1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/FunctionSpecialization.h" 10 #include "llvm/ADT/Statistic.h" 11 #include "llvm/Analysis/CodeMetrics.h" 12 #include "llvm/Analysis/ConstantFolding.h" 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/Analysis/TargetTransformInfo.h" 16 #include "llvm/Analysis/ValueLattice.h" 17 #include "llvm/Analysis/ValueLatticeUtils.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/Transforms/Scalar/SCCP.h" 21 #include "llvm/Transforms/Utils/Cloning.h" 22 #include "llvm/Transforms/Utils/SCCPSolver.h" 23 #include "llvm/Transforms/Utils/SizeOpts.h" 24 #include <cmath> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "function-specialization" 29 30 STATISTIC(NumSpecsCreated, "Number of specializations created"); 31 32 static cl::opt<bool> ForceSpecialization( 33 "force-specialization", cl::init(false), cl::Hidden, cl::desc( 34 "Force function specialization for every call site with a constant " 35 "argument")); 36 37 static cl::opt<unsigned> MaxClones( 38 "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( 39 "The maximum number of clones allowed for a single function " 40 "specialization")); 41 42 static cl::opt<unsigned> 43 MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100), 44 cl::Hidden, 45 cl::desc("The maximum number of iterations allowed " 46 "when searching for transitive " 47 "phis")); 48 49 static cl::opt<unsigned> MaxIncomingPhiValues( 50 "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden, 51 cl::desc("The maximum number of incoming values a PHI node can have to be " 52 "considered during the specialization bonus estimation")); 53 54 static cl::opt<unsigned> MaxBlockPredecessors( 55 "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc( 56 "The maximum number of predecessors a basic block can have to be " 57 "considered during the estimation of dead code")); 58 59 static cl::opt<unsigned> MinFunctionSize( 60 "funcspec-min-function-size", cl::init(500), cl::Hidden, 61 cl::desc("Don't specialize functions that have less than this number of " 62 "instructions")); 63 64 static cl::opt<unsigned> MaxCodeSizeGrowth( 65 "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc( 66 "Maximum codesize growth allowed per function")); 67 68 static cl::opt<unsigned> MinCodeSizeSavings( 69 "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, 70 cl::desc("Reject specializations whose codesize savings are less than this " 71 "much percent of the original function size")); 72 73 static cl::opt<unsigned> MinLatencySavings( 74 "funcspec-min-latency-savings", cl::init(40), cl::Hidden, 75 cl::desc("Reject specializations whose latency savings are less than this " 76 "much percent of the original function size")); 77 78 static cl::opt<unsigned> MinInliningBonus( 79 "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, 80 cl::desc("Reject specializations whose inlining bonus is less than this " 81 "much percent of the original function size")); 82 83 static cl::opt<bool> SpecializeOnAddress( 84 "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( 85 "Enable function specialization on the address of global values")); 86 87 static cl::opt<bool> SpecializeLiteralConstant( 88 "funcspec-for-literal-constant", cl::init(true), cl::Hidden, 89 cl::desc( 90 "Enable specialization of functions that take a literal constant as an " 91 "argument")); 92 93 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, 94 BasicBlock *Succ) const { 95 unsigned I = 0; 96 return all_of(predecessors(Succ), [&I, BB, Succ, this](BasicBlock *Pred) { 97 return I++ < MaxBlockPredecessors && 98 (Pred == BB || Pred == Succ || !isBlockExecutable(Pred)); 99 }); 100 } 101 102 // Estimates the codesize savings due to dead code after constant propagation. 103 // \p WorkList represents the basic blocks of a specialization which will 104 // eventually become dead once we replace instructions that are known to be 105 // constants. The successors of such blocks are added to the list as long as 106 // the \p Solver found they were executable prior to specialization, and only 107 // if all their predecessors are dead. 108 Cost InstCostVisitor::estimateBasicBlocks( 109 SmallVectorImpl<BasicBlock *> &WorkList) { 110 Cost CodeSize = 0; 111 // Accumulate the codesize savings of each basic block. 