1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/FunctionSpecialization.h" 10 #include "llvm/ADT/Statistic.h" 11 #include "llvm/Analysis/CodeMetrics.h" 12 #include "llvm/Analysis/ConstantFolding.h" 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueLattice.h" 17 #include "llvm/Analysis/ValueLatticeUtils.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/Transforms/Scalar/SCCP.h" 21 #include "llvm/Transforms/Utils/Cloning.h" 22 #include "llvm/Transforms/Utils/SCCPSolver.h" 23 #include "llvm/Transforms/Utils/SizeOpts.h" 24 #include <cmath> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "function-specialization" 29 30 STATISTIC(NumSpecsCreated, "Number of specializations created"); 31 32 static cl::opt<bool> ForceSpecialization( 33 "force-specialization", cl::init(false), cl::Hidden, cl::desc( 34 "Force function specialization for every call site with a constant " 35 "argument")); 36 37 static cl::opt<unsigned> MaxClones( 38 "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( 39 "The maximum number of clones allowed for a single function " 40 "specialization")); 41 42 static cl::opt<unsigned> 43 MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100), 44 cl::Hidden, 45 cl::desc("The maximum number of iterations allowed " 46 "when searching for transitive " 47 "phis")); 48 49 static cl::opt<unsigned> MaxIncomingPhiValues( 50 "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden, 51 cl::desc("The maximum number of incoming values a PHI node can have to be " 52 "considered during the specialization bonus estimation")); 53 54 static cl::opt<unsigned> MaxBlockPredecessors( 55 "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc( 56 "The maximum number of predecessors a basic block can have to be " 57 "considered during the estimation of dead code")); 58 59 static cl::opt<unsigned> MinFunctionSize( 60 "funcspec-min-function-size", cl::init(500), cl::Hidden, 61 cl::desc("Don't specialize functions that have less than this number of " 62 "instructions")); 63 64 static cl::opt<unsigned> MaxCodeSizeGrowth( 65 "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc( 66 "Maximum codesize growth allowed per function")); 67 68 static cl::opt<unsigned> MinCodeSizeSavings( 69 "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, 70 cl::desc("Reject specializations whose codesize savings are less than this " 71 "much percent of the original function size")); 72 73 static cl::opt<unsigned> MinLatencySavings( 74 "funcspec-min-latency-savings", cl::init(40), cl::Hidden, 75 cl::desc("Reject specializations whose latency savings are less than this " 76 "much percent of the original function size")); 77 78 static cl::opt<unsigned> MinInliningBonus( 79 "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, 80 cl::desc("Reject specializations whose inlining bonus is less than this " 81 "much percent of the original function size")); 82 83 static cl::opt<bool> SpecializeOnAddress( 84 "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( 85 "Enable function specialization on the address of global values")); 86 87 static cl::opt<bool> SpecializeLiteralConstant( 88 "funcspec-for-literal-constant", cl::init(true), cl::Hidden, 89 cl::desc( 90 "Enable specialization of functions that take a literal constant as an " 91 "argument")); 92 93 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, 94 BasicBlock *Succ) const { 95 unsigned I = 0; 96 return all_of(predecessors(Succ), [&I, BB, Succ, this](BasicBlock *Pred) { 97 return I++ < MaxBlockPredecessors && 98 (Pred == BB || Pred == Succ || !isBlockExecutable(Pred)); 99 }); 100 } 101 102 // Estimates the codesize savings due to dead code after constant propagation. 103 // \p WorkList represents the basic blocks of a specialization which will 104 // eventually become dead once we replace instructions that are known to be 105 // constants. The successors of such blocks are added to the list as long as 106 // the \p Solver found they were executable prior to specialization, and only 107 // if all their predecessors are dead. 108 Cost InstCostVisitor::estimateBasicBlocks( 109 SmallVectorImpl<BasicBlock *> &WorkList) { 110 Cost CodeSize = 0; 111 // Accumulate the codesize savings of each basic block. 112 while (!WorkList.empty()) { 113 BasicBlock *BB = WorkList.pop_back_val(); 114 115 // These blocks are considered dead as far as the InstCostVisitor 116 // is concerned. They haven't been proven dead yet by the Solver, 117 // but may become if we propagate the specialization arguments. 118 assert(Solver.isBlockExecutable(BB) && "BB already found dead by IPSCCP!"); 119 if (!DeadBlocks.insert(BB).second) 120 continue; 121 122 for (Instruction &I : *BB) { 123 // If it's a known constant we have already accounted for it. 124 if (KnownConstants.contains(&I)) 125 continue; 126 127 Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 128 129 LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C 130 << " for user " << I << "\n"); 131 CodeSize += C; 132 } 133 134 // Keep adding dead successors to the list as long as they are 135 // executable and only reachable from dead blocks. 