1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This specialises functions with constant parameters. Constant parameters 10 // like function pointers and constant globals are propagated to the callee by 11 // specializing the function. The main benefit of this pass at the moment is 12 // that indirect calls are transformed into direct calls, which provides inline 13 // opportunities that the inliner would not have been able to achieve. That's 14 // why function specialisation is run before the inliner in the optimisation 15 // pipeline; that is by design. Otherwise, we would only benefit from constant 16 // passing, which is a valid use-case too, but hasn't been explored much in 17 // terms of performance uplifts, cost-model and compile-time impact. 18 // 19 // Current limitations: 20 // - It does not yet handle integer ranges. We do support "literal constants", 21 // but that's off by default under an option. 22 // - The cost-model could be further looked into (it mainly focuses on inlining 23 // benefits), 24 // 25 // Ideas: 26 // - With a function specialization attribute for arguments, we could have 27 // a direct way to steer function specialization, avoiding the cost-model, 28 // and thus control compile-times / code-size. 29 // 30 // Todos: 31 // - Specializing recursive functions relies on running the transformation a 32 // number of times, which is controlled by option 33 // `func-specialization-max-iters`. Thus, increasing this value and the 34 // number of iterations, will linearly increase the number of times recursive 35 // functions get specialized, see also the discussion in 36 // https://reviews.llvm.org/D106426 for details. Perhaps there is a 37 // compile-time friendlier way to control/limit the number of specialisations 38 // for recursive functions. 39 // - Don't transform the function if function specialization does not trigger; 40 // the SCCPSolver may make IR changes. 41 // 42 // References: 43 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable 44 // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/Transforms/IPO/FunctionSpecialization.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/CodeMetrics.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/InlineCost.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Analysis/ValueLattice.h" 56 #include "llvm/Analysis/ValueLatticeUtils.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/Transforms/Scalar/SCCP.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/SCCPSolver.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include <cmath> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "function-specialization" 68 69 STATISTIC(NumSpecsCreated, "Number of specializations created"); 70 71 static cl::opt<bool> ForceSpecialization( 72 "force-specialization", cl::init(false), cl::Hidden, cl::desc( 73 "Force function specialization for every call site with a constant " 74 "argument")); 75 76 static cl::opt<unsigned> MaxClones( 77 "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( 78 "The maximum number of clones allowed for a single function " 79 "specialization")); 80 81 static cl::opt<unsigned> MaxIncomingPhiValues( 82 "funcspec-max-incoming-phi-values", cl::init(4), cl::Hidden, cl::desc( 83 "The maximum number of incoming values a PHI node can have to be " 84 "considered during the specialization bonus estimation")); 85 86 static cl::opt<unsigned> MaxBlockPredecessors( 87 "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc( 88 "The maximum number of predecessors a basic block can have to be " 89 "considered during the estimation of dead code")); 90 91 static cl::opt<unsigned> MinFunctionSize( 92 "funcspec-min-function-size", cl::init(100), cl::Hidden, cl::desc( 93 "Don't specialize functions that have less than this number of " 94 "instructions")); 95 96 static cl::opt<bool> SpecializeOnAddress( 97 "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( 98 "Enable function specialization on the address of global values")); 99 100 // Disabled by default as it can significantly increase compilation times. 101 // 102 // https://llvm-compile-time-tracker.com 103 // https://github.com/nikic/llvm-compile-time-tracker 104 static cl::opt<bool> SpecializeLiteralConstant( 105 "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc( 106 "Enable specialization of functions that take a literal constant as an " 107 "argument")); 108 109 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ, 110 DenseSet<BasicBlock *> &DeadBlocks) { 111 unsigned I = 0; 112 return all_of(predecessors(Succ), 113 [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) { 114 return I++ < MaxBlockPredecessors && 115 (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred)); 116 }); 117 } 118 119 // Estimates the codesize savings due to dead code after constant propagation. 