112 while (!WorkList.empty()) { 113 BasicBlock *BB = WorkList.pop_back_val(); 114 115 // These blocks are considered dead as far as the InstCostVisitor 116 // is concerned. They haven't been proven dead yet by the Solver, 117 // but may become if we propagate the specialization arguments. 118 assert(Solver.isBlockExecutable(BB) && "BB already found dead by IPSCCP!"); 119 if (!DeadBlocks.insert(BB).second) 120 continue; 121 122 for (Instruction &I : *BB) { 123 // If it's a known constant we have already accounted for it. 124 if (KnownConstants.contains(&I)) 125 continue; 126 127 Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 128 129 LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C 130 << " for user " << I << "\n"); 131 CodeSize += C; 132 } 133 134 // Keep adding dead successors to the list as long as they are 135 // executable and only reachable from dead blocks. 136 for (BasicBlock *SuccBB : successors(BB)) 137 if (isBlockExecutable(SuccBB) && canEliminateSuccessor(BB, SuccBB)) 138 WorkList.push_back(SuccBB); 139 } 140 return CodeSize; 141 } 142 143 Constant *InstCostVisitor::findConstantFor(Value *V) const { 144 if (auto *C = dyn_cast<Constant>(V)) 145 return C; 146 if (auto *C = Solver.getConstantOrNull(V)) 147 return C; 148 return KnownConstants.lookup(V); 149 } 150 151 Cost InstCostVisitor::getCodeSizeSavingsFromPendingPHIs() { 152 Cost CodeSize; 153 while (!PendingPHIs.empty()) { 154 Instruction *Phi = PendingPHIs.pop_back_val(); 155 // The pending PHIs could have been proven dead by now. 156 if (isBlockExecutable(Phi->getParent())) 157 CodeSize += getCodeSizeSavingsForUser(Phi); 158 } 159 return CodeSize; 160 } 161 162 /// Compute the codesize savings for replacing argument \p A with constant \p C. 163 Cost InstCostVisitor::getCodeSizeSavingsForArg(Argument *A, Constant *C) { 164 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " 165 << C->getNameOrAsOperand() << "\n"); 166 Cost CodeSize; 167 for (auto *U : A->users()) 168 if (auto *UI = dyn_cast<Instruction>(U)) 169 if (isBlockExecutable(UI->getParent())) 170 CodeSize += getCodeSizeSavingsForUser(UI, A, C); 171 172 LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = " 173 << CodeSize << "} for argument " << *A << "\n"); 174 return CodeSize; 175 } 176 177 /// Compute the latency savings from replacing all arguments with constants for 178 /// a specialization candidate. As this function computes the latency savings 179 /// for all Instructions in KnownConstants at once, it should be called only 180 /// after every instruction has been visited, i.e. after: 181 /// 182 /// * getCodeSizeSavingsForArg has been run for every constant argument of a 183 /// specialization candidate 184 /// 185 /// * getCodeSizeSavingsFromPendingPHIs has been run 186 /// 187 /// to ensure that the latency savings are calculated for all Instructions we 188 /// have visited and found to be constant. 189 Cost InstCostVisitor::getLatencySavingsForKnownConstants() { 190 auto &BFI = GetBFI(*F); 191 Cost TotalLatency = 0; 192 193 for (auto Pair : KnownConstants) { 194 Instruction *I = dyn_cast<Instruction>(Pair.first); 195 if (!I) 196 continue; 197 198 uint64_t Weight = BFI.getBlockFreq(I->getParent()).getFrequency() / 199 BFI.getEntryFreq().getFrequency(); 200 201 Cost Latency = 202 Weight * TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency); 203 204 LLVM_DEBUG(dbgs() << "FnSpecialization: {Latency = " << Latency 205 << "} for instruction " << *I << "\n"); 206 207 TotalLatency += Latency; 208 } 209 210 return TotalLatency; 211 } 212 213 Cost InstCostVisitor::getCodeSizeSavingsForUser(Instruction *User, Value *Use, 214 Constant *C) { 215 // We have already propagated a constant for this user. 216 if (KnownConstants.contains(User)) 217 return 0; 218 219 // Cache the iterator before visiting. 