize && Metrics.NumInsts < MinFunctionSize))
707       continue;
708 
709     // When specialization on literal constants is disabled, only consider
710     // recursive functions when running multiple times to save wasted analysis,
711     // as we will not be able to specialize on any newly found literal constant
712     // return values.
713     if (!SpecializeLiteralConstant && !Inserted && !Metrics.isRecursive)
714       continue;
715 
716     int64_t Sz = *Metrics.NumInsts.getValue();
717     assert(Sz > 0 && "CodeSize should be positive");
718     // It is safe to down cast from int64_t, NumInsts is always positive.
719     unsigned FuncSize = static_cast<unsigned>(Sz);
720 
721     LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
722                       << F.getName() << " is " << FuncSize << "\n");
723 
724     if (Inserted && Metrics.isRecursive)
725       promoteConstantStackValues(&F);
726 
727     if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) {
728       LLVM_DEBUG(
729           dbgs() << "FnSpecialization: No possible specializations found for "
730                  << F.getName() << "\n");
731       continue;
732     }
733 
734     ++NumCandidates;
735   }
736 
737   if (!NumCandidates) {
738     LLVM_DEBUG(
739         dbgs()
740         << "FnSpecialization: No possible specializations found in module\n");
741     return false;
742   }
743 
744   // Choose the most profitable specialisations, which fit in the module
745   // specialization budget, which is derived from maximum number of
746   // specializations per specialization candidate function.
747   auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
748     if (AllSpecs[I].Score != AllSpecs[J].Score)
749       return AllSpecs[I].Score > AllSpecs[J].Score;
750     return I > J;
751   };
752   const unsigned NSpecs =
753       std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
754   SmallVector<unsigned> BestSpecs(NSpecs + 1);
755   std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
756   if (AllSpecs.size() > NSpecs) {
757     LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
758                       << "the maximum number of clones threshold.\n"
759                       << "FnSpecialization: Specializing the "
760                       << NSpecs
761                       << " most profitable candidates.\n");
762     std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
763     for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
764       BestSpecs[NSpecs] = I;
765       std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
766       std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
767     }
768   }
769 
770   LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
771              for (unsigned I = 0; I < NSpecs; ++I) {
772                const Spec &S = AllSpecs[BestSpecs[I]];
773                dbgs() << "FnSpecialization: Function " << S.F->getName()
774                       << " , score " << S.Score << "\n";
775                for (const ArgInfo &Arg : S.Sig.Args)
776                  dbgs() << "FnSpecialization:   FormalArg = "
777                         << Arg.Formal->getNameOrAsOperand()
778                         << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
779                         << "\n";
780              });
781 
782   // Create the chosen specializations.
783   SmallPtrSet<Function *, 8> OriginalFuncs;
784   SmallVector<Function *> Clones;
785   for (unsigned I = 0; I < NSpecs; ++I) {
786     Spec &S = AllSpecs[BestSpecs[I]];
787 
788     // Accumulate the codesize growth for the function, now we are creating the
789     // specialization.
790     FunctionGrowth[S.F] += S.CodeSize;
791 
792     S.Clone = createSpecialization(S.F, S.Sig);
793 
794     // Update the known call sites to call the clone.
795     for (CallBase *Call : S.CallSites) {
796       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
797                         << " to call " << S.Clone->getName() << "\n");
798       Call->setCalledFunction(S.Clone);
799     }
800 
801     Clones.push_back(S.Clone);
802     OriginalFuncs.insert(S.F);
803   }
804 
805   Solver.solveWhileResolvedUndefsIn(Clones);
806 
807   // Update the rest of the call sites - these are the recursive calls, calls
808   // to discarded specialisations and calls that may match a specialisation
809   // after the solver runs.
810   for (Function *F : OriginalFuncs) {
811     auto [Begin, End] = SM[F];
812     updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
813   }
814 
815   for (Function *F : Clones) {
816     if (F->getReturnType()->isVoidTy())
817       continue;
818     if (F->getReturnType()->isStructTy()) {
819       auto *STy = cast<StructType>(F->getReturnType());
820       if (!Solver.isStructLatticeConstant(F, STy))
821         continue;
822     } else {
823       auto It = Solver.getTrackedRetVals().find(F);
824       assert(It != Solver.getTrackedRetVals().end() &&
825              "Return value ought to be tracked");
826       if (SCCPSolver::isOverdefined(It->second))
827         continue;
828     }
829     for (User *U : F->users()) {
830       if (auto *CS = dyn_cast<CallBase>(U)) {
831         //The user instruction does not call our function.