120 // \p WorkList represents the basic blocks of a specialization which will 121 // eventually become dead once we replace instructions that are known to be 122 // constants. The successors of such blocks are added to the list as long as 123 // the \p Solver found they were executable prior to specialization, and only 124 // if all their predecessors are dead. 125 Cost InstCostVisitor::estimateBasicBlocks( 126 SmallVectorImpl<BasicBlock *> &WorkList) { 127 Cost CodeSize = 0; 128 // Accumulate the instruction cost of each basic block weighted by frequency. 129 while (!WorkList.empty()) { 130 BasicBlock *BB = WorkList.pop_back_val(); 131 132 // These blocks are considered dead as far as the InstCostVisitor 133 // is concerned. They haven't been proven dead yet by the Solver, 134 // but may become if we propagate the specialization arguments. 135 if (!DeadBlocks.insert(BB).second) 136 continue; 137 138 for (Instruction &I : *BB) { 139 // Disregard SSA copies. 140 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 141 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 142 continue; 143 // If it's a known constant we have already accounted for it. 144 if (KnownConstants.contains(&I)) 145 continue; 146 147 Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 148 149 LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C 150 << " for user " << I << "\n"); 151 CodeSize += C; 152 } 153 154 // Keep adding dead successors to the list as long as they are 155 // executable and only reachable from dead blocks. 156 for (BasicBlock *SuccBB : successors(BB)) 157 if (isBlockExecutable(SuccBB) && 158 canEliminateSuccessor(BB, SuccBB, DeadBlocks)) 159 WorkList.push_back(SuccBB); 160 } 161 return CodeSize; 162 } 163 164 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) { 165 if (auto *C = dyn_cast<Constant>(V)) 166 return C; 167 if (auto It = KnownConstants.find(V); It != KnownConstants.end()) 168 return It->second; 169 return nullptr; 170 } 171 172 Bonus InstCostVisitor::getBonusFromPendingPHIs() { 173 Bonus B; 174 while (!PendingPHIs.empty()) { 175 Instruction *Phi = PendingPHIs.pop_back_val(); 176 // The pending PHIs could have been proven dead by now. 177 if (isBlockExecutable(Phi->getParent())) 178 B += getUserBonus(Phi); 179 } 180 return B; 181 } 182 183 Bonus InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) { 184 // We have already propagated a constant for this user. 185 if (KnownConstants.contains(User)) 186 return {0, 0}; 187 188 // Cache the iterator before visiting. 189 LastVisited = Use ? KnownConstants.insert({Use, C}).first 190 : KnownConstants.end(); 191 192 Cost CodeSize = 0; 193 if (auto *I = dyn_cast<SwitchInst>(User)) { 194 CodeSize = estimateSwitchInst(*I); 195 } else if (auto *I = dyn_cast<BranchInst>(User)) { 196 CodeSize = estimateBranchInst(*I); 197 } else { 198 C = visit(*User); 199 if (!C) 200 return {0, 0}; 201 } 202 203 // Even though it doesn't make sense to bind switch and branch instructions 204 // with a constant, unlike any other instruction type, it prevents estimating 205 // their bonus multiple times. 206 KnownConstants.insert({User, C}); 207 208 CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); 209 210 uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() / 211 BFI.getEntryFreq(); 212 213 Cost Latency = Weight * 214 TTI.getInstructionCost(User, TargetTransformInfo::TCK_Latency); 215 216 LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize 217 << ", Latency = " << Latency << "} for user " 218 << *User << "\n"); 219 220 Bonus B(CodeSize, Latency); 221 for (auto *U : User->users()) 222 if (auto *UI = dyn_cast<Instruction>(U)) 223 if (UI != User && isBlockExecutable(UI->getParent())) 224 B += getUserBonus(UI, User, C); 225 226 return B; 227 } 228 229 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { 230 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 231 232 if (I.getCondition() != LastVisited->first) 233 return 0; 234 235 auto *C = dyn_cast<ConstantInt>(LastVisited->second); 236 if (!C) 237 return 0; 238 239 BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); 240 // Initialize the worklist with the dead basic blocks. These are the 241 // destination labels which are different from the one corresponding 242 // to \p C. They should be executable and have a unique predecessor. 