xref: /llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision 6ab26eab4f1e06f2da7b3183c55666ad57f8866e)
1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/Analysis/CodeMetrics.h"
12 #include "llvm/Analysis/ConstantFolding.h"
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueLattice.h"
17 #include "llvm/Analysis/ValueLatticeUtils.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/Transforms/Scalar/SCCP.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include "llvm/Transforms/Utils/SCCPSolver.h"
23 #include "llvm/Transforms/Utils/SizeOpts.h"
24 #include <cmath>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "function-specialization"
29 
30 STATISTIC(NumSpecsCreated, "Number of specializations created");
31 
32 static cl::opt<bool> ForceSpecialization(
33     "force-specialization", cl::init(false), cl::Hidden, cl::desc(
34     "Force function specialization for every call site with a constant "
35     "argument"));
36 
37 static cl::opt<unsigned> MaxClones(
38     "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
39     "The maximum number of clones allowed for a single function "
40     "specialization"));
41 
42 static cl::opt<unsigned>
43     MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100),
44                            cl::Hidden,
45                            cl::desc("The maximum number of iterations allowed "
46                                     "when searching for transitive "
47                                     "phis"));
48 
49 static cl::opt<unsigned> MaxIncomingPhiValues(
50     "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden,
51     cl::desc("The maximum number of incoming values a PHI node can have to be "
52              "considered during the specialization bonus estimation"));
53 
54 static cl::opt<unsigned> MaxBlockPredecessors(
55     "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc(
56     "The maximum number of predecessors a basic block can have to be "
57     "considered during the estimation of dead code"));
58 
59 static cl::opt<unsigned> MinFunctionSize(
60     "funcspec-min-function-size", cl::init(500), cl::Hidden,
61     cl::desc("Don't specialize functions that have less than this number of "
62              "instructions"));
63 
64 static cl::opt<unsigned> MaxCodeSizeGrowth(
65     "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc(
66     "Maximum codesize growth allowed per function"));
67 
68 static cl::opt<unsigned> MinCodeSizeSavings(
69     "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, cl::desc(
70     "Reject specializations whose codesize savings are less than this"
71     "much percent of the original function size"));
72 
73 static cl::opt<unsigned> MinLatencySavings(
74     "funcspec-min-latency-savings", cl::init(40), cl::Hidden,
75     cl::desc("Reject specializations whose latency savings are less than this"
76              "much percent of the original function size"));
77 
78 static cl::opt<unsigned> MinInliningBonus(
79     "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, cl::desc(
80     "Reject specializations whose inlining bonus is less than this"
81     "much percent of the original function size"));
82 
83 static cl::opt<bool> SpecializeOnAddress(
84     "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
85     "Enable function specialization on the address of global values"));
86 
87 // Disabled by default as it can significantly increase compilation times.
88 //
89 // https://llvm-compile-time-tracker.com
90 // https://github.com/nikic/llvm-compile-time-tracker
91 static cl::opt<bool> SpecializeLiteralConstant(
92     "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc(
93     "Enable specialization of functions that take a literal constant as an "
94     "argument"));
95 
96 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ,
97                                          DenseSet<BasicBlock *> &DeadBlocks) {
98   unsigned I = 0;
99   return all_of(predecessors(Succ),
100     [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) {
101     return I++ < MaxBlockPredecessors &&
102       (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred));
103   });
104 }
105 
106 // Estimates the codesize savings due to dead code after constant propagation.
107 // \p WorkList represents the basic blocks of a specialization which will
108 // eventually become dead once we replace instructions that are known to be
109 // constants. The successors of such blocks are added to the list as long as
110 // the \p Solver found they were executable prior to specialization, and only
111 // if all their predecessors are dead.
112 Cost InstCostVisitor::estimateBasicBlocks(
113                           SmallVectorImpl<BasicBlock *> &WorkList) {
114   Cost CodeSize = 0;
115   // Accumulate the codesize savings of each basic block.
116   while (!WorkList.empty()) {
117     BasicBlock *BB = WorkList.pop_back_val();
118 
119     // These blocks are considered dead as far as the InstCostVisitor
120     // is concerned. They haven't been proven dead yet by the Solver,
121     // but may become if we propagate the specialization arguments.
122     if (!DeadBlocks.insert(BB).second)
123       continue;
124 
125     for (Instruction &I : *BB) {
126       // Disregard SSA copies.
127       if (auto *II = dyn_cast<IntrinsicInst>(&I))
128         if (II->getIntrinsicID() == Intrinsic::ssa_copy)
129           continue;
130       // If it's a known constant we have already accounted for it.
131       if (KnownConstants.contains(&I))
132         continue;
133 
134       Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
135 
136       LLVM_DEBUG(dbgs() << "FnSpecialization:     CodeSize " << C
137                         << " for user " << I << "\n");
138       CodeSize += C;
139     }
140 
141     // Keep adding dead successors to the list as long as they are
142     // executable and only reachable from dead blocks.