136 for (BasicBlock *SuccBB : successors(BB)) 137 if (isBlockExecutable(SuccBB) && canEliminateSuccessor(BB, SuccBB)) 138 WorkList.push_back(SuccBB); 139 } 140 return CodeSize; 141 } 142 143 Constant *InstCostVisitor::findConstantFor(Value *V) const { 144 if (auto *C = dyn_cast<Constant>(V)) 145 return C; 146 if (auto *C = Solver.getConstantOrNull(V)) 147 return C; 148 return KnownConstants.lookup(V); 149 } 150 151 Cost InstCostVisitor::getCodeSizeSavingsFromPendingPHIs() { 152 Cost CodeSize; 153 while (!PendingPHIs.empty()) { 154 Instruction *Phi = PendingPHIs.pop_back_val(); 155 // The pending PHIs could have been proven dead by now. 156 if (isBlockExecutable(Phi->getParent())) 157 CodeSize += getCodeSizeSavingsForUser(Phi); 158 } 159 return CodeSize; 160 } 161 162 /// Compute the codesize savings for replacing argument \p A with constant \p C. 163 Cost InstCostVisitor::getCodeSizeSavingsForArg(Argument *A, Constant *C) { 164 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " 165 << C->getNameOrAsOperand() << "\n"); 166 Cost CodeSize; 167 for (auto *U : A->users()) 168 if (auto *UI = dyn_cast<Instruction>(U)) 169 if (isBlockExecutable(UI->getParent())) 170 CodeSize += getCodeSizeSavingsForUser(UI, A, C); 171 172 LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = " 173 << CodeSize << "} for argument " << *A << "\n"); 174 return CodeSize; 175 } 176 177 /// Compute the latency savings from replacing all arguments with constants for 178 /// a specialization candidate. As this function computes the latency savings 179 /// for all Instructions in KnownConstants at once, it should be called only 180 /// after every instruction has been visited, i.e. after: 181 /// 182 /// * getCodeSizeSavingsForArg has been run for every constant argument of a 183 /// specialization candidate 184 /// 185 /// * getCodeSizeSavingsFromPendingPHIs has been run 186 /// 187 /// to ensure that the latency savings are calculated for all Instructions we 188 /// have visited and found to be constant. 189 Cost InstCostVisitor::getLatencySavingsForKnownConstants() { 190 auto &BFI = GetBFI(*F); 191 Cost TotalLatency = 0; 192 193 for (auto Pair : KnownConstants) { 194 Instruction *I = dyn_cast<Instruction>(Pair.first); 195 if (!I) 196 continue; 197 198 uint64_t Weight = BFI.getBlockFreq(I->getParent()).getFrequency() / 199 BFI.getEntryFreq().getFrequency(); 200 201 Cost Latency = 202 Weight * TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency); 203 204 LLVM_DEBUG(dbgs() << "FnSpecialization: {Latency = " << Latency 205 << "} for instruction " << *I << "\n"); 206 207 TotalLatency += Latency; 208 } 209 210 return TotalLatency; 211 } 212 213 Cost InstCostVisitor::getCodeSizeSavingsForUser(Instruction *User, Value *Use, 214 Constant *C) { 215 // We have already propagated a constant for this user. 216 if (KnownConstants.contains(User)) 217 return 0; 218 219 // Cache the iterator before visiting. 220 LastVisited = Use ? KnownConstants.insert({Use, C}).first 221 : KnownConstants.end(); 222 223 Cost CodeSize = 0; 224 if (auto *I = dyn_cast<SwitchInst>(User)) { 225 CodeSize = estimateSwitchInst(*I); 226 } else if (auto *I = dyn_cast<BranchInst>(User)) { 227 CodeSize = estimateBranchInst(*I); 228 } else { 229 C = visit(*User); 230 if (!C) 231 return 0; 232 } 233 234 // Even though it doesn't make sense to bind switch and branch instructions 235 // with a constant, unlike any other instruction type, it prevents estimating 236 // their bonus multiple times. 237 KnownConstants.insert({User, C}); 238 239 CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); 240 241 LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize 242 << "} for user " << *User << "\n"); 243 244 for (auto *U : User->users()) 245 if (auto *UI = dyn_cast<Instruction>(U)) 246 if (UI != User && isBlockExecutable(UI->getParent())) 247 CodeSize += getCodeSizeSavingsForUser(UI, User, C); 248 249 return CodeSize; 250 } 251 252 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { 253 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 254 255 if (I.getCondition() != LastVisited->first) 256 return 0; 257 258 auto *C = dyn_cast<ConstantInt>(LastVisited->second); 259 if (!C) 260 return 0; 261 262 BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); 263 // Initialize the worklist with the dead basic blocks. These are the 264 // destination labels which are different from the one corresponding 265 // to \p C. They should be executable and have a unique predecessor. 266 SmallVector<BasicBlock *> WorkList; 267 for (const auto &Case : I.cases()) { 268 BasicBlock *BB = Case.getCaseSuccessor(); 269 if (BB != Succ && isBlockExecutable(BB) && 270 canEliminateSuccessor(I.getParent(), BB)) 271 WorkList.push_back(BB); 272 } 273 274 return estimateBasicBlocks(WorkList); 275 } 276 277 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { 278 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 279 280 if (I.getCondition() != LastVisited->first) 281 return 0; 282 283 BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); 284 // Initialize the worklist with the dead successor as long as 285 // it is executable and has a unique predecessor. 