220 LastVisited = Use ? KnownConstants.insert({Use, C}).first 221 : KnownConstants.end(); 222 223 Cost CodeSize = 0; 224 if (auto *I = dyn_cast<SwitchInst>(User)) { 225 CodeSize = estimateSwitchInst(*I); 226 } else if (auto *I = dyn_cast<BranchInst>(User)) { 227 CodeSize = estimateBranchInst(*I); 228 } else { 229 C = visit(*User); 230 if (!C) 231 return 0; 232 } 233 234 // Even though it doesn't make sense to bind switch and branch instructions 235 // with a constant, unlike any other instruction type, it prevents estimating 236 // their bonus multiple times. 237 KnownConstants.insert({User, C}); 238 239 CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); 240 241 LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize 242 << "} for user " << *User << "\n"); 243 244 for (auto *U : User->users()) 245 if (auto *UI = dyn_cast<Instruction>(U)) 246 if (UI != User && isBlockExecutable(UI->getParent())) 247 CodeSize += getCodeSizeSavingsForUser(UI, User, C); 248 249 return CodeSize; 250 } 251 252 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { 253 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 254 255 if (I.getCondition() != LastVisited->first) 256 return 0; 257 258 auto *C = dyn_cast<ConstantInt>(LastVisited->second); 259 if (!C) 260 return 0; 261 262 BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); 263 // Initialize the worklist with the dead basic blocks. These are the 264 // destination labels which are different from the one corresponding 265 // to \p C. They should be executable and have a unique predecessor. 266 SmallVector<BasicBlock *> WorkList; 267 for (const auto &Case : I.cases()) { 268 BasicBlock *BB = Case.getCaseSuccessor(); 269 if (BB != Succ && isBlockExecutable(BB) && 270 canEliminateSuccessor(I.getParent(), BB)) 271 WorkList.push_back(BB); 272 } 273 274 return estimateBasicBlocks(WorkList); 275 } 276 277 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { 278 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 279 280 if (I.getCondition() != LastVisited->first) 281 return 0; 282 283 BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); 284 // Initialize the worklist with the dead successor as long as 285 // it is executable and has a unique predecessor. 286 SmallVector<BasicBlock *> WorkList; 287 if (isBlockExecutable(Succ) && canEliminateSuccessor(I.getParent(), Succ)) 288 WorkList.push_back(Succ); 289 290 return estimateBasicBlocks(WorkList); 291 } 292 293 bool InstCostVisitor::discoverTransitivelyIncomingValues( 294 Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) { 295 296 SmallVector<PHINode *, 64> WorkList; 297 WorkList.push_back(Root); 298 unsigned Iter = 0; 299 300 while (!WorkList.empty()) { 301 PHINode *PN = WorkList.pop_back_val(); 302 303 if (++Iter > MaxDiscoveryIterations || 304 PN->getNumIncomingValues() > MaxIncomingPhiValues) 305 return false; 306 307 if (!TransitivePHIs.insert(PN).second) 308 continue; 309 310 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 311 Value *V = PN->getIncomingValue(I); 312 313 // Disregard self-references and dead incoming values. 314 if (auto *Inst = dyn_cast<Instruction>(V)) 315 if (Inst == PN || !isBlockExecutable(PN->getIncomingBlock(I))) 316 continue; 317 318 if (Constant *C = findConstantFor(V)) { 319 // Not all incoming values are the same constant. Bail immediately. 320 if (C != Const) 321 return false; 322 continue; 323 } 324 325 if (auto *Phi = dyn_cast<PHINode>(V)) { 326 WorkList.push_back(Phi); 327 continue; 328 } 329 330 // We can't reason about anything else. 331 return false; 332 } 333 } 334 return true; 335 } 336 337 Constant *InstCostVisitor::visitPHINode(PHINode &I) { 338 if (I.getNumIncomingValues() > MaxIncomingPhiValues) 339 return nullptr; 340 341 bool Inserted = VisitedPHIs.insert(&I).second; 342 Constant *Const = nullptr; 343 bool HaveSeenIncomingPHI = false; 344 345 for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { 346 Value *V = I.getIncomingValue(Idx); 347 348 // Disregard self-references and dead incoming values. 