243 SmallVector<BasicBlock *> WorkList; 244 for (const auto &Case : I.cases()) { 245 BasicBlock *BB = Case.getCaseSuccessor(); 246 if (BB != Succ && isBlockExecutable(BB) && 247 canEliminateSuccessor(I.getParent(), BB, DeadBlocks)) 248 WorkList.push_back(BB); 249 } 250 251 return estimateBasicBlocks(WorkList); 252 } 253 254 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { 255 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 256 257 if (I.getCondition() != LastVisited->first) 258 return 0; 259 260 BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); 261 // Initialize the worklist with the dead successor as long as 262 // it is executable and has a unique predecessor. 263 SmallVector<BasicBlock *> WorkList; 264 if (isBlockExecutable(Succ) && 265 canEliminateSuccessor(I.getParent(), Succ, DeadBlocks)) 266 WorkList.push_back(Succ); 267 268 return estimateBasicBlocks(WorkList); 269 } 270 271 Constant *InstCostVisitor::visitPHINode(PHINode &I) { 272 if (I.getNumIncomingValues() > MaxIncomingPhiValues) 273 return nullptr; 274 275 bool Inserted = VisitedPHIs.insert(&I).second; 276 Constant *Const = nullptr; 277 278 for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { 279 Value *V = I.getIncomingValue(Idx); 280 if (auto *Inst = dyn_cast<Instruction>(V)) 281 if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx))) 282 continue; 283 Constant *C = findConstantFor(V, KnownConstants); 284 if (!C) { 285 if (Inserted) 286 PendingPHIs.push_back(&I); 287 return nullptr; 288 } 289 if (!Const) 290 Const = C; 291 else if (C != Const) 292 return nullptr; 293 } 294 return Const; 295 } 296 297 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { 298 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 299 300 if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) 301 return LastVisited->second; 302 return nullptr; 303 } 304 305 Constant *InstCostVisitor::visitCallBase(CallBase &I) { 306 Function *F = I.getCalledFunction(); 307 if (!F || !canConstantFoldCallTo(&I, F)) 308 return nullptr; 309 310 SmallVector<Constant *, 8> Operands; 311 Operands.reserve(I.getNumOperands()); 312 313 for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { 314 Value *V = I.getOperand(Idx); 315 Constant *C = findConstantFor(V, KnownConstants); 316 if (!C) 317 return nullptr; 318 Operands.push_back(C); 319 } 320 321 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 322 return ConstantFoldCall(&I, F, Ops); 323 } 324 325 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { 326 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 327 328 if (isa<ConstantPointerNull>(LastVisited->second)) 329 return nullptr; 330 return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); 331 } 332 333 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 334 SmallVector<Constant *, 8> Operands; 335 Operands.reserve(I.getNumOperands()); 336 337 for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { 338 Value *V = I.getOperand(Idx); 339 Constant *C = findConstantFor(V, KnownConstants); 340 if (!C) 341 return nullptr; 342 Operands.push_back(C); 343 } 344 345 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 346 return ConstantFoldInstOperands(&I, Ops, DL); 347 } 348 349 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { 350 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 351 352 if (I.getCondition() != LastVisited->first) 353 return nullptr; 354 355 Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() 356 : I.getTrueValue(); 357 Constant *C = findConstantFor(V, KnownConstants); 358 return C; 359 } 360 361 Constant *InstCostVisitor::visitCastInst(CastInst &I) { 362 return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, 363 I.getType(), DL); 364 } 365 366 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { 367 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 368 369 bool Swap = I.getOperand(1) == LastVisited->first; 370 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 371 Constant *Other = findConstantFor(V, KnownConstants); 372 if (!Other) 373 return nullptr; 374 375 Constant *Const = LastVisited->second; 376 return Swap ? 377 ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL) 378 : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); 379 } 380 381 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { 382 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 383 384 return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); 385 } 386 387 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { 388 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 389 390 bool Swap = I.getOperand(1) == LastVisited->first; 391 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 392 Constant *Other = findConstantFor(V, KnownConstants); 393 if (!Other) 394 return nullptr; 395 396 Constant *Const = LastVisited->second; 397 return dyn_cast_or_null<Constant>(Swap ? 