286 SmallVector<BasicBlock *> WorkList; 287 if (isBlockExecutable(Succ) && canEliminateSuccessor(I.getParent(), Succ)) 288 WorkList.push_back(Succ); 289 290 return estimateBasicBlocks(WorkList); 291 } 292 293 bool InstCostVisitor::discoverTransitivelyIncomingValues( 294 Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) { 295 296 SmallVector<PHINode *, 64> WorkList; 297 WorkList.push_back(Root); 298 unsigned Iter = 0; 299 300 while (!WorkList.empty()) { 301 PHINode *PN = WorkList.pop_back_val(); 302 303 if (++Iter > MaxDiscoveryIterations || 304 PN->getNumIncomingValues() > MaxIncomingPhiValues) 305 return false; 306 307 if (!TransitivePHIs.insert(PN).second) 308 continue; 309 310 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 311 Value *V = PN->getIncomingValue(I); 312 313 // Disregard self-references and dead incoming values. 314 if (auto *Inst = dyn_cast<Instruction>(V)) 315 if (Inst == PN || !isBlockExecutable(PN->getIncomingBlock(I))) 316 continue; 317 318 if (Constant *C = findConstantFor(V)) { 319 // Not all incoming values are the same constant. Bail immediately. 320 if (C != Const) 321 return false; 322 continue; 323 } 324 325 if (auto *Phi = dyn_cast<PHINode>(V)) { 326 WorkList.push_back(Phi); 327 continue; 328 } 329 330 // We can't reason about anything else. 331 return false; 332 } 333 } 334 return true; 335 } 336 337 Constant *InstCostVisitor::visitPHINode(PHINode &I) { 338 if (I.getNumIncomingValues() > MaxIncomingPhiValues) 339 return nullptr; 340 341 bool Inserted = VisitedPHIs.insert(&I).second; 342 Constant *Const = nullptr; 343 bool HaveSeenIncomingPHI = false; 344 345 for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { 346 Value *V = I.getIncomingValue(Idx); 347 348 // Disregard self-references and dead incoming values. 349 if (auto *Inst = dyn_cast<Instruction>(V)) 350 if (Inst == &I || !isBlockExecutable(I.getIncomingBlock(Idx))) 351 continue; 352 353 if (Constant *C = findConstantFor(V)) { 354 if (!Const) 355 Const = C; 356 // Not all incoming values are the same constant. Bail immediately. 357 if (C != Const) 358 return nullptr; 359 continue; 360 } 361 362 if (Inserted) { 363 // First time we are seeing this phi. We will retry later, after 364 // all the constant arguments have been propagated. Bail for now. 365 PendingPHIs.push_back(&I); 366 return nullptr; 367 } 368 369 if (isa<PHINode>(V)) { 370 // Perhaps it is a Transitive Phi. We will confirm later. 371 HaveSeenIncomingPHI = true; 372 continue; 373 } 374 375 // We can't reason about anything else. 376 return nullptr; 377 } 378 379 if (!Const) 380 return nullptr; 381 382 if (!HaveSeenIncomingPHI) 383 return Const; 384 385 DenseSet<PHINode *> TransitivePHIs; 386 if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs)) 387 return nullptr; 388 389 return Const; 390 } 391 392 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { 393 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 394 395 if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) 396 return LastVisited->second; 397 return nullptr; 398 } 399 400 Constant *InstCostVisitor::visitCallBase(CallBase &I) { 401 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 402 403 // Look through calls to ssa_copy intrinsics. 404 if (auto *II = dyn_cast<IntrinsicInst>(&I); 405 II && II->getIntrinsicID() == Intrinsic::ssa_copy) { 406 return LastVisited->second; 407 } 408 409 Function *F = I.getCalledFunction(); 410 if (!F || !canConstantFoldCallTo(&I, F)) 411 return nullptr; 412 413 SmallVector<Constant *, 8> Operands; 414 Operands.reserve(I.getNumOperands()); 415 416 for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { 417 Value *V = I.getOperand(Idx); 418 if (isa<MetadataAsValue>(V)) 419 return nullptr; 420 Constant *C = findConstantFor(V); 421 if (!C) 422 return nullptr; 423 Operands.push_back(C); 424 } 425 426 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 427 return ConstantFoldCall(&I, F, Ops); 428 } 429 430 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { 431 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 432 433 if (isa<ConstantPointerNull>(LastVisited->second)) 434 return nullptr; 435 return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); 436 } 437 438 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 439 SmallVector<Constant *, 8> Operands; 440 Operands.reserve(I.getNumOperands()); 441 442 for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { 443 Value *V = I.getOperand(Idx); 444 Constant *C = findConstantFor(V); 445 if (!C) 446 return nullptr; 447 Operands.push_back(C); 448 } 449 450 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 451 return ConstantFoldInstOperands(&I, Ops, DL); 452 } 453 454 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { 455 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 456 457 if (I.getCondition() == LastVisited->first) { 458 Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() 459 : I.getTrueValue(); 460 return findConstantFor(V); 461 } 462 if (Constant *Condition = findConstantFor(I.getCondition())) 463 if ((I.getTrueValue() == LastVisited->first && Condition->isOneValue()) || 464 (I.getFalseValue() == LastVisited->first && Condition->isZeroValue())) 465 return LastVisited->second; 466 return nullptr; 467 } 468 469 Constant *InstCostVisitor::visitCastInst(CastInst &I) { 470 return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, 471 I.getType(), DL); 472 } 473 474 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { 475 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 476 477 Constant *Const = LastVisited->second; 478 bool ConstOnRHS = I.getOperand(1) == LastVisited->first; 479 Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1); 480 Constant *Other = findConstantFor(V); 481 482 if (Other) { 483 if (ConstOnRHS) 484 std::swap(Const, Other); 485 return ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); 486 } 487 488 // If we haven't found Other to be a specific constant value, we may still be 489 // able to constant fold using information from the lattice value. 