143     for (BasicBlock *SuccBB : successors(BB))
144       if (isBlockExecutable(SuccBB) &&
145           canEliminateSuccessor(BB, SuccBB, DeadBlocks))
146         WorkList.push_back(SuccBB);
147   }
148   return CodeSize;
149 }
150 
151 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) {
152   if (auto *C = dyn_cast<Constant>(V))
153     return C;
154   return KnownConstants.lookup(V);
155 }
156 
157 Cost InstCostVisitor::getCodeSizeSavingsFromPendingPHIs() {
158   Cost CodeSize;
159   while (!PendingPHIs.empty()) {
160     Instruction *Phi = PendingPHIs.pop_back_val();
161     // The pending PHIs could have been proven dead by now.
162     if (isBlockExecutable(Phi->getParent()))
163       CodeSize += getCodeSizeSavingsForUser(Phi);
164   }
165   return CodeSize;
166 }
167 
168 /// Compute the codesize savings for replacing argument \p A with constant \p C.
169 Cost InstCostVisitor::getCodeSizeSavingsForArg(Argument *A, Constant *C) {
170   LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
171                     << C->getNameOrAsOperand() << "\n");
172   Cost CodeSize;
173   for (auto *U : A->users())
174     if (auto *UI = dyn_cast<Instruction>(U))
175       if (isBlockExecutable(UI->getParent()))
176         CodeSize += getCodeSizeSavingsForUser(UI, A, C);
177 
178   LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated bonus {CodeSize = "
179                     << CodeSize << "} for argument " << *A << "\n");
180   return CodeSize;
181 }
182 
183 /// Compute the latency savings from replacing all arguments with constants for
184 /// a specialization candidate. As this function computes the latency savings
185 /// for all Instructions in KnownConstants at once, it should be called only
186 /// after every instruction has been visited, i.e. after:
187 ///
188 /// * getCodeSizeSavingsForArg has been run for every constant argument of a
189 ///   specialization candidate
190 ///
191 /// * getCodeSizeSavingsFromPendingPHIs has been run
192 ///
193 /// to ensure that the latency savings are calculated for all Instructions we
194 /// have visited and found to be constant.
195 Cost InstCostVisitor::getLatencySavingsForKnownConstants() {
196   auto &BFI = GetBFI(*F);
197   Cost TotalLatency = 0;
198 
199   for (auto Pair : KnownConstants) {
200     Instruction *I = dyn_cast<Instruction>(Pair.first);
201     if (!I)
202       continue;
203 
204     uint64_t Weight = BFI.getBlockFreq(I->getParent()).getFrequency() /
205                       BFI.getEntryFreq().getFrequency();
206 
207     Cost Latency =
208         Weight * TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
209 
210     LLVM_DEBUG(dbgs() << "FnSpecialization:     {Latency = " << Latency
211                       << "} for instruction " << *I << "\n");
212 
213     TotalLatency += Latency;
214   }
215 
216   return TotalLatency;
217 }
218 
219 Cost InstCostVisitor::getCodeSizeSavingsForUser(Instruction *User, Value *Use,
220                                                 Constant *C) {
221   // We have already propagated a constant for this user.
222   if (KnownConstants.contains(User))
223     return 0;
224 
225   // Cache the iterator before visiting.
226   LastVisited = Use ? KnownConstants.insert({Use, C}).first
227                     : KnownConstants.end();
228 
229   Cost CodeSize = 0;
230   if (auto *I = dyn_cast<SwitchInst>(User)) {
231     CodeSize = estimateSwitchInst(*I);
232   } else if (auto *I = dyn_cast<BranchInst>(User)) {
233     CodeSize = estimateBranchInst(*I);
234   } else {
235     C = visit(*User);
236     if (!C)
237       return 0;
238   }
239 
240   // Even though it doesn't make sense to bind switch and branch instructions
241   // with a constant, unlike any other instruction type, it prevents estimating
242   // their bonus multiple times.
243   KnownConstants.insert({User, C});
244 
245   CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize);
246 
247   LLVM_DEBUG(dbgs() << "FnSpecialization:     {CodeSize = " << CodeSize
248                     << "} for user " << *User << "\n");
249 
250   for (auto *U : User->users())
251     if (auto *UI = dyn_cast<Instruction>(U))
252       if (UI != User && isBlockExecutable(UI->getParent()))
253         CodeSize += getCodeSizeSavingsForUser(UI, User, C);
254 
255   return CodeSize;
256 }
257 
258 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
259   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
260 
261   if (I.getCondition() != LastVisited->first)
262     return 0;
263 
264   auto *C = dyn_cast<ConstantInt>(LastVisited->second);
265   if (!C)
266     return 0;
267 
268   BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
269   // Initialize the worklist with the dead basic blocks. These are the
270   // destination labels which are different from the one corresponding
271   // to \p C. They should be executable and have a unique predecessor.
272   SmallVector<BasicBlock *> WorkList;
273   for (const auto &Case : I.cases()) {
274     BasicBlock *BB = Case.getCaseSuccessor();
275     if (BB != Succ && isBlockExecutable(BB) &&
276         canEliminateSuccessor(I.getParent(), BB, DeadBlocks))
277       WorkList.push_back(BB);
278   }
279 
280   return estimateBasicBlocks(WorkList);
281 }
282 
283 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
284   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
285 
286   if (I.getCondition() != LastVisited->first)
287     return 0;
288 
289   BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
290   // Initialize the worklist with the dead successor as long as
291   // it is executable and has a unique predecessor.