349 if (auto *Inst = dyn_cast<Instruction>(V)) 350 if (Inst == &I || !isBlockExecutable(I.getIncomingBlock(Idx))) 351 continue; 352 353 if (Constant *C = findConstantFor(V)) { 354 if (!Const) 355 Const = C; 356 // Not all incoming values are the same constant. Bail immediately. 357 if (C != Const) 358 return nullptr; 359 continue; 360 } 361 362 if (Inserted) { 363 // First time we are seeing this phi. We will retry later, after 364 // all the constant arguments have been propagated. Bail for now. 365 PendingPHIs.push_back(&I); 366 return nullptr; 367 } 368 369 if (isa<PHINode>(V)) { 370 // Perhaps it is a Transitive Phi. We will confirm later. 371 HaveSeenIncomingPHI = true; 372 continue; 373 } 374 375 // We can't reason about anything else. 376 return nullptr; 377 } 378 379 if (!Const) 380 return nullptr; 381 382 if (!HaveSeenIncomingPHI) 383 return Const; 384 385 DenseSet<PHINode *> TransitivePHIs; 386 if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs)) 387 return nullptr; 388 389 return Const; 390 } 391 392 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { 393 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 394 395 if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) 396 return LastVisited->second; 397 return nullptr; 398 } 399 400 Constant *InstCostVisitor::visitCallBase(CallBase &I) { 401 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 402 403 // Look through calls to ssa_copy intrinsics. 404 if (auto *II = dyn_cast<IntrinsicInst>(&I); 405 II && II->getIntrinsicID() == Intrinsic::ssa_copy) { 406 return LastVisited->second; 407 } 408 409 Function *F = I.getCalledFunction(); 410 if (!F || !canConstantFoldCallTo(&I, F)) 411 return nullptr; 412 413 SmallVector<Constant *, 8> Operands; 414 Operands.reserve(I.getNumOperands()); 415 416 for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { 417 Value *V = I.getOperand(Idx); 418 Constant *C = findConstantFor(V); 419 if (!C) 420 return nullptr; 421 Operands.push_back(C); 422 } 423 424 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 425 return ConstantFoldCall(&I, F, Ops); 426 } 427 428 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { 429 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 430 431 if (isa<ConstantPointerNull>(LastVisited->second)) 432 return nullptr; 433 return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); 434 } 435 436 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 437 SmallVector<Constant *, 8> Operands; 438 Operands.reserve(I.getNumOperands()); 439 440 for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { 441 Value *V = I.getOperand(Idx); 442 Constant *C = findConstantFor(V); 443 if (!C) 444 return nullptr; 445 Operands.push_back(C); 446 } 447 448 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 449 return ConstantFoldInstOperands(&I, Ops, DL); 450 } 451 452 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { 453 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 454 455 if (I.getCondition() == LastVisited->first) { 456 Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() 457 : I.getTrueValue(); 458 return findConstantFor(V); 459 } 460 if (Constant *Condition = findConstantFor(I.getCondition())) 461 if ((I.getTrueValue() == LastVisited->first && Condition->isOneValue()) || 462 (I.getFalseValue() == LastVisited->first && Condition->isZeroValue())) 463 return LastVisited->second; 464 return nullptr; 465 } 466 467 Constant *InstCostVisitor::visitCastInst(CastInst &I) { 468 return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, 469 I.getType(), DL); 470 } 471 472 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { 473 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 474 475 Constant *Const = LastVisited->second; 476 bool ConstOnRHS = I.getOperand(1) == LastVisited->first; 477 Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1); 478 Constant *Other = findConstantFor(V); 479 480 if (Other) { 481 if (ConstOnRHS) 482 std::swap(Const, Other); 483 return ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); 484 } 485 486 // If we haven't found Other to be a specific constant value, we may still be 487 // able to constant fold using information from the lattice value. 