490 const ValueLatticeElement &ConstLV = ValueLatticeElement::get(Const); 491 const ValueLatticeElement &OtherLV = Solver.getLatticeValueFor(V); 492 auto &V1State = ConstOnRHS ? OtherLV : ConstLV; 493 auto &V2State = ConstOnRHS ? ConstLV : OtherLV; 494 return V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL); 495 } 496 497 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { 498 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 499 500 return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); 501 } 502 503 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { 504 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 505 506 bool ConstOnRHS = I.getOperand(1) == LastVisited->first; 507 Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1); 508 Constant *Other = findConstantFor(V); 509 Value *OtherVal = Other ? Other : V; 510 Value *ConstVal = LastVisited->second; 511 512 if (ConstOnRHS) 513 std::swap(ConstVal, OtherVal); 514 515 return dyn_cast_or_null<Constant>( 516 simplifyBinOp(I.getOpcode(), ConstVal, OtherVal, SimplifyQuery(DL))); 517 } 518 519 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, 520 CallInst *Call) { 521 Value *StoreValue = nullptr; 522 for (auto *User : Alloca->users()) { 523 // We can't use llvm::isAllocaPromotable() as that would fail because of 524 // the usage in the CallInst, which is what we check here. 525 if (User == Call) 526 continue; 527 528 if (auto *Store = dyn_cast<StoreInst>(User)) { 529 // This is a duplicate store, bail out. 530 if (StoreValue || Store->isVolatile()) 531 return nullptr; 532 StoreValue = Store->getValueOperand(); 533 continue; 534 } 535 // Bail if there is any other unknown usage. 536 return nullptr; 537 } 538 539 if (!StoreValue) 540 return nullptr; 541 542 return getCandidateConstant(StoreValue); 543 } 544 545 // A constant stack value is an AllocaInst that has a single constant 546 // value stored to it. Return this constant if such an alloca stack value 547 // is a function argument. 548 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, 549 Value *Val) { 550 if (!Val) 551 return nullptr; 552 Val = Val->stripPointerCasts(); 553 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 554 return ConstVal; 555 auto *Alloca = dyn_cast<AllocaInst>(Val); 556 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 557 return nullptr; 558 return getPromotableAlloca(Alloca, Call); 559 } 560 561 // To support specializing recursive functions, it is important to propagate 562 // constant arguments because after a first iteration of specialisation, a 563 // reduced example may look like this: 564 // 565 // define internal void @RecursiveFn(i32* arg1) { 566 // %temp = alloca i32, align 4 567 // store i32 2 i32* %temp, align 4 568 // call void @RecursiveFn.1(i32* nonnull %temp) 569 // ret void 570 // } 571 // 572 // Before a next iteration, we need to propagate the constant like so 573 // which allows further specialization in next iterations. 574 // 575 // @funcspec.arg = internal constant i32 2 576 // 577 // define internal void @someFunc(i32* arg1) { 578 // call void @otherFunc(i32* nonnull @funcspec.arg) 579 // ret void 580 // } 581 // 582 // See if there are any new constant values for the callers of \p F via 583 // stack variables and promote them to global variables. 584 void FunctionSpecializer::promoteConstantStackValues(Function *F) { 585 for (User *U : F->users()) { 586 587 auto *Call = dyn_cast<CallInst>(U); 588 if (!Call) 589 continue; 590 591 if (!Solver.isBlockExecutable(Call->getParent())) 592 continue; 593 594 for (const Use &U : Call->args()) { 595 unsigned Idx = Call->getArgOperandNo(&U); 596 Value *ArgOp = Call->getArgOperand(Idx); 597 Type *ArgOpType = ArgOp->getType(); 598 599 if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) 600 continue; 601 602 auto *ConstVal = getConstantStackValue(Call, ArgOp); 603 if (!ConstVal) 604 continue; 605 606 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 607 GlobalValue::InternalLinkage, ConstVal, 608 "specialized.arg." + Twine(++NGlobals)); 609 Call->setArgOperand(Idx, GV); 610 } 611 } 612 } 613 614 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 615 // interfere with the promoteConstantStackValues() optimization. 616 static void removeSSACopy(Function &F) { 617 for (BasicBlock &BB : F) { 618 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 619 auto *II = dyn_cast<IntrinsicInst>(&Inst); 620 if (!II) 621 continue; 622 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 623 continue; 624 Inst.replaceAllUsesWith(II->getOperand(0)); 625 Inst.eraseFromParent(); 626 } 627 } 628 } 629 630 /// Remove any ssa_copy intrinsics that may have been introduced. 