292   SmallVector<BasicBlock *> WorkList;
293   if (isBlockExecutable(Succ) &&
294       canEliminateSuccessor(I.getParent(), Succ, DeadBlocks))
295     WorkList.push_back(Succ);
296 
297   return estimateBasicBlocks(WorkList);
298 }
299 
300 bool InstCostVisitor::discoverTransitivelyIncomingValues(
301     Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) {
302 
303   SmallVector<PHINode *, 64> WorkList;
304   WorkList.push_back(Root);
305   unsigned Iter = 0;
306 
307   while (!WorkList.empty()) {
308     PHINode *PN = WorkList.pop_back_val();
309 
310     if (++Iter > MaxDiscoveryIterations ||
311         PN->getNumIncomingValues() > MaxIncomingPhiValues)
312       return false;
313 
314     if (!TransitivePHIs.insert(PN).second)
315       continue;
316 
317     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
318       Value *V = PN->getIncomingValue(I);
319 
320       // Disregard self-references and dead incoming values.
321       if (auto *Inst = dyn_cast<Instruction>(V))
322         if (Inst == PN || DeadBlocks.contains(PN->getIncomingBlock(I)))
323           continue;
324 
325       if (Constant *C = findConstantFor(V, KnownConstants)) {
326         // Not all incoming values are the same constant. Bail immediately.
327         if (C != Const)
328           return false;
329         continue;
330       }
331 
332       if (auto *Phi = dyn_cast<PHINode>(V)) {
333         WorkList.push_back(Phi);
334         continue;
335       }
336 
337       // We can't reason about anything else.
338       return false;
339     }
340   }
341   return true;
342 }
343 
344 Constant *InstCostVisitor::visitPHINode(PHINode &I) {
345   if (I.getNumIncomingValues() > MaxIncomingPhiValues)
346     return nullptr;
347 
348   bool Inserted = VisitedPHIs.insert(&I).second;
349   Constant *Const = nullptr;
350   bool HaveSeenIncomingPHI = false;
351 
352   for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
353     Value *V = I.getIncomingValue(Idx);
354 
355     // Disregard self-references and dead incoming values.
356     if (auto *Inst = dyn_cast<Instruction>(V))
357       if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx)))
358         continue;
359 
360     if (Constant *C = findConstantFor(V, KnownConstants)) {
361       if (!Const)
362         Const = C;
363       // Not all incoming values are the same constant. Bail immediately.
364       if (C != Const)
365         return nullptr;
366       continue;
367     }
368 
369     if (Inserted) {
370       // First time we are seeing this phi. We will retry later, after
371       // all the constant arguments have been propagated. Bail for now.
372       PendingPHIs.push_back(&I);
373       return nullptr;
374     }
375 
376     if (isa<PHINode>(V)) {
377       // Perhaps it is a Transitive Phi. We will confirm later.
378       HaveSeenIncomingPHI = true;
379       continue;
380     }
381 
382     // We can't reason about anything else.
383     return nullptr;
384   }
385 
386   if (!Const)
387     return nullptr;
388 
389   if (!HaveSeenIncomingPHI)
390     return Const;
391 
392   DenseSet<PHINode *> TransitivePHIs;
393   if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs))
394     return nullptr;
395 
396   return Const;
397 }
398 
399 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
400   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
401 
402   if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
403     return LastVisited->second;
404   return nullptr;
405 }
406 
407 Constant *InstCostVisitor::visitCallBase(CallBase &I) {
408   Function *F = I.getCalledFunction();
409   if (!F || !canConstantFoldCallTo(&I, F))
410     return nullptr;
411 
412   SmallVector<Constant *, 8> Operands;
413   Operands.reserve(I.getNumOperands());
414 
415   for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
416     Value *V = I.getOperand(Idx);
417     Constant *C = findConstantFor(V, KnownConstants);
418     if (!C)
419       return nullptr;
420     Operands.push_back(C);
421   }
422 
423   auto Ops = ArrayRef(Operands.begin(), Operands.end());
424   return ConstantFoldCall(&I, F, Ops);
425 }
426 
427 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
428   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
429 
430   if (isa<ConstantPointerNull>(LastVisited->second))
431     return nullptr;
432   return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
433 }
434 
435 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
436   SmallVector<Constant *, 8> Operands;
437   Operands.reserve(I.getNumOperands());
438 
439   for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
440     Value *V = I.getOperand(Idx);
441     Constant *C = findConstantFor(V, KnownConstants);
442     if (!C)
443       return nullptr;
444     Operands.push_back(C);
445   }
446 
447   auto Ops = ArrayRef(Operands.begin(), Operands.end());
448   return ConstantFoldInstOperands(&I, Ops, DL);
449 }
450 
451 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
452   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
453 
454   if (I.getCondition() == LastVisited->first) {
455     Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
456                                                   : I.getTrueValue();
457     return findConstantFor(V, KnownConstants);
458   }
459   if (Constant *Condition = findConstantFor(I.getCondition(), KnownConstants))
460     if ((I.getTrueValue() == LastVisited->first && Condition->isOneValue()) ||
461         (I.getFalseValue() == LastVisited->first && Condition->isZeroValue()))
462       return LastVisited->second;
463   return nullptr;
464 }
465 
466 Constant *InstCostVisitor::visitCastInst(CastInst &I) {
467   return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
468                                  I.getType(), DL);
469 }
470 
471 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
472   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
473 
474   bool Swap = I.getOperand(1) == LastVisited->first;
475   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
476   Constant *Other = findConstantFor(V, KnownConstants);
477   if (!Other)
478     return nullptr;
479 
480   Constant *Const = LastVisited->second;
481   return Swap ?