832         if (CS->getCalledFunction() != F)
833           continue;
834         Solver.resetLatticeValueFor(CS);
835       }
836     }
837   }
838 
839   // Rerun the solver to notify the users of the modified callsites.
840   Solver.solveWhileResolvedUndefs();
841 
842   for (Function *F : OriginalFuncs)
843     if (FunctionMetrics[F].isRecursive)
844       promoteConstantStackValues(F);
845 
846   return true;
847 }
848 
849 void FunctionSpecializer::removeDeadFunctions() {
850   for (Function *F : FullySpecialized) {
851     LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
852                       << F->getName() << "\n");
853     if (FAM)
854       FAM->clear(*F, F->getName());
855     F->eraseFromParent();
856   }
857   FullySpecialized.clear();
858 }
859 
860 /// Clone the function \p F and remove the ssa_copy intrinsics added by
861 /// the SCCPSolver in the cloned version.
862 static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) {
863   ValueToValueMapTy Mappings;
864   Function *Clone = CloneFunction(F, Mappings);
865   Clone->setName(F->getName() + ".specialized." + Twine(NSpecs));
866   removeSSACopy(*Clone);
867   return Clone;
868 }
869 
870 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize,
871                                               SmallVectorImpl<Spec> &AllSpecs,
872                                               SpecMap &SM) {
873   // A mapping from a specialisation signature to the index of the respective
874   // entry in the all specialisation array. Used to ensure uniqueness of
875   // specialisations.
876   DenseMap<SpecSig, unsigned> UniqueSpecs;
877 
878   // Get a list of interesting arguments.
879   SmallVector<Argument *> Args;
880   for (Argument &Arg : F->args())
881     if (isArgumentInteresting(&Arg))
882       Args.push_back(&Arg);
883 
884   if (Args.empty())
885     return false;
886 
887   for (User *U : F->users()) {
888     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
889       continue;
890     auto &CS = *cast<CallBase>(U);
891 
892     // The user instruction does not call our function.
893     if (CS.getCalledFunction() != F)
894       continue;
895 
896     // If the call site has attribute minsize set, that callsite won't be
897     // specialized.
898     if (CS.hasFnAttr(Attribute::MinSize))
899       continue;
900 
901     // If the parent of the call site will never be executed, we don't need
902     // to worry about the passed value.
903     if (!Solver.isBlockExecutable(CS.getParent()))
904       continue;
905 
906     // Examine arguments and create a specialisation candidate from the
907     // constant operands of this call site.
908     SpecSig S;
909     for (Argument *A : Args) {
910       Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
911       if (!C)
912         continue;
913       LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
914                         << A->getName() << " : " << C->getNameOrAsOperand()
915                         << "\n");
916       S.Args.push_back({A, C});
917     }
918 
919     if (S.Args.empty())
920       continue;
921 
922     // Check if we have encountered the same specialisation already.
923     if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
924       // Existing specialisation. Add the call to the list to rewrite, unless
925       // it's a recursive call. A specialisation, generated because of a
926       // recursive call may end up as not the best specialisation for all
927       // the cloned instances of this call, which result from specialising
928       // functions. Hence we don't rewrite the call directly, but match it with
929       // the best specialisation once all specialisations are known.
930       if (CS.getFunction() == F)
931         continue;
932       const unsigned Index = It->second;
933       AllSpecs[Index].CallSites.push_back(&CS);
934     } else {
935       // Calculate the specialisation gain.
936       Cost CodeSize;
937       unsigned Score = 0;
938       InstCostVisitor Visitor = getInstCostVisitorFor(F);
939       for (ArgInfo &A : S.Args) {
940         CodeSize += Visitor.getCodeSizeSavingsForArg(A.Formal, A.Actual);
941         Score += getInliningBonus(A.Formal, A.Actual);
942       }
943       CodeSize += Visitor.getCodeSizeSavingsFromPendingPHIs();
944 
945       unsigned CodeSizeSavings = getCostValue(CodeSize);
946       unsigned SpecSize = FuncSize - CodeSizeSavings;
947 
948       auto IsProfitable = [&]() -> bool {
949         // No check required.
950         if (ForceSpecialization)
951           return true;
952 
953         LLVM_DEBUG(
954             dbgs() << "FnSpecialization: Specialization bonus {Inlining = "
955                    << Score << " (" << (Score * 100 / FuncSize) << "%)}\n");
956 
957         // Minimum inlining bonus.
958         if (Score > MinInliningBonus * FuncSize / 100)
959           return true;
960 
961         LLVM_DEBUG(
962             dbgs() << "FnSpecialization: Specialization bonus {CodeSize = "
963                    << CodeSizeSavings << " ("
964                    << (CodeSizeSavings * 100 / FuncSize) << "%)}\n");
965 
966         // Minimum codesize savings.