488 const ValueLatticeElement &ConstLV = ValueLatticeElement::get(Const); 489 const ValueLatticeElement &OtherLV = Solver.getLatticeValueFor(V); 490 auto &V1State = ConstOnRHS ? OtherLV : ConstLV; 491 auto &V2State = ConstOnRHS ? ConstLV : OtherLV; 492 return V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL); 493 } 494 495 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { 496 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 497 498 return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); 499 } 500 501 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { 502 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 503 504 bool ConstOnRHS = I.getOperand(1) == LastVisited->first; 505 Value *V = ConstOnRHS ? I.getOperand(0) : I.getOperand(1); 506 Constant *Other = findConstantFor(V); 507 Value *OtherVal = Other ? Other : V; 508 Value *ConstVal = LastVisited->second; 509 510 if (ConstOnRHS) 511 std::swap(ConstVal, OtherVal); 512 513 return dyn_cast_or_null<Constant>( 514 simplifyBinOp(I.getOpcode(), ConstVal, OtherVal, SimplifyQuery(DL))); 515 } 516 517 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, 518 CallInst *Call) { 519 Value *StoreValue = nullptr; 520 for (auto *User : Alloca->users()) { 521 // We can't use llvm::isAllocaPromotable() as that would fail because of 522 // the usage in the CallInst, which is what we check here. 523 if (User == Call) 524 continue; 525 526 if (auto *Store = dyn_cast<StoreInst>(User)) { 527 // This is a duplicate store, bail out. 528 if (StoreValue || Store->isVolatile()) 529 return nullptr; 530 StoreValue = Store->getValueOperand(); 531 continue; 532 } 533 // Bail if there is any other unknown usage. 534 return nullptr; 535 } 536 537 if (!StoreValue) 538 return nullptr; 539 540 return getCandidateConstant(StoreValue); 541 } 542 543 // A constant stack value is an AllocaInst that has a single constant 544 // value stored to it. Return this constant if such an alloca stack value 545 // is a function argument. 546 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, 547 Value *Val) { 548 if (!Val) 549 return nullptr; 550 Val = Val->stripPointerCasts(); 551 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 552 return ConstVal; 553 auto *Alloca = dyn_cast<AllocaInst>(Val); 554 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 555 return nullptr; 556 return getPromotableAlloca(Alloca, Call); 557 } 558 559 // To support specializing recursive functions, it is important to propagate 560 // constant arguments because after a first iteration of specialisation, a 561 // reduced example may look like this: 562 // 563 // define internal void @RecursiveFn(i32* arg1) { 564 // %temp = alloca i32, align 4 565 // store i32 2 i32* %temp, align 4 566 // call void @RecursiveFn.1(i32* nonnull %temp) 567 // ret void 568 // } 569 // 570 // Before a next iteration, we need to propagate the constant like so 571 // which allows further specialization in next iterations. 572 // 573 // @funcspec.arg = internal constant i32 2 574 // 575 // define internal void @someFunc(i32* arg1) { 576 // call void @otherFunc(i32* nonnull @funcspec.arg) 577 // ret void 578 // } 579 // 580 // See if there are any new constant values for the callers of \p F via 581 // stack variables and promote them to global variables. 582 void FunctionSpecializer::promoteConstantStackValues(Function *F) { 583 for (User *U : F->users()) { 584 585 auto *Call = dyn_cast<CallInst>(U); 586 if (!Call) 587 continue; 588 589 if (!Solver.isBlockExecutable(Call->getParent())) 590 continue; 591 592 for (const Use &U : Call->args()) { 593 unsigned Idx = Call->getArgOperandNo(&U); 594 Value *ArgOp = Call->getArgOperand(Idx); 595 Type *ArgOpType = ArgOp->getType(); 596 597 if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) 598 continue; 599 600 auto *ConstVal = getConstantStackValue(Call, ArgOp); 601 if (!ConstVal) 602 continue; 603 604 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 605 GlobalValue::InternalLinkage, ConstVal, 606 "specialized.arg." + Twine(++NGlobals)); 607 Call->setArgOperand(Idx, GV); 608 } 609 } 610 } 611 612 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 613 // interfere with the promoteConstantStackValues() optimization. 