398 simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL)) 399 : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL))); 400 } 401 402 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, 403 CallInst *Call) { 404 Value *StoreValue = nullptr; 405 for (auto *User : Alloca->users()) { 406 // We can't use llvm::isAllocaPromotable() as that would fail because of 407 // the usage in the CallInst, which is what we check here. 408 if (User == Call) 409 continue; 410 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 411 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 412 return nullptr; 413 continue; 414 } 415 416 if (auto *Store = dyn_cast<StoreInst>(User)) { 417 // This is a duplicate store, bail out. 418 if (StoreValue || Store->isVolatile()) 419 return nullptr; 420 StoreValue = Store->getValueOperand(); 421 continue; 422 } 423 // Bail if there is any other unknown usage. 424 return nullptr; 425 } 426 427 if (!StoreValue) 428 return nullptr; 429 430 return getCandidateConstant(StoreValue); 431 } 432 433 // A constant stack value is an AllocaInst that has a single constant 434 // value stored to it. Return this constant if such an alloca stack value 435 // is a function argument. 436 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, 437 Value *Val) { 438 if (!Val) 439 return nullptr; 440 Val = Val->stripPointerCasts(); 441 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 442 return ConstVal; 443 auto *Alloca = dyn_cast<AllocaInst>(Val); 444 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 445 return nullptr; 446 return getPromotableAlloca(Alloca, Call); 447 } 448 449 // To support specializing recursive functions, it is important to propagate 450 // constant arguments because after a first iteration of specialisation, a 451 // reduced example may look like this: 452 // 453 // define internal void @RecursiveFn(i32* arg1) { 454 // %temp = alloca i32, align 4 455 // store i32 2 i32* %temp, align 4 456 // call void @RecursiveFn.1(i32* nonnull %temp) 457 // ret void 458 // } 459 // 460 // Before a next iteration, we need to propagate the constant like so 461 // which allows further specialization in next iterations. 462 // 463 // @funcspec.arg = internal constant i32 2 464 // 465 // define internal void @someFunc(i32* arg1) { 466 // call void @otherFunc(i32* nonnull @funcspec.arg) 467 // ret void 468 // } 469 // 470 // See if there are any new constant values for the callers of \p F via 471 // stack variables and promote them to global variables. 472 void FunctionSpecializer::promoteConstantStackValues(Function *F) { 473 for (User *U : F->users()) { 474 475 auto *Call = dyn_cast<CallInst>(U); 476 if (!Call) 477 continue; 478 479 if (!Solver.isBlockExecutable(Call->getParent())) 480 continue; 481 482 for (const Use &U : Call->args()) { 483 unsigned Idx = Call->getArgOperandNo(&U); 484 Value *ArgOp = Call->getArgOperand(Idx); 485 Type *ArgOpType = ArgOp->getType(); 486 487 if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) 488 continue; 489 490 auto *ConstVal = getConstantStackValue(Call, ArgOp); 491 if (!ConstVal) 492 continue; 493 494 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 495 GlobalValue::InternalLinkage, ConstVal, 496 "funcspec.arg"); 497 if (ArgOpType != ConstVal->getType()) 498 GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType); 499 500 Call->setArgOperand(Idx, GV); 501 } 502 } 503 } 504 505 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 506 // interfere with the promoteConstantStackValues() optimization. 507 static void removeSSACopy(Function &F) { 508 for (BasicBlock &BB : F) { 509 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 510 auto *II = dyn_cast<IntrinsicInst>(&Inst); 511 if (!II) 512 continue; 513 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 514 continue; 515 Inst.replaceAllUsesWith(II->getOperand(0)); 516 Inst.eraseFromParent(); 517 } 518 } 519 } 520 521 /// Remove any ssa_copy intrinsics that may have been introduced. 522 void FunctionSpecializer::cleanUpSSA() { 523 for (Function *F : Specializations) 524 removeSSACopy(*F); 525 } 526 527 528 template <> struct llvm::DenseMapInfo<SpecSig> { 529 static inline SpecSig getEmptyKey() { return {~0U, {}}; } 530 531 static inline SpecSig getTombstoneKey() { return {~1U, {}}; } 532 533 static unsigned getHashValue(const SpecSig &S) { 534 return static_cast<unsigned>(hash_value(S)); 535 } 536 537 static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { 538 return LHS == RHS; 539 } 540 }; 541 542 FunctionSpecializer::~FunctionSpecializer() { 543 LLVM_DEBUG( 544 if (NumSpecsCreated > 0) 545 dbgs() << "FnSpecialization: Created " << NumSpecsCreated 546 << " specializations in module " << M.getName() << "\n"); 547 // Eliminate dead code. 548 removeDeadFunctions(); 549 cleanUpSSA(); 550 } 551 552 /// Attempt to specialize functions in the module to enable constant 553 /// propagation across function boundaries. 