967         if (CodeSizeSavings < MinCodeSizeSavings * FuncSize / 100)
968           return false;
969 
970         // Lazily compute the Latency, to avoid unnecessarily computing BFI.
971         unsigned LatencySavings =
972             getCostValue(Visitor.getLatencySavingsForKnownConstants());
973 
974         LLVM_DEBUG(
975             dbgs() << "FnSpecialization: Specialization bonus {Latency = "
976                    << LatencySavings << " ("
977                    << (LatencySavings * 100 / FuncSize) << "%)}\n");
978 
979         // Minimum latency savings.
980         if (LatencySavings < MinLatencySavings * FuncSize / 100)
981           return false;
982         // Maximum codesize growth.
983         if ((FunctionGrowth[F] + SpecSize) / FuncSize > MaxCodeSizeGrowth)
984           return false;
985 
986         Score += std::max(CodeSizeSavings, LatencySavings);
987         return true;
988       };
989 
990       // Discard unprofitable specialisations.
991       if (!IsProfitable())
992         continue;
993 
994       // Create a new specialisation entry.
995       auto &Spec = AllSpecs.emplace_back(F, S, Score, SpecSize);
996       if (CS.getFunction() != F)
997         Spec.CallSites.push_back(&CS);
998       const unsigned Index = AllSpecs.size() - 1;
999       UniqueSpecs[S] = Index;
1000       if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
1001         It->second.second = Index + 1;
1002     }
1003   }
1004 
1005   return !UniqueSpecs.empty();
1006 }
1007 
1008 bool FunctionSpecializer::isCandidateFunction(Function *F) {
1009   if (F->isDeclaration() || F->arg_empty())
1010     return false;
1011 
1012   if (F->hasFnAttribute(Attribute::NoDuplicate))
1013     return false;
1014 
1015   // Do not specialize the cloned function again.
1016   if (Specializations.contains(F))
1017     return false;
1018 
1019   // If we're optimizing the function for size, we shouldn't specialize it.
1020   if (shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
1021     return false;
1022 
1023   // Exit if the function is not executable. There's no point in specializing
1024   // a dead function.
1025   if (!Solver.isBlockExecutable(&F->getEntryBlock()))
1026     return false;
1027 
1028   // It wastes time to specialize a function which would get inlined finally.
1029   if (F->hasFnAttribute(Attribute::AlwaysInline))
1030     return false;
1031 
1032   LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
1033                     << "\n");
1034   return true;
1035 }
1036 
1037 Function *FunctionSpecializer::createSpecialization(Function *F,
1038                                                     const SpecSig &S) {
1039   Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1);
1040 
1041   // The original function does not neccessarily have internal linkage, but the
1042   // clone must.
1043   Clone->setLinkage(GlobalValue::InternalLinkage);
1044 
1045   // Initialize the lattice state of the arguments of the function clone,
1046   // marking the argument on which we specialized the function constant
1047   // with the given value.
1048   Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
1049   Solver.markBlockExecutable(&Clone->front());
1050   Solver.addArgumentTrackedFunction(Clone);
1051   Solver.addTrackedFunction(Clone);
1052 
1053   // Mark all the specialized functions
1054   Specializations.insert(Clone);
1055   ++NumSpecsCreated;
1056 
1057   return Clone;
1058 }
1059 
1060 /// Compute the inlining bonus for replacing argument \p A with constant \p C.
1061 /// The below heuristic is only concerned with exposing inlining
1062 /// opportunities via indirect call promotion. If the argument is not a
1063 /// (potentially casted) function pointer, give up.
1064 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) {
1065   Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
1066   if (!CalledFunction)
1067     return 0;
1068 
1069   // Get TTI for the called function (used for the inline cost).
1070   auto &CalleeTTI = (GetTTI)(*CalledFunction);
1071 
1072   // Look at all the call sites whose called value is the argument.
1073   // Specializing the function on the argument would allow these indirect
1074   // calls to be promoted to direct calls. If the indirect call promotion
1075   // would likely enable the called function to be inlined, specializing is a
1076   // good idea.
1077   int InliningBonus = 0;
1078   for (User *U : A->users()) {
1079     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
1080       continue;
1081     auto *CS = cast<CallBase>(U);
1082     if (CS->getCalledOperand() != A)
1083       continue;
1084     if (CS->getFunctionType() != CalledFunction->getFunctionType())
1085       continue;
1086 
1087     // Get the cost of inlining the called function at this call site. Note
1088     // that this is only an estimate. The called function may eventually
1089     // change in a way that leads to it not being inlined here, even though
1090     // inlining looks profitable now. For example, one of its called
1091     // functions may be inlined into it, making the called function too large
1092     // to be inlined into this call site.