631 void FunctionSpecializer::cleanUpSSA() { 632 for (Function *F : Specializations) 633 removeSSACopy(*F); 634 } 635 636 637 template <> struct llvm::DenseMapInfo<SpecSig> { 638 static inline SpecSig getEmptyKey() { return {~0U, {}}; } 639 640 static inline SpecSig getTombstoneKey() { return {~1U, {}}; } 641 642 static unsigned getHashValue(const SpecSig &S) { 643 return static_cast<unsigned>(hash_value(S)); 644 } 645 646 static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { 647 return LHS == RHS; 648 } 649 }; 650 651 FunctionSpecializer::~FunctionSpecializer() { 652 LLVM_DEBUG( 653 if (NumSpecsCreated > 0) 654 dbgs() << "FnSpecialization: Created " << NumSpecsCreated 655 << " specializations in module " << M.getName() << "\n"); 656 // Eliminate dead code. 657 removeDeadFunctions(); 658 cleanUpSSA(); 659 } 660 661 /// Get the unsigned Value of given Cost object. Assumes the Cost is always 662 /// non-negative, which is true for both TCK_CodeSize and TCK_Latency, and 663 /// always Valid. 664 static unsigned getCostValue(const Cost &C) { 665 int64_t Value = *C.getValue(); 666 667 assert(Value >= 0 && "CodeSize and Latency cannot be negative"); 668 // It is safe to down cast since we know the arguments cannot be negative and 669 // Cost is of type int64_t. 670 return static_cast<unsigned>(Value); 671 } 672 673 /// Attempt to specialize functions in the module to enable constant 674 /// propagation across function boundaries. 675 /// 676 /// \returns true if at least one function is specialized. 677 bool FunctionSpecializer::run() { 678 // Find possible specializations for each function. 679 SpecMap SM; 680 SmallVector<Spec, 32> AllSpecs; 681 unsigned NumCandidates = 0; 682 for (Function &F : M) { 683 if (!isCandidateFunction(&F)) 684 continue; 685 686 auto [It, Inserted] = FunctionMetrics.try_emplace(&F); 687 CodeMetrics &Metrics = It->second; 688 //Analyze the function. 689 if (Inserted) { 690 SmallPtrSet<const Value *, 32> EphValues; 691 CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); 692 for (BasicBlock &BB : F) 693 Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); 694 } 695 696 // When specializing literal constants is enabled, always require functions 697 // to be larger than MinFunctionSize, to prevent excessive specialization. 698 const bool RequireMinSize = 699 !ForceSpecialization && 700 (SpecializeLiteralConstant || !F.hasFnAttribute(Attribute::NoInline)); 701 702 // If the code metrics reveal that we shouldn't duplicate the function, 703 // or if the code size implies that this function is easy to get inlined, 704 // then we shouldn't specialize it. 705 if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || 706 (RequireMinSize && Metrics.NumInsts < MinFunctionSize)) 707 continue; 708 709 // When specialization on literal constants is disabled, only consider 710 // recursive functions when running multiple times to save wasted analysis, 711 // as we will not be able to specialize on any newly found literal constant 712 // return values. 713 if (!SpecializeLiteralConstant && !Inserted && !Metrics.isRecursive) 714 continue; 715 716 int64_t Sz = *Metrics.NumInsts.getValue(); 717 assert(Sz > 0 && "CodeSize should be positive"); 718 // It is safe to down cast from int64_t, NumInsts is always positive. 719 unsigned FuncSize = static_cast<unsigned>(Sz); 720 721 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " 722 << F.getName() << " is " << FuncSize << "\n"); 723 724 if (Inserted && Metrics.isRecursive) 725 promoteConstantStackValues(&F); 726 727 if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) { 728 LLVM_DEBUG( 729 dbgs() << "FnSpecialization: No possible specializations found for " 730 << F.getName() << "\n"); 731 continue; 732 } 733 734 ++NumCandidates; 735 } 736 737 if (!NumCandidates) { 738 LLVM_DEBUG( 739 dbgs() 740 << "FnSpecialization: No possible specializations found in module\n"); 741 return false; 742 } 743 744 // Choose the most profitable specialisations, which fit in the module 745 // specialization budget, which is derived from maximum number of 746 // specializations per specialization candidate function. 747 auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { 748 if (AllSpecs[I].Score != AllSpecs[J].Score) 749 return AllSpecs[I].Score > AllSpecs[J].Score; 750 return I > J; 751 }; 752 const unsigned NSpecs = 753 std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); 754 SmallVector<unsigned> BestSpecs(NSpecs + 1); 755 std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); 756 if (AllSpecs.size() > NSpecs) { 757 LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " 758 << "the maximum number of clones threshold.\n" 759 << "FnSpecialization: Specializing the " 760 << NSpecs 761 << " most profitable candidates.\n"); 762 std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); 763 for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { 764 BestSpecs[NSpecs] = I; 765 std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 766 std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 767 } 768 } 769 770 LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; 771 for (unsigned I = 0; I < NSpecs; ++I) { 772 const Spec &S = AllSpecs[BestSpecs[I]]; 773 dbgs() << "FnSpecialization: Function " << S.F->getName() 774 << " , score " << S.Score << "\n"; 775 for (const ArgInfo &Arg : S.Sig.Args) 776 dbgs() << "FnSpecialization: FormalArg = " 777 << Arg.Formal->getNameOrAsOperand() 778 << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() 779 << "\n"; 780 }); 781 782 // Create the chosen specializations. 