482         ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL)
483       : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
484 }
485 
486 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
487   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
488 
489   return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
490 }
491 
492 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
493   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
494 
495   bool Swap = I.getOperand(1) == LastVisited->first;
496   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
497   Constant *Other = findConstantFor(V, KnownConstants);
498   if (!Other)
499     return nullptr;
500 
501   Constant *Const = LastVisited->second;
502   return dyn_cast_or_null<Constant>(Swap ?
503         simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL))
504       : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL)));
505 }
506 
507 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
508                                                    CallInst *Call) {
509   Value *StoreValue = nullptr;
510   for (auto *User : Alloca->users()) {
511     // We can't use llvm::isAllocaPromotable() as that would fail because of
512     // the usage in the CallInst, which is what we check here.
513     if (User == Call)
514       continue;
515 
516     if (auto *Store = dyn_cast<StoreInst>(User)) {
517       // This is a duplicate store, bail out.
518       if (StoreValue || Store->isVolatile())
519         return nullptr;
520       StoreValue = Store->getValueOperand();
521       continue;
522     }
523     // Bail if there is any other unknown usage.
524     return nullptr;
525   }
526 
527   if (!StoreValue)
528     return nullptr;
529 
530   return getCandidateConstant(StoreValue);
531 }
532 
533 // A constant stack value is an AllocaInst that has a single constant
534 // value stored to it. Return this constant if such an alloca stack value
535 // is a function argument.
536 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
537                                                      Value *Val) {
538   if (!Val)
539     return nullptr;
540   Val = Val->stripPointerCasts();
541   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
542     return ConstVal;
543   auto *Alloca = dyn_cast<AllocaInst>(Val);
544   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
545     return nullptr;
546   return getPromotableAlloca(Alloca, Call);
547 }
548 
549 // To support specializing recursive functions, it is important to propagate
550 // constant arguments because after a first iteration of specialisation, a
551 // reduced example may look like this:
552 //
553 //     define internal void @RecursiveFn(i32* arg1) {
554 //       %temp = alloca i32, align 4
555 //       store i32 2 i32* %temp, align 4
556 //       call void @RecursiveFn.1(i32* nonnull %temp)
557 //       ret void
558 //     }
559 //
560 // Before a next iteration, we need to propagate the constant like so
561 // which allows further specialization in next iterations.
562 //
563 //     @funcspec.arg = internal constant i32 2
564 //
565 //     define internal void @someFunc(i32* arg1) {
566 //       call void @otherFunc(i32* nonnull @funcspec.arg)
567 //       ret void
568 //     }
569 //
570 // See if there are any new constant values for the callers of \p F via
571 // stack variables and promote them to global variables.
572 void FunctionSpecializer::promoteConstantStackValues(Function *F) {
573   for (User *U : F->users()) {
574 
575     auto *Call = dyn_cast<CallInst>(U);
576     if (!Call)
577       continue;
578 
579     if (!Solver.isBlockExecutable(Call->getParent()))
580       continue;
581 
582     for (const Use &U : Call->args()) {
583       unsigned Idx = Call->getArgOperandNo(&U);
584       Value *ArgOp = Call->getArgOperand(Idx);
585       Type *ArgOpType = ArgOp->getType();
586 
587       if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
588         continue;
589 
590       auto *ConstVal = getConstantStackValue(Call, ArgOp);
591       if (!ConstVal)
592         continue;
593 
594       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
595                                      GlobalValue::InternalLinkage, ConstVal,
596                                      "specialized.arg." + Twine(++NGlobals));
597       Call->setArgOperand(Idx, GV);
598     }
599   }
600 }
601 
602 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
603 // interfere with the promoteConstantStackValues() optimization.
604 static void removeSSACopy(Function &F) {
605   for (BasicBlock &BB : F) {
606     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
607       auto *II = dyn_cast<IntrinsicInst>(&Inst);
608       if (!II)
609         continue;
610       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
611         continue;
612       Inst.replaceAllUsesWith(II->getOperand(0));
613       Inst.eraseFromParent();
614     }
615   }
616 }
617 
618 /// Remove any ssa_copy intrinsics that may have been introduced.