1093     //
1094     // We apply a boost for performing indirect call promotion by increasing
1095     // the default threshold by the threshold for indirect calls.
1096     auto Params = getInlineParams();
1097     Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
1098     InlineCost IC =
1099         getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
1100 
1101     // We clamp the bonus for this call to be between zero and the default
1102     // threshold.
1103     if (IC.isAlways())
1104       InliningBonus += Params.DefaultThreshold;
1105     else if (IC.isVariable() && IC.getCostDelta() > 0)
1106       InliningBonus += IC.getCostDelta();
1107 
1108     LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << InliningBonus
1109                       << " for user " << *U << "\n");
1110   }
1111 
1112   return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0;
1113 }
1114 
1115 /// Determine if it is possible to specialise the function for constant values
1116 /// of the formal parameter \p A.
1117 bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
1118   // No point in specialization if the argument is unused.
1119   if (A->user_empty())
1120     return false;
1121 
1122   Type *Ty = A->getType();
1123   if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
1124       (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
1125     return false;
1126 
1127   // SCCP solver does not record an argument that will be constructed on
1128   // stack.
1129   if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
1130     return false;
1131 
1132   // For non-argument-tracked functions every argument is overdefined.
1133   if (!Solver.isArgumentTrackedFunction(A->getParent()))
1134     return true;
1135 
1136   // Check the lattice value and decide if we should attemt to specialize,
1137   // based on this argument. No point in specialization, if the lattice value
1138   // is already a constant.
1139   bool IsOverdefined = Ty->isStructTy()
1140     ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
1141     : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
1142 
1143   LLVM_DEBUG(
1144     if (IsOverdefined)
1145       dbgs() << "FnSpecialization: Found interesting parameter "
1146              << A->getNameOrAsOperand() << "\n";
1147     else
1148       dbgs() << "FnSpecialization: Nothing to do, parameter "
1149              << A->getNameOrAsOperand() << " is already constant\n";
1150   );
1151   return IsOverdefined;
1152 }
1153 
1154 /// Check if the value \p V  (an actual argument) is a constant or can only
1155 /// have a constant value. Return that constant.
1156 Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
1157   if (isa<PoisonValue>(V))
1158     return nullptr;
1159 
1160   // Select for possible specialisation values that are constants or
1161   // are deduced to be constants or constant ranges with a single element.
1162   Constant *C = dyn_cast<Constant>(V);
1163   if (!C)
1164     C = Solver.getConstantOrNull(V);
1165 
1166   // Don't specialize on (anything derived from) the address of a non-constant
1167   // global variable, unless explicitly enabled.
1168   if (C && C->getType()->isPointerTy() && !C->isNullValue())
1169     if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
1170         GV && !(GV->isConstant() || SpecializeOnAddress))
1171       return nullptr;
1172 
1173   return C;
1174 }
1175 
1176 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
1177                                           const Spec *End) {
1178   // Collect the call sites that need updating.
1179   SmallVector<CallBase *> ToUpdate;
1180   for (User *U : F->users())
1181     if (auto *CS = dyn_cast<CallBase>(U);
1182         CS && CS->getCalledFunction() == F &&
1183         Solver.isBlockExecutable(CS->getParent()))
1184       ToUpdate.push_back(CS);
1185 
1186   unsigned NCallsLeft = ToUpdate.size();
1187   for (CallBase *CS : ToUpdate) {
1188     bool ShouldDecrementCount = CS->getFunction() == F;
1189 
1190     // Find the best matching specialisation.
1191     const Spec *BestSpec = nullptr;
1192     for (const Spec &S : make_range(Begin, End)) {
1193       if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
1194         continue;
1195 
1196       if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
1197             unsigned ArgNo = Arg.Formal->getArgNo();
1198             return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
1199           }))
1200         continue;
1201 
1202       BestSpec = &S;
1203     }
1204 
1205     if (BestSpec) {
1206       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
1207                         << " to call " << BestSpec->Clone->getName() << "\n");
1208       CS->setCalledFunction(BestSpec->Clone);
1209       ShouldDecrementCount = true;
1210     }
1211 
1212     if (ShouldDecrementCount)
1213       --NCallsLeft;
1214   }
1215 
1216   // If the function has been completely specialized, the original function
1217   // is no longer needed. Mark it unreachable.
1218   if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
1219     Solver.markFunctionUnreachable(F);
1220     FullySpecialized.insert(F);
1221   }
1222 }
1223