783 SmallPtrSet<Function *, 8> OriginalFuncs; 784 SmallVector<Function *> Clones; 785 for (unsigned I = 0; I < NSpecs; ++I) { 786 Spec &S = AllSpecs[BestSpecs[I]]; 787 788 // Accumulate the codesize growth for the function, now we are creating the 789 // specialization. 790 FunctionGrowth[S.F] += S.CodeSize; 791 792 S.Clone = createSpecialization(S.F, S.Sig); 793 794 // Update the known call sites to call the clone. 795 for (CallBase *Call : S.CallSites) { 796 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call 797 << " to call " << S.Clone->getName() << "\n"); 798 Call->setCalledFunction(S.Clone); 799 } 800 801 Clones.push_back(S.Clone); 802 OriginalFuncs.insert(S.F); 803 } 804 805 Solver.solveWhileResolvedUndefsIn(Clones); 806 807 // Update the rest of the call sites - these are the recursive calls, calls 808 // to discarded specialisations and calls that may match a specialisation 809 // after the solver runs. 810 for (Function *F : OriginalFuncs) { 811 auto [Begin, End] = SM[F]; 812 updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); 813 } 814 815 for (Function *F : Clones) { 816 if (F->getReturnType()->isVoidTy()) 817 continue; 818 if (F->getReturnType()->isStructTy()) { 819 auto *STy = cast<StructType>(F->getReturnType()); 820 if (!Solver.isStructLatticeConstant(F, STy)) 821 continue; 822 } else { 823 auto It = Solver.getTrackedRetVals().find(F); 824 assert(It != Solver.getTrackedRetVals().end() && 825 "Return value ought to be tracked"); 826 if (SCCPSolver::isOverdefined(It->second)) 827 continue; 828 } 829 for (User *U : F->users()) { 830 if (auto *CS = dyn_cast<CallBase>(U)) { 831 //The user instruction does not call our function. 832 if (CS->getCalledFunction() != F) 833 continue; 834 Solver.resetLatticeValueFor(CS); 835 } 836 } 837 } 838 839 // Rerun the solver to notify the users of the modified callsites. 840 Solver.solveWhileResolvedUndefs(); 841 842 for (Function *F : OriginalFuncs) 843 if (FunctionMetrics[F].isRecursive) 844 promoteConstantStackValues(F); 845 846 return true; 847 } 848 849 void FunctionSpecializer::removeDeadFunctions() { 850 for (Function *F : FullySpecialized) { 851 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " 852 << F->getName() << "\n"); 853 if (FAM) 854 FAM->clear(*F, F->getName()); 855 F->eraseFromParent(); 856 } 857 FullySpecialized.clear(); 858 } 859 860 /// Clone the function \p F and remove the ssa_copy intrinsics added by 861 /// the SCCPSolver in the cloned version. 862 static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) { 863 ValueToValueMapTy Mappings; 864 Function *Clone = CloneFunction(F, Mappings); 865 Clone->setName(F->getName() + ".specialized." + Twine(NSpecs)); 866 removeSSACopy(*Clone); 867 return Clone; 868 } 869 870 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize, 871 SmallVectorImpl<Spec> &AllSpecs, 872 SpecMap &SM) { 873 // A mapping from a specialisation signature to the index of the respective 874 // entry in the all specialisation array. Used to ensure uniqueness of 875 // specialisations. 876 DenseMap<SpecSig, unsigned> UniqueSpecs; 877 878 // Get a list of interesting arguments. 879 SmallVector<Argument *> Args; 880 for (Argument &Arg : F->args()) 881 if (isArgumentInteresting(&Arg)) 882 Args.push_back(&Arg); 883 884 if (Args.empty()) 885 return false; 886 887 for (User *U : F->users()) { 888 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 889 continue; 890 auto &CS = *cast<CallBase>(U); 891 892 // The user instruction does not call our function. 893 if (CS.getCalledFunction() != F) 894 continue; 895 896 // If the call site has attribute minsize set, that callsite won't be 897 // specialized. 898 if (CS.hasFnAttr(Attribute::MinSize)) 899 continue; 900 901 // If the parent of the call site will never be executed, we don't need 902 // to worry about the passed value. 903 if (!Solver.isBlockExecutable(CS.getParent())) 904 continue; 905 906 // Examine arguments and create a specialisation candidate from the 907 // constant operands of this call site. 908 SpecSig S; 909 for (Argument *A : Args) { 910 Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); 911 if (!C) 912 continue; 913 LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " 914 << A->getName() << " : " << C->getNameOrAsOperand() 915 << "\n"); 916 S.Args.push_back({A, C}); 917 } 918 919 if (S.Args.empty()) 920 continue; 921 922 // Check if we have encountered the same specialisation already. 923 if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { 924 // Existing specialisation. Add the call to the list to rewrite, unless 925 // it's a recursive call. A specialisation, generated because of a 926 // recursive call may end up as not the best specialisation for all 927 // the cloned instances of this call, which result from specialising 928 // functions. Hence we don't rewrite the call directly, but match it with 929 // the best specialisation once all specialisations are known. 