619 void FunctionSpecializer::cleanUpSSA() {
620   for (Function *F : Specializations)
621     removeSSACopy(*F);
622 }
623 
624 
625 template <> struct llvm::DenseMapInfo<SpecSig> {
626   static inline SpecSig getEmptyKey() { return {~0U, {}}; }
627 
628   static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
629 
630   static unsigned getHashValue(const SpecSig &S) {
631     return static_cast<unsigned>(hash_value(S));
632   }
633 
634   static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
635     return LHS == RHS;
636   }
637 };
638 
639 FunctionSpecializer::~FunctionSpecializer() {
640   LLVM_DEBUG(
641     if (NumSpecsCreated > 0)
642       dbgs() << "FnSpecialization: Created " << NumSpecsCreated
643              << " specializations in module " << M.getName() << "\n");
644   // Eliminate dead code.
645   removeDeadFunctions();
646   cleanUpSSA();
647 }
648 
649 /// Attempt to specialize functions in the module to enable constant
650 /// propagation across function boundaries.
651 ///
652 /// \returns true if at least one function is specialized.
653 bool FunctionSpecializer::run() {
654   // Find possible specializations for each function.
655   SpecMap SM;
656   SmallVector<Spec, 32> AllSpecs;
657   unsigned NumCandidates = 0;
658   for (Function &F : M) {
659     if (!isCandidateFunction(&F))
660       continue;
661 
662     auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
663     CodeMetrics &Metrics = It->second;
664     //Analyze the function.
665     if (Inserted) {
666       SmallPtrSet<const Value *, 32> EphValues;
667       CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
668       for (BasicBlock &BB : F)
669         Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
670     }
671 
672     // When specializing literal constants is enabled, always require functions
673     // to be larger than MinFunctionSize, to prevent excessive specialization.
674     const bool RequireMinSize =
675         !ForceSpecialization &&
676         (SpecializeLiteralConstant || !F.hasFnAttribute(Attribute::NoInline));
677 
678     // If the code metrics reveal that we shouldn't duplicate the function,
679     // or if the code size implies that this function is easy to get inlined,
680     // then we shouldn't specialize it.
681     if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
682         (RequireMinSize && Metrics.NumInsts < MinFunctionSize))
683       continue;
684 
685     // TODO: For now only consider recursive functions when running multiple
686     // times. This should change if specialization on literal constants gets
687     // enabled.
688     if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant)
689       continue;
690 
691     int64_t Sz = *Metrics.NumInsts.getValue();
692     assert(Sz > 0 && "CodeSize should be positive");
693     // It is safe to down cast from int64_t, NumInsts is always positive.
694     unsigned FuncSize = static_cast<unsigned>(Sz);
695 
696     LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
697                       << F.getName() << " is " << FuncSize << "\n");
698 
699     if (Inserted && Metrics.isRecursive)
700       promoteConstantStackValues(&F);
701 
702     if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) {
703       LLVM_DEBUG(
704           dbgs() << "FnSpecialization: No possible specializations found for "
705                  << F.getName() << "\n");
706       continue;
707     }
708 
709     ++NumCandidates;
710   }
711 
712   if (!NumCandidates) {
713     LLVM_DEBUG(
714         dbgs()
715         << "FnSpecialization: No possible specializations found in module\n");
716     return false;
717   }
718 
719   // Choose the most profitable specialisations, which fit in the module
720   // specialization budget, which is derived from maximum number of
721   // specializations per specialization candidate function.
722   auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
723     if (AllSpecs[I].Score != AllSpecs[J].Score)
724       return AllSpecs[I].Score > AllSpecs[J].Score;
725     return I > J;
726   };
727   const unsigned NSpecs =
728       std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
729   SmallVector<unsigned> BestSpecs(NSpecs + 1);
730   std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
731   if (AllSpecs.size() > NSpecs) {
732     LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
733                       << "the maximum number of clones threshold.\n"
734                       << "FnSpecialization: Specializing the "
735                       << NSpecs
736                       << " most profitable candidates.\n");
737     std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
738     for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
739       BestSpecs[NSpecs] = I;
740       std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
741       std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
742     }
743   }
744 
745   LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
746              for (unsigned I = 0; I < NSpecs; ++I) {
747                const Spec &S = AllSpecs[BestSpecs[I]];
748                dbgs() << "FnSpecialization: Function " << S.F->getName()
749                       << " , score " << S.Score << "\n";
750                for (const ArgInfo &Arg : S.Sig.Args)
751                  dbgs() << "FnSpecialization:   FormalArg = "
752                         << Arg.Formal->getNameOrAsOperand()
753                         << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
754                         << "\n";
755              });
756 
757   // Create the chosen specializations.
758   SmallPtrSet<Function *, 8> OriginalFuncs;
759   SmallVector<Function *> Clones;
760   for (unsigned I = 0; I < NSpecs; ++I) {
761     Spec &S = AllSpecs[BestSpecs[I]];
762     S.Clone = createSpecialization(S.F, S.Sig);
763 
764     // Update the known call sites to call the clone.
765     for (CallBase *Call : S.CallSites) {
766       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
767                         << " to call " << S.Clone->getName() << "\n");
768       Call->setCalledFunction(S.Clone);
769     }
770 
771     Clones.push_back(S.Clone);
772     OriginalFuncs.insert(S.F);
773   }
774 
775   Solver.solveWhileResolvedUndefsIn(Clones);
776 
777   // Update the rest of the call sites - these are the recursive calls, calls
778   // to discarded specialisations and calls that may match a specialisation
779   // after the solver runs.