614 static void removeSSACopy(Function &F) { 615 for (BasicBlock &BB : F) { 616 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 617 auto *II = dyn_cast<IntrinsicInst>(&Inst); 618 if (!II) 619 continue; 620 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 621 continue; 622 Inst.replaceAllUsesWith(II->getOperand(0)); 623 Inst.eraseFromParent(); 624 } 625 } 626 } 627 628 /// Remove any ssa_copy intrinsics that may have been introduced. 629 void FunctionSpecializer::cleanUpSSA() { 630 for (Function *F : Specializations) 631 removeSSACopy(*F); 632 } 633 634 635 template <> struct llvm::DenseMapInfo<SpecSig> { 636 static inline SpecSig getEmptyKey() { return {~0U, {}}; } 637 638 static inline SpecSig getTombstoneKey() { return {~1U, {}}; } 639 640 static unsigned getHashValue(const SpecSig &S) { 641 return static_cast<unsigned>(hash_value(S)); 642 } 643 644 static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { 645 return LHS == RHS; 646 } 647 }; 648 649 FunctionSpecializer::~FunctionSpecializer() { 650 LLVM_DEBUG( 651 if (NumSpecsCreated > 0) 652 dbgs() << "FnSpecialization: Created " << NumSpecsCreated 653 << " specializations in module " << M.getName() << "\n"); 654 // Eliminate dead code. 655 removeDeadFunctions(); 656 cleanUpSSA(); 657 } 658 659 /// Get the unsigned Value of given Cost object. Assumes the Cost is always 660 /// non-negative, which is true for both TCK_CodeSize and TCK_Latency, and 661 /// always Valid. 662 static unsigned getCostValue(const Cost &C) { 663 int64_t Value = *C.getValue(); 664 665 assert(Value >= 0 && "CodeSize and Latency cannot be negative"); 666 // It is safe to down cast since we know the arguments cannot be negative and 667 // Cost is of type int64_t. 668 return static_cast<unsigned>(Value); 669 } 670 671 /// Attempt to specialize functions in the module to enable constant 672 /// propagation across function boundaries. 673 /// 674 /// \returns true if at least one function is specialized. 675 bool FunctionSpecializer::run() { 676 // Find possible specializations for each function. 677 SpecMap SM; 678 SmallVector<Spec, 32> AllSpecs; 679 unsigned NumCandidates = 0; 680 for (Function &F : M) { 681 if (!isCandidateFunction(&F)) 682 continue; 683 684 auto [It, Inserted] = FunctionMetrics.try_emplace(&F); 685 CodeMetrics &Metrics = It->second; 686 //Analyze the function. 687 if (Inserted) { 688 SmallPtrSet<const Value *, 32> EphValues; 689 CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); 690 for (BasicBlock &BB : F) 691 Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); 692 } 693 694 // When specializing literal constants is enabled, always require functions 695 // to be larger than MinFunctionSize, to prevent excessive specialization. 696 const bool RequireMinSize = 697 !ForceSpecialization && 698 (SpecializeLiteralConstant || !F.hasFnAttribute(Attribute::NoInline)); 699 700 // If the code metrics reveal that we shouldn't duplicate the function, 701 // or if the code size implies that this function is easy to get inlined, 702 // then we shouldn't specialize it. 703 if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || 704 (RequireMinSize && Metrics.NumInsts < MinFunctionSize)) 705 continue; 706 707 // When specialization on literal constants is disabled, only consider 708 // recursive functions when running multiple times to save wasted analysis, 709 // as we will not be able to specialize on any newly found literal constant 710 // return values. 711 if (!SpecializeLiteralConstant && !Inserted && !Metrics.isRecursive) 712 continue; 713 714 int64_t Sz = *Metrics.NumInsts.getValue(); 715 assert(Sz > 0 && "CodeSize should be positive"); 716 // It is safe to down cast from int64_t, NumInsts is always positive. 