930 if (CS.getFunction() == F) 931 continue; 932 const unsigned Index = It->second; 933 AllSpecs[Index].CallSites.push_back(&CS); 934 } else { 935 // Calculate the specialisation gain. 936 Cost CodeSize; 937 unsigned Score = 0; 938 InstCostVisitor Visitor = getInstCostVisitorFor(F); 939 for (ArgInfo &A : S.Args) { 940 CodeSize += Visitor.getCodeSizeSavingsForArg(A.Formal, A.Actual); 941 Score += getInliningBonus(A.Formal, A.Actual); 942 } 943 CodeSize += Visitor.getCodeSizeSavingsFromPendingPHIs(); 944 945 unsigned CodeSizeSavings = getCostValue(CodeSize); 946 unsigned SpecSize = FuncSize - CodeSizeSavings; 947 948 auto IsProfitable = [&]() -> bool { 949 // No check required. 950 if (ForceSpecialization) 951 return true; 952 953 LLVM_DEBUG( 954 dbgs() << "FnSpecialization: Specialization bonus {Inlining = " 955 << Score << " (" << (Score * 100 / FuncSize) << "%)}\n"); 956 957 // Minimum inlining bonus. 958 if (Score > MinInliningBonus * FuncSize / 100) 959 return true; 960 961 LLVM_DEBUG( 962 dbgs() << "FnSpecialization: Specialization bonus {CodeSize = " 963 << CodeSizeSavings << " (" 964 << (CodeSizeSavings * 100 / FuncSize) << "%)}\n"); 965 966 // Minimum codesize savings. 967 if (CodeSizeSavings < MinCodeSizeSavings * FuncSize / 100) 968 return false; 969 970 // Lazily compute the Latency, to avoid unnecessarily computing BFI. 971 unsigned LatencySavings = 972 getCostValue(Visitor.getLatencySavingsForKnownConstants()); 973 974 LLVM_DEBUG( 975 dbgs() << "FnSpecialization: Specialization bonus {Latency = " 976 << LatencySavings << " (" 977 << (LatencySavings * 100 / FuncSize) << "%)}\n"); 978 979 // Minimum latency savings. 980 if (LatencySavings < MinLatencySavings * FuncSize / 100) 981 return false; 982 // Maximum codesize growth. 983 if ((FunctionGrowth[F] + SpecSize) / FuncSize > MaxCodeSizeGrowth) 984 return false; 985 986 Score += std::max(CodeSizeSavings, LatencySavings); 987 return true; 988 }; 989 990 // Discard unprofitable specialisations. 991 if (!IsProfitable()) 992 continue; 993 994 // Create a new specialisation entry. 995 auto &Spec = AllSpecs.emplace_back(F, S, Score, SpecSize); 996 if (CS.getFunction() != F) 997 Spec.CallSites.push_back(&CS); 998 const unsigned Index = AllSpecs.size() - 1; 999 UniqueSpecs[S] = Index; 1000 if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) 1001 It->second.second = Index + 1; 1002 } 1003 } 1004 1005 return !UniqueSpecs.empty(); 1006 } 1007 1008 bool FunctionSpecializer::isCandidateFunction(Function *F) { 1009 if (F->isDeclaration() || F->arg_empty()) 1010 return false; 1011 1012 if (F->hasFnAttribute(Attribute::NoDuplicate)) 1013 return false; 1014 1015 // Do not specialize the cloned function again. 1016 if (Specializations.contains(F)) 1017 return false; 1018 1019 // If we're optimizing the function for size, we shouldn't specialize it. 1020 if (shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 1021 return false; 1022 1023 // Exit if the function is not executable. There's no point in specializing 1024 // a dead function. 1025 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 1026 return false; 1027 1028 // It wastes time to specialize a function which would get inlined finally. 1029 if (F->hasFnAttribute(Attribute::AlwaysInline)) 1030 return false; 1031 1032 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 1033 << "\n"); 1034 return true; 1035 } 1036 1037 Function *FunctionSpecializer::createSpecialization(Function *F, 1038 const SpecSig &S) { 1039 Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1); 1040 1041 // The original function does not neccessarily have internal linkage, but the 1042 // clone must. 1043 Clone->setLinkage(GlobalValue::InternalLinkage); 1044 1045 // Initialize the lattice state of the arguments of the function clone, 1046 // marking the argument on which we specialized the function constant 1047 // with the given value. 1048 Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); 1049 Solver.markBlockExecutable(&Clone->front()); 1050 Solver.addArgumentTrackedFunction(Clone); 1051 Solver.addTrackedFunction(Clone); 1052 1053 // Mark all the specialized functions 1054 Specializations.insert(Clone); 1055 ++NumSpecsCreated; 1056 1057 return Clone; 1058 } 1059 1060 /// Compute the inlining bonus for replacing argument \p A with constant \p C. 1061 /// The below heuristic is only concerned with exposing inlining 1062 /// opportunities via indirect call promotion. If the argument is not a 1063 /// (potentially casted) function pointer, give up. 1064 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) { 1065 Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); 1066 if (!CalledFunction) 1067 return 0; 1068 1069 // Get TTI for the called function (used for the inline cost). 1070 auto &CalleeTTI = (GetTTI)(*CalledFunction); 1071 1072 // Look at all the call sites whose called value is the argument. 