780   for (Function *F : OriginalFuncs) {
781     auto [Begin, End] = SM[F];
782     updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
783   }
784 
785   for (Function *F : Clones) {
786     if (F->getReturnType()->isVoidTy())
787       continue;
788     if (F->getReturnType()->isStructTy()) {
789       auto *STy = cast<StructType>(F->getReturnType());
790       if (!Solver.isStructLatticeConstant(F, STy))
791         continue;
792     } else {
793       auto It = Solver.getTrackedRetVals().find(F);
794       assert(It != Solver.getTrackedRetVals().end() &&
795              "Return value ought to be tracked");
796       if (SCCPSolver::isOverdefined(It->second))
797         continue;
798     }
799     for (User *U : F->users()) {
800       if (auto *CS = dyn_cast<CallBase>(U)) {
801         //The user instruction does not call our function.
802         if (CS->getCalledFunction() != F)
803           continue;
804         Solver.resetLatticeValueFor(CS);
805       }
806     }
807   }
808 
809   // Rerun the solver to notify the users of the modified callsites.
810   Solver.solveWhileResolvedUndefs();
811 
812   for (Function *F : OriginalFuncs)
813     if (FunctionMetrics[F].isRecursive)
814       promoteConstantStackValues(F);
815 
816   return true;
817 }
818 
819 void FunctionSpecializer::removeDeadFunctions() {
820   for (Function *F : FullySpecialized) {
821     LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
822                       << F->getName() << "\n");
823     if (FAM)
824       FAM->clear(*F, F->getName());
825     F->eraseFromParent();
826   }
827   FullySpecialized.clear();
828 }
829 
830 /// Clone the function \p F and remove the ssa_copy intrinsics added by
831 /// the SCCPSolver in the cloned version.
832 static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) {
833   ValueToValueMapTy Mappings;
834   Function *Clone = CloneFunction(F, Mappings);
835   Clone->setName(F->getName() + ".specialized." + Twine(NSpecs));
836   removeSSACopy(*Clone);
837   return Clone;
838 }
839 
840 /// Get the unsigned Value of given Cost object. Assumes the Cost is always
841 /// non-negative, which is true for both TCK_CodeSize and TCK_Latency, and
842 /// always Valid.
843 static unsigned getCostValue(const Cost &C) {
844   int64_t Value = *C.getValue();
845 
846   assert(Value >= 0 && "CodeSize and Latency cannot be negative");
847   // It is safe to down cast since we know the arguments cannot be negative and
848   // Cost is of type int64_t.
849   return static_cast<unsigned>(Value);
850 }
851 
852 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize,
853                                               SmallVectorImpl<Spec> &AllSpecs,
854                                               SpecMap &SM) {
855   // A mapping from a specialisation signature to the index of the respective
856   // entry in the all specialisation array. Used to ensure uniqueness of
857   // specialisations.
858   DenseMap<SpecSig, unsigned> UniqueSpecs;
859 
860   // Get a list of interesting arguments.
861   SmallVector<Argument *> Args;
862   for (Argument &Arg : F->args())
863     if (isArgumentInteresting(&Arg))
864       Args.push_back(&Arg);
865 
866   if (Args.empty())
867     return false;
868 
869   for (User *U : F->users()) {
870     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
871       continue;
872     auto &CS = *cast<CallBase>(U);
873 
874     // The user instruction does not call our function.
875     if (CS.getCalledFunction() != F)
876       continue;
877 
878     // If the call site has attribute minsize set, that callsite won't be
879     // specialized.
880     if (CS.hasFnAttr(Attribute::MinSize))
881       continue;
882 
883     // If the parent of the call site will never be executed, we don't need
884     // to worry about the passed value.
885     if (!Solver.isBlockExecutable(CS.getParent()))
886       continue;
887 
888     // Examine arguments and create a specialisation candidate from the
889     // constant operands of this call site.
890     SpecSig S;
891     for (Argument *A : Args) {
892       Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
893       if (!C)
894         continue;
895       LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
896                         << A->getName() << " : " << C->getNameOrAsOperand()
897                         << "\n");
898       S.Args.push_back({A, C});
899     }
900 
901     if (S.Args.empty())
902       continue;
903 
904     // Check if we have encountered the same specialisation already.
905     if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
906       // Existing specialisation. Add the call to the list to rewrite, unless
907       // it's a recursive call. A specialisation, generated because of a
908       // recursive call may end up as not the best specialisation for all
909       // the cloned instances of this call, which result from specialising
910       // functions. Hence we don't rewrite the call directly, but match it with
911       // the best specialisation once all specialisations are known.
912       if (CS.getFunction() == F)
913         continue;
914       const unsigned Index = It->second;
915       AllSpecs[Index].CallSites.push_back(&CS);
916     } else {
917       // Calculate the specialisation gain.