554 /// 555 /// \returns true if at least one function is specialized. 556 bool FunctionSpecializer::run() { 557 // Find possible specializations for each function. 558 SpecMap SM; 559 SmallVector<Spec, 32> AllSpecs; 560 unsigned NumCandidates = 0; 561 for (Function &F : M) { 562 if (!isCandidateFunction(&F)) 563 continue; 564 565 auto [It, Inserted] = FunctionMetrics.try_emplace(&F); 566 CodeMetrics &Metrics = It->second; 567 //Analyze the function. 568 if (Inserted) { 569 SmallPtrSet<const Value *, 32> EphValues; 570 CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); 571 for (BasicBlock &BB : F) 572 Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); 573 } 574 575 // If the code metrics reveal that we shouldn't duplicate the function, 576 // or if the code size implies that this function is easy to get inlined, 577 // then we shouldn't specialize it. 578 if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || 579 (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) && 580 Metrics.NumInsts < MinFunctionSize)) 581 continue; 582 583 // TODO: For now only consider recursive functions when running multiple 584 // times. This should change if specialization on literal constants gets 585 // enabled. 586 if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant) 587 continue; 588 589 int64_t Sz = *Metrics.NumInsts.getValue(); 590 assert(Sz > 0 && "CodeSize should be positive"); 591 // It is safe to down cast from int64_t, NumInsts is always positive. 592 unsigned SpecCost = static_cast<unsigned>(Sz); 593 594 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " 595 << F.getName() << " is " << SpecCost << "\n"); 596 597 if (Inserted && Metrics.isRecursive) 598 promoteConstantStackValues(&F); 599 600 if (!findSpecializations(&F, SpecCost, AllSpecs, SM)) { 601 LLVM_DEBUG( 602 dbgs() << "FnSpecialization: No possible specializations found for " 603 << F.getName() << "\n"); 604 continue; 605 } 606 607 ++NumCandidates; 608 } 609 610 if (!NumCandidates) { 611 LLVM_DEBUG( 612 dbgs() 613 << "FnSpecialization: No possible specializations found in module\n"); 614 return false; 615 } 616 617 // Choose the most profitable specialisations, which fit in the module 618 // specialization budget, which is derived from maximum number of 619 // specializations per specialization candidate function. 620 auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { 621 return AllSpecs[I].Score > AllSpecs[J].Score; 622 }; 623 const unsigned NSpecs = 624 std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); 625 SmallVector<unsigned> BestSpecs(NSpecs + 1); 626 std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); 627 if (AllSpecs.size() > NSpecs) { 628 LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " 629 << "the maximum number of clones threshold.\n" 630 << "FnSpecialization: Specializing the " 631 << NSpecs 632 << " most profitable candidates.\n"); 633 std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); 634 for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { 635 BestSpecs[NSpecs] = I; 636 std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 637 std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 638 } 639 } 640 641 LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; 642 for (unsigned I = 0; I < NSpecs; ++I) { 643 const Spec &S = AllSpecs[BestSpecs[I]]; 644 dbgs() << "FnSpecialization: Function " << S.F->getName() 645 << " , score " << S.Score << "\n"; 646 for (const ArgInfo &Arg : S.Sig.Args) 647 dbgs() << "FnSpecialization: FormalArg = " 648 << Arg.Formal->getNameOrAsOperand() 649 << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() 650 << "\n"; 651 }); 652 653 // Create the chosen specializations. 654 SmallPtrSet<Function *, 8> OriginalFuncs; 655 SmallVector<Function *> Clones; 656 for (unsigned I = 0; I < NSpecs; ++I) { 657 Spec &S = AllSpecs[BestSpecs[I]]; 658 S.Clone = createSpecialization(S.F, S.Sig); 659 660 // Update the known call sites to call the clone. 