1073 // Specializing the function on the argument would allow these indirect 1074 // calls to be promoted to direct calls. If the indirect call promotion 1075 // would likely enable the called function to be inlined, specializing is a 1076 // good idea. 1077 int InliningBonus = 0; 1078 for (User *U : A->users()) { 1079 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 1080 continue; 1081 auto *CS = cast<CallBase>(U); 1082 if (CS->getCalledOperand() != A) 1083 continue; 1084 if (CS->getFunctionType() != CalledFunction->getFunctionType()) 1085 continue; 1086 1087 // Get the cost of inlining the called function at this call site. Note 1088 // that this is only an estimate. The called function may eventually 1089 // change in a way that leads to it not being inlined here, even though 1090 // inlining looks profitable now. For example, one of its called 1091 // functions may be inlined into it, making the called function too large 1092 // to be inlined into this call site. 1093 // 1094 // We apply a boost for performing indirect call promotion by increasing 1095 // the default threshold by the threshold for indirect calls. 1096 auto Params = getInlineParams(); 1097 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 1098 InlineCost IC = 1099 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 1100 1101 // We clamp the bonus for this call to be between zero and the default 1102 // threshold. 1103 if (IC.isAlways()) 1104 InliningBonus += Params.DefaultThreshold; 1105 else if (IC.isVariable() && IC.getCostDelta() > 0) 1106 InliningBonus += IC.getCostDelta(); 1107 1108 LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus 1109 << " for user " << *U << "\n"); 1110 } 1111 1112 return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0; 1113 } 1114 1115 /// Determine if it is possible to specialise the function for constant values 1116 /// of the formal parameter \p A. 1117 bool FunctionSpecializer::isArgumentInteresting(Argument *A) { 1118 // No point in specialization if the argument is unused. 1119 if (A->user_empty()) 1120 return false; 1121 1122 Type *Ty = A->getType(); 1123 if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || 1124 (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) 1125 return false; 1126 1127 // SCCP solver does not record an argument that will be constructed on 1128 // stack. 1129 if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) 1130 return false; 1131 1132 // For non-argument-tracked functions every argument is overdefined. 1133 if (!Solver.isArgumentTrackedFunction(A->getParent())) 1134 return true; 1135 1136 // Check the lattice value and decide if we should attemt to specialize, 1137 // based on this argument. No point in specialization, if the lattice value 1138 // is already a constant. 1139 bool IsOverdefined = Ty->isStructTy() 1140 ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) 1141 : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); 1142 1143 LLVM_DEBUG( 1144 if (IsOverdefined) 1145 dbgs() << "FnSpecialization: Found interesting parameter " 1146 << A->getNameOrAsOperand() << "\n"; 1147 else 1148 dbgs() << "FnSpecialization: Nothing to do, parameter " 1149 << A->getNameOrAsOperand() << " is already constant\n"; 1150 ); 1151 return IsOverdefined; 1152 } 1153 1154 /// Check if the value \p V (an actual argument) is a constant or can only 1155 /// have a constant value. Return that constant. 1156 Constant *FunctionSpecializer::getCandidateConstant(Value *V) { 1157 if (isa<PoisonValue>(V)) 1158 return nullptr; 1159 1160 // Select for possible specialisation values that are constants or 1161 // are deduced to be constants or constant ranges with a single element. 1162 Constant *C = dyn_cast<Constant>(V); 1163 if (!C) 1164 C = Solver.getConstantOrNull(V); 1165 1166 // Don't specialize on (anything derived from) the address of a non-constant 1167 // global variable, unless explicitly enabled. 1168 if (C && C->getType()->isPointerTy() && !C->isNullValue()) 1169 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 1170 GV && !(GV->isConstant() || SpecializeOnAddress)) 1171 return nullptr; 1172 1173 return C; 1174 } 1175 1176 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, 1177 const Spec *End) { 1178 // Collect the call sites that need updating. 1179 SmallVector<CallBase *> ToUpdate; 1180 for (User *U : F->users()) 1181 if (auto *CS = dyn_cast<CallBase>(U); 1182 CS && CS->getCalledFunction() == F && 1183 Solver.isBlockExecutable(CS->getParent())) 1184 ToUpdate.push_back(CS); 1185 1186 unsigned NCallsLeft = ToUpdate.size(); 1187 for (CallBase *CS : ToUpdate) { 1188 bool ShouldDecrementCount = CS->getFunction() == F; 1189 1190 // Find the best matching specialisation. 1191 const Spec *BestSpec = nullptr; 1192 for (const Spec &S : make_range(Begin, End)) { 1193 if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) 1194 continue; 1195 1196 if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { 1197 unsigned ArgNo = Arg.Formal->getArgNo(); 1198 return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; 1199 })) 1200 continue; 1201 1202 BestSpec = &S; 1203 } 1204 1205 if (BestSpec) { 1206 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS 1207 << " to call " << BestSpec->Clone->getName() << "\n"); 1208 CS->setCalledFunction(BestSpec->Clone); 1209 ShouldDecrementCount = true; 1210 } 1211 1212 if (ShouldDecrementCount) 1213 --NCallsLeft; 1214 } 1215 1216 // If the function has been completely specialized, the original function 1217 // is no longer needed. Mark it unreachable. 1218 if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { 1219 Solver.markFunctionUnreachable(F); 1220 FullySpecialized.insert(F); 1221 } 1222 } 1223