918       Cost CodeSize;
919       unsigned Score = 0;
920       InstCostVisitor Visitor = getInstCostVisitorFor(F);
921       for (ArgInfo &A : S.Args) {
922         CodeSize += Visitor.getCodeSizeSavingsForArg(A.Formal, A.Actual);
923         Score += getInliningBonus(A.Formal, A.Actual);
924       }
925       CodeSize += Visitor.getCodeSizeSavingsFromPendingPHIs();
926 
927       auto IsProfitable = [&]() -> bool {
928         // No check required.
929         if (ForceSpecialization)
930           return true;
931 
932         unsigned CodeSizeSavings = getCostValue(CodeSize);
933         // TODO: We should only accumulate codesize increase of specializations
934         // that are actually created.
935         FunctionGrowth[F] += FuncSize - CodeSizeSavings;
936 
937         LLVM_DEBUG(
938             dbgs() << "FnSpecialization: Specialization bonus {Inlining = "
939                    << Score << " (" << (Score * 100 / FuncSize) << "%)}\n");
940 
941         // Minimum inlining bonus.
942         if (Score > MinInliningBonus * FuncSize / 100)
943           return true;
944 
945         LLVM_DEBUG(
946             dbgs() << "FnSpecialization: Specialization bonus {CodeSize = "
947                    << CodeSizeSavings << " ("
948                    << (CodeSizeSavings * 100 / FuncSize) << "%)}\n");
949 
950         // Minimum codesize savings.
951         if (CodeSizeSavings < MinCodeSizeSavings * FuncSize / 100)
952           return false;
953 
954         // Lazily compute the Latency, to avoid unnecessarily computing BFI.
955         unsigned LatencySavings =
956             getCostValue(Visitor.getLatencySavingsForKnownConstants());
957 
958         LLVM_DEBUG(
959             dbgs() << "FnSpecialization: Specialization bonus {Latency = "
960                    << LatencySavings << " ("
961                    << (LatencySavings * 100 / FuncSize) << "%)}\n");
962 
963         // Minimum latency savings.
964         if (LatencySavings < MinLatencySavings * FuncSize / 100)
965           return false;
966         // Maximum codesize growth.
967         if (FunctionGrowth[F] / FuncSize > MaxCodeSizeGrowth)
968           return false;
969 
970         Score += std::max(CodeSizeSavings, LatencySavings);
971         return true;
972       };
973 
974       // Discard unprofitable specialisations.
975       if (!IsProfitable())
976         continue;
977 
978       // Create a new specialisation entry.
979       auto &Spec = AllSpecs.emplace_back(F, S, Score);
980       if (CS.getFunction() != F)
981         Spec.CallSites.push_back(&CS);
982       const unsigned Index = AllSpecs.size() - 1;
983       UniqueSpecs[S] = Index;
984       if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
985         It->second.second = Index + 1;
986     }
987   }
988 
989   return !UniqueSpecs.empty();
990 }
991 
992 bool FunctionSpecializer::isCandidateFunction(Function *F) {
993   if (F->isDeclaration() || F->arg_empty())
994     return false;
995 
996   if (F->hasFnAttribute(Attribute::NoDuplicate))
997     return false;
998 
999   // Do not specialize the cloned function again.
1000   if (Specializations.contains(F))
1001     return false;
1002 
1003   // If we're optimizing the function for size, we shouldn't specialize it.
1004   if (shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
1005     return false;
1006 
1007   // Exit if the function is not executable. There's no point in specializing
1008   // a dead function.
1009   if (!Solver.isBlockExecutable(&F->getEntryBlock()))
1010     return false;
1011 
1012   // It wastes time to specialize a function which would get inlined finally.
1013   if (F->hasFnAttribute(Attribute::AlwaysInline))
1014     return false;
1015 
1016   LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
1017                     << "\n");
1018   return true;
1019 }
1020 
1021 Function *FunctionSpecializer::createSpecialization(Function *F,
1022                                                     const SpecSig &S) {
1023   Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1);
1024 
1025   // The original function does not neccessarily have internal linkage, but the
1026   // clone must.
1027   Clone->setLinkage(GlobalValue::InternalLinkage);
1028 
1029   // Initialize the lattice state of the arguments of the function clone,
1030   // marking the argument on which we specialized the function constant
1031   // with the given value.
1032   Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
1033   Solver.markBlockExecutable(&Clone->front());
1034   Solver.addArgumentTrackedFunction(Clone);
1035   Solver.addTrackedFunction(Clone);
1036 
1037   // Mark all the specialized functions
1038   Specializations.insert(Clone);
1039   ++NumSpecsCreated;
1040 
1041   return Clone;
1042 }
1043 
1044 /// Compute the inlining bonus for replacing argument \p A with constant \p C.
1045 /// The below heuristic is only concerned with exposing inlining
1046 /// opportunities via indirect call promotion. If the argument is not a
1047 /// (potentially casted) function pointer, give up.
1048 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) {
1049   Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
1050   if (!CalledFunction)
1051     return 0;
1052 
1053   // Get TTI for the called function (used for the inline cost).
1054   auto &CalleeTTI = (GetTTI)(*CalledFunction);
1055 
1056   // Look at all the call sites whose called value is the argument.
1057   // Specializing the function on the argument would allow these indirect
1058   // calls to be promoted to direct calls. If the indirect call promotion
1059   // would likely enable the called function to be inlined, specializing is a
1060   // good idea.