661 for (CallBase *Call : S.CallSites) { 662 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call 663 << " to call " << S.Clone->getName() << "\n"); 664 Call->setCalledFunction(S.Clone); 665 } 666 667 Clones.push_back(S.Clone); 668 OriginalFuncs.insert(S.F); 669 } 670 671 Solver.solveWhileResolvedUndefsIn(Clones); 672 673 // Update the rest of the call sites - these are the recursive calls, calls 674 // to discarded specialisations and calls that may match a specialisation 675 // after the solver runs. 676 for (Function *F : OriginalFuncs) { 677 auto [Begin, End] = SM[F]; 678 updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); 679 } 680 681 for (Function *F : Clones) { 682 if (F->getReturnType()->isVoidTy()) 683 continue; 684 if (F->getReturnType()->isStructTy()) { 685 auto *STy = cast<StructType>(F->getReturnType()); 686 if (!Solver.isStructLatticeConstant(F, STy)) 687 continue; 688 } else { 689 auto It = Solver.getTrackedRetVals().find(F); 690 assert(It != Solver.getTrackedRetVals().end() && 691 "Return value ought to be tracked"); 692 if (SCCPSolver::isOverdefined(It->second)) 693 continue; 694 } 695 for (User *U : F->users()) { 696 if (auto *CS = dyn_cast<CallBase>(U)) { 697 //The user instruction does not call our function. 698 if (CS->getCalledFunction() != F) 699 continue; 700 Solver.resetLatticeValueFor(CS); 701 } 702 } 703 } 704 705 // Rerun the solver to notify the users of the modified callsites. 706 Solver.solveWhileResolvedUndefs(); 707 708 for (Function *F : OriginalFuncs) 709 if (FunctionMetrics[F].isRecursive) 710 promoteConstantStackValues(F); 711 712 return true; 713 } 714 715 void FunctionSpecializer::removeDeadFunctions() { 716 for (Function *F : FullySpecialized) { 717 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " 718 << F->getName() << "\n"); 719 if (FAM) 720 FAM->clear(*F, F->getName()); 721 F->eraseFromParent(); 722 } 723 FullySpecialized.clear(); 724 } 725 726 /// Clone the function \p F and remove the ssa_copy intrinsics added by 727 /// the SCCPSolver in the cloned version. 728 static Function *cloneCandidateFunction(Function *F) { 729 ValueToValueMapTy Mappings; 730 Function *Clone = CloneFunction(F, Mappings); 731 removeSSACopy(*Clone); 732 return Clone; 733 } 734 735 bool FunctionSpecializer::findSpecializations(Function *F, unsigned SpecCost, 736 SmallVectorImpl<Spec> &AllSpecs, 737 SpecMap &SM) { 738 // A mapping from a specialisation signature to the index of the respective 739 // entry in the all specialisation array. Used to ensure uniqueness of 740 // specialisations. 741 DenseMap<SpecSig, unsigned> UniqueSpecs; 742 743 // Get a list of interesting arguments. 744 SmallVector<Argument *> Args; 745 for (Argument &Arg : F->args()) 746 if (isArgumentInteresting(&Arg)) 747 Args.push_back(&Arg); 748 749 if (Args.empty()) 750 return false; 751 752 for (User *U : F->users()) { 753 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 754 continue; 755 auto &CS = *cast<CallBase>(U); 756 757 // The user instruction does not call our function. 758 if (CS.getCalledFunction() != F) 759 continue; 760 761 // If the call site has attribute minsize set, that callsite won't be 762 // specialized. 763 if (CS.hasFnAttr(Attribute::MinSize)) 764 continue; 765 766 // If the parent of the call site will never be executed, we don't need 767 // to worry about the passed value. 768 if (!Solver.isBlockExecutable(CS.getParent())) 769 continue; 770 771 // Examine arguments and create a specialisation candidate from the 772 // constant operands of this call site. 773 SpecSig S; 774 for (Argument *A : Args) { 775 Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); 776 if (!C) 777 continue; 778 LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " 779 << A->getName() << " : " << C->getNameOrAsOperand() 780 << "\n"); 781 S.Args.push_back({A, C}); 782 } 783 784 if (S.Args.empty()) 785 continue; 786 787 // Check if we have encountered the same specialisation already. 788 if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { 789 // Existing specialisation. Add the call to the list to rewrite, unless 790 // it's a recursive call. A specialisation, generated because of a 791 // recursive call may end up as not the best specialisation for all 792 // the cloned instances of this call, which result from specialising 793 // functions. Hence we don't rewrite the call directly, but match it with 794 // the best specialisation once all specialisations are known. 795 if (CS.getFunction() == F) 796 continue; 797 const unsigned Index = It->second; 798 AllSpecs[Index].CallSites.push_back(&CS); 799 } else { 800 // Calculate the specialisation gain. 801 Bonus B; 802 InstCostVisitor Visitor = getInstCostVisitorFor(F); 803 for (ArgInfo &A : S.Args) 804 B += getSpecializationBonus(A.Formal, A.Actual, Visitor); 805 B += Visitor.getBonusFromPendingPHIs(); 806 807 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization score {CodeSize = " 808 << B.CodeSize << ", Latency = " << B.Latency 809 << "}\n"); 810 811 // Discard unprofitable specialisations. 