1061   int InliningBonus = 0;
1062   for (User *U : A->users()) {
1063     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
1064       continue;
1065     auto *CS = cast<CallBase>(U);
1066     if (CS->getCalledOperand() != A)
1067       continue;
1068     if (CS->getFunctionType() != CalledFunction->getFunctionType())
1069       continue;
1070 
1071     // Get the cost of inlining the called function at this call site. Note
1072     // that this is only an estimate. The called function may eventually
1073     // change in a way that leads to it not being inlined here, even though
1074     // inlining looks profitable now. For example, one of its called
1075     // functions may be inlined into it, making the called function too large
1076     // to be inlined into this call site.
1077     //
1078     // We apply a boost for performing indirect call promotion by increasing
1079     // the default threshold by the threshold for indirect calls.
1080     auto Params = getInlineParams();
1081     Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
1082     InlineCost IC =
1083         getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
1084 
1085     // We clamp the bonus for this call to be between zero and the default
1086     // threshold.
1087     if (IC.isAlways())
1088       InliningBonus += Params.DefaultThreshold;
1089     else if (IC.isVariable() && IC.getCostDelta() > 0)
1090       InliningBonus += IC.getCostDelta();
1091 
1092     LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << InliningBonus
1093                       << " for user " << *U << "\n");
1094   }
1095 
1096   return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0;
1097 }
1098 
1099 /// Determine if it is possible to specialise the function for constant values
1100 /// of the formal parameter \p A.
1101 bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
1102   // No point in specialization if the argument is unused.
1103   if (A->user_empty())
1104     return false;
1105 
1106   Type *Ty = A->getType();
1107   if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
1108       (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
1109     return false;
1110 
1111   // SCCP solver does not record an argument that will be constructed on
1112   // stack.
1113   if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
1114     return false;
1115 
1116   // For non-argument-tracked functions every argument is overdefined.
1117   if (!Solver.isArgumentTrackedFunction(A->getParent()))
1118     return true;
1119 
1120   // Check the lattice value and decide if we should attemt to specialize,
1121   // based on this argument. No point in specialization, if the lattice value
1122   // is already a constant.
1123   bool IsOverdefined = Ty->isStructTy()
1124     ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
1125     : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
1126 
1127   LLVM_DEBUG(
1128     if (IsOverdefined)
1129       dbgs() << "FnSpecialization: Found interesting parameter "
1130              << A->getNameOrAsOperand() << "\n";
1131     else
1132       dbgs() << "FnSpecialization: Nothing to do, parameter "
1133              << A->getNameOrAsOperand() << " is already constant\n";
1134   );
1135   return IsOverdefined;
1136 }
1137 
1138 /// Check if the value \p V  (an actual argument) is a constant or can only
1139 /// have a constant value. Return that constant.
1140 Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
1141   if (isa<PoisonValue>(V))
1142     return nullptr;
1143 
1144   // Select for possible specialisation values that are constants or
1145   // are deduced to be constants or constant ranges with a single element.
1146   Constant *C = dyn_cast<Constant>(V);
1147   if (!C)
1148     C = Solver.getConstantOrNull(V);
1149 
1150   // Don't specialize on (anything derived from) the address of a non-constant
1151   // global variable, unless explicitly enabled.
1152   if (C && C->getType()->isPointerTy() && !C->isNullValue())
1153     if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
1154         GV && !(GV->isConstant() || SpecializeOnAddress))
1155       return nullptr;
1156 
1157   return C;
1158 }
1159 
1160 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
1161                                           const Spec *End) {
1162   // Collect the call sites that need updating.
1163   SmallVector<CallBase *> ToUpdate;
1164   for (User *U : F->users())
1165     if (auto *CS = dyn_cast<CallBase>(U);
1166         CS && CS->getCalledFunction() == F &&
1167         Solver.isBlockExecutable(CS->getParent()))
1168       ToUpdate.push_back(CS);
1169 
1170   unsigned NCallsLeft = ToUpdate.size();
1171   for (CallBase *CS : ToUpdate) {
1172     bool ShouldDecrementCount = CS->getFunction() == F;
1173 
1174     // Find the best matching specialisation.
1175     const Spec *BestSpec = nullptr;
1176     for (const Spec &S : make_range(Begin, End)) {
1177       if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
1178         continue;
1179 
1180       if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
1181             unsigned ArgNo = Arg.Formal->getArgNo();
1182             return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
1183           }))
1184         continue;
1185 
1186       BestSpec = &S;
1187     }
1188 
1189     if (BestSpec) {
1190       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
1191                         << " to call " << BestSpec->Clone->getName() << "\n");
1192       CS->setCalledFunction(BestSpec->Clone);
1193       ShouldDecrementCount = true;
1194     }
1195 
1196     if (ShouldDecrementCount)
1197       --NCallsLeft;
1198   }
1199 
1200   // If the function has been completely specialized, the original function
1201   // is no longer needed. Mark it unreachable.
1202   if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
1203     Solver.markFunctionUnreachable(F);
1204     FullySpecialized.insert(F);
1205   }
1206 }
1207