812 if (!ForceSpecialization && B.Latency <= SpecCost - B.CodeSize) 813 continue; 814 815 // Create a new specialisation entry. 816 auto &Spec = AllSpecs.emplace_back(F, S, B.Latency); 817 if (CS.getFunction() != F) 818 Spec.CallSites.push_back(&CS); 819 const unsigned Index = AllSpecs.size() - 1; 820 UniqueSpecs[S] = Index; 821 if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) 822 It->second.second = Index + 1; 823 } 824 } 825 826 return !UniqueSpecs.empty(); 827 } 828 829 bool FunctionSpecializer::isCandidateFunction(Function *F) { 830 if (F->isDeclaration() || F->arg_empty()) 831 return false; 832 833 if (F->hasFnAttribute(Attribute::NoDuplicate)) 834 return false; 835 836 // Do not specialize the cloned function again. 837 if (Specializations.contains(F)) 838 return false; 839 840 // If we're optimizing the function for size, we shouldn't specialize it. 841 if (F->hasOptSize() || 842 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 843 return false; 844 845 // Exit if the function is not executable. There's no point in specializing 846 // a dead function. 847 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 848 return false; 849 850 // It wastes time to specialize a function which would get inlined finally. 851 if (F->hasFnAttribute(Attribute::AlwaysInline)) 852 return false; 853 854 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 855 << "\n"); 856 return true; 857 } 858 859 Function *FunctionSpecializer::createSpecialization(Function *F, 860 const SpecSig &S) { 861 Function *Clone = cloneCandidateFunction(F); 862 863 // The original function does not neccessarily have internal linkage, but the 864 // clone must. 865 Clone->setLinkage(GlobalValue::InternalLinkage); 866 867 // Initialize the lattice state of the arguments of the function clone, 868 // marking the argument on which we specialized the function constant 869 // with the given value. 870 Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); 871 Solver.markBlockExecutable(&Clone->front()); 872 Solver.addArgumentTrackedFunction(Clone); 873 Solver.addTrackedFunction(Clone); 874 875 // Mark all the specialized functions 876 Specializations.insert(Clone); 877 ++NumSpecsCreated; 878 879 return Clone; 880 } 881 882 /// Compute a bonus for replacing argument \p A with constant \p C. 883 Bonus FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C, 884 InstCostVisitor &Visitor) { 885 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " 886 << C->getNameOrAsOperand() << "\n"); 887 888 Bonus B; 889 for (auto *U : A->users()) 890 if (auto *UI = dyn_cast<Instruction>(U)) 891 if (Visitor.isBlockExecutable(UI->getParent())) 892 B += Visitor.getUserBonus(UI, A, C); 893 894 LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = " 895 << B.CodeSize << ", Latency = " << B.Latency 896 << "} for argument " << *A << "\n"); 897 898 // The below heuristic is only concerned with exposing inlining 899 // opportunities via indirect call promotion. If the argument is not a 900 // (potentially casted) function pointer, give up. 901 // 902 // TODO: Perhaps we should consider checking such inlining opportunities 903 // while traversing the users of the specialization arguments ? 904 Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); 905 if (!CalledFunction) 906 return B; 907 908 // Get TTI for the called function (used for the inline cost). 909 auto &CalleeTTI = (GetTTI)(*CalledFunction); 910 911 // Look at all the call sites whose called value is the argument. 912 // Specializing the function on the argument would allow these indirect 913 // calls to be promoted to direct calls. If the indirect call promotion 914 // would likely enable the called function to be inlined, specializing is a 915 // good idea. 916 int InliningBonus = 0; 917 for (User *U : A->users()) { 918 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 919 continue; 920 auto *CS = cast<CallBase>(U); 921 if (CS->getCalledOperand() != A) 922 continue; 923 if (CS->getFunctionType() != CalledFunction->getFunctionType()) 924 continue; 925 926 // Get the cost of inlining the called function at this call site. Note 927 // that this is only an estimate. The called function may eventually 928 // change in a way that leads to it not being inlined here, even though 929 // inlining looks profitable now. For example, one of its called 930 // functions may be inlined into it, making the called function too large 931 // to be inlined into this call site. 932 // 933 // We apply a boost for performing indirect call promotion by increasing 934 // the default threshold by the threshold for indirect calls. 935 auto Params = getInlineParams(); 936 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 937 InlineCost IC = 938 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 939 940 // We clamp the bonus for this call to be between zero and the default 941 // threshold. 942 if (IC.isAlways()) 943 InliningBonus += Params.DefaultThreshold; 944 else if (IC.isVariable() && IC.getCostDelta() > 0) 945 InliningBonus += IC.getCostDelta(); 946 947 LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus 948 << " for user " << *U << "\n"); 949 } 950 951 return B += {0, InliningBonus}; 952 } 953 954 /// Determine if it is possible to specialise the function for constant values 955 /// of the formal parameter \p A. 956 bool FunctionSpecializer::isArgumentInteresting(Argument *A) { 957 // No point in specialization if the argument is unused. 958 if (A->user_empty()) 959 return false; 960 961 Type *Ty = A->getType(); 962 if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || 963 (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) 964 return false; 965 966 // SCCP solver does not record an argument that will be constructed on 967 // stack. 968 if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) 969 return false; 970 971 // For non-argument-tracked functions every argument is overdefined. 972 if (!Solver.isArgumentTrackedFunction(A->getParent())) 973 return true; 974 975 // Check the lattice value and decide if we should attemt to specialize, 976 // based on this argument. No point in specialization, if the lattice value 977 // is already a constant. 978 bool IsOverdefined = Ty->isStructTy() 979 ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) 980 : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); 981 982 LLVM_DEBUG( 983 if (IsOverdefined) 984 dbgs() << "FnSpecialization: Found interesting parameter " 985 << A->getNameOrAsOperand() << "\n"; 986 else 987 dbgs() << "FnSpecialization: Nothing to do, parameter " 988 << A->getNameOrAsOperand() << " is already constant\n"; 989 ); 990 return IsOverdefined; 991 } 992 993 /// Check if the value \p V (an actual argument) is a constant or can only 994 /// have a constant value. Return that constant. 995 Constant *FunctionSpecializer::getCandidateConstant(Value *V) { 996 if (isa<PoisonValue>(V)) 997 return nullptr; 998 999 // Select for possible specialisation values that are constants or 1000 // are deduced to be constants or constant ranges with a single element. 1001 Constant *C = dyn_cast<Constant>(V); 1002 if (!C) 1003 C = Solver.getConstantOrNull(V); 1004 1005 // Don't specialize on (anything derived from) the address of a non-constant 1006 // global variable, unless explicitly enabled. 1007 if (C && C->getType()->isPointerTy() && !C->isNullValue()) 1008 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 1009 GV && !(GV->isConstant() || SpecializeOnAddress)) 1010 return nullptr; 1011 1012 return C; 1013 } 1014 1015 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, 1016 const Spec *End) { 1017 // Collect the call sites that need updating. 1018 SmallVector<CallBase *> ToUpdate; 1019 for (User *U : F->users()) 1020 if (auto *CS = dyn_cast<CallBase>(U); 1021 CS && CS->getCalledFunction() == F && 1022 Solver.isBlockExecutable(CS->getParent())) 1023 ToUpdate.push_back(CS); 1024 1025 unsigned NCallsLeft = ToUpdate.size(); 1026 for (CallBase *CS : ToUpdate) { 1027 bool ShouldDecrementCount = CS->getFunction() == F; 1028 1029 // Find the best matching specialisation. 1030 const Spec *BestSpec = nullptr; 1031 for (const Spec &S : make_range(Begin, End)) { 1032 if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) 1033 continue; 1034 1035 if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { 1036 unsigned ArgNo = Arg.Formal->getArgNo(); 1037 return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; 1038 })) 1039 continue; 1040 1041 BestSpec = &S; 1042 } 1043 1044 if (BestSpec) { 1045 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS 1046 << " to call " << BestSpec->Clone->getName() << "\n"); 1047 CS->setCalledFunction(BestSpec->Clone); 1048 ShouldDecrementCount = true; 1049 } 1050 1051 if (ShouldDecrementCount) 1052 --NCallsLeft; 1053 } 1054 1055 // If the function has been completely specialized, the original function 1056 // is no longer needed. Mark it unreachable. 1057 if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { 1058 Solver.markFunctionUnreachable(F); 1059 FullySpecialized.insert(F); 1060 } 1061 } 1062