717 unsigned FuncSize = static_cast<unsigned>(Sz); 718 719 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " 720 << F.getName() << " is " << FuncSize << "\n"); 721 722 if (Inserted && Metrics.isRecursive) 723 promoteConstantStackValues(&F); 724 725 if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) { 726 LLVM_DEBUG( 727 dbgs() << "FnSpecialization: No possible specializations found for " 728 << F.getName() << "\n"); 729 continue; 730 } 731 732 ++NumCandidates; 733 } 734 735 if (!NumCandidates) { 736 LLVM_DEBUG( 737 dbgs() 738 << "FnSpecialization: No possible specializations found in module\n"); 739 return false; 740 } 741 742 // Choose the most profitable specialisations, which fit in the module 743 // specialization budget, which is derived from maximum number of 744 // specializations per specialization candidate function. 745 auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { 746 if (AllSpecs[I].Score != AllSpecs[J].Score) 747 return AllSpecs[I].Score > AllSpecs[J].Score; 748 return I > J; 749 }; 750 const unsigned NSpecs = 751 std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); 752 SmallVector<unsigned> BestSpecs(NSpecs + 1); 753 std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); 754 if (AllSpecs.size() > NSpecs) { 755 LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " 756 << "the maximum number of clones threshold.\n" 757 << "FnSpecialization: Specializing the " 758 << NSpecs 759 << " most profitable candidates.\n"); 760 std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); 761 for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { 762 BestSpecs[NSpecs] = I; 763 std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 764 std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 765 } 766 } 767 768 LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; 769 for (unsigned I = 0; I < NSpecs; ++I) { 770 const Spec &S = AllSpecs[BestSpecs[I]]; 771 dbgs() << "FnSpecialization: Function " << S.F->getName() 772 << " , score " << S.Score << "\n"; 773 for (const ArgInfo &Arg : S.Sig.Args) 774 dbgs() << "FnSpecialization: FormalArg = " 775 << Arg.Formal->getNameOrAsOperand() 776 << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() 777 << "\n"; 778 }); 779 780 // Create the chosen specializations. 781 SmallPtrSet<Function *, 8> OriginalFuncs; 782 SmallVector<Function *> Clones; 783 for (unsigned I = 0; I < NSpecs; ++I) { 784 Spec &S = AllSpecs[BestSpecs[I]]; 785 786 // Accumulate the codesize growth for the function, now we are creating the 787 // specialization. 788 FunctionGrowth[S.F] += S.CodeSize; 789 790 S.Clone = createSpecialization(S.F, S.Sig); 791 792 // Update the known call sites to call the clone. 793 for (CallBase *Call : S.CallSites) { 794 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call 795 << " to call " << S.Clone->getName() << "\n"); 796 Call->setCalledFunction(S.Clone); 797 } 798 799 Clones.push_back(S.Clone); 800 OriginalFuncs.insert(S.F); 801 } 802 803 Solver.solveWhileResolvedUndefsIn(Clones); 804 805 // Update the rest of the call sites - these are the recursive calls, calls 806 // to discarded specialisations and calls that may match a specialisation 807 // after the solver runs. 808 for (Function *F : OriginalFuncs) { 809 auto [Begin, End] = SM[F]; 810 updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); 811 } 812 813 for (Function *F : Clones) { 814 if (F->getReturnType()->isVoidTy()) 815 continue; 816 if (F->getReturnType()->isStructTy()) { 817 auto *STy = cast<StructType>(F->getReturnType()); 818 if (!Solver.isStructLatticeConstant(F, STy)) 819 continue; 820 } else { 821 auto It = Solver.getTrackedRetVals().find(F); 822 assert(It != Solver.getTrackedRetVals().end() && 823 "Return value ought to be tracked"); 824 if (SCCPSolver::isOverdefined(It->second)) 825 continue; 826 } 827 for (User *U : F->users()) { 828 if (auto *CS = dyn_cast<CallBase>(U)) { 829 //The user instruction does not call our function. 830 if (CS->getCalledFunction() != F) 831 continue; 832 Solver.resetLatticeValueFor(CS); 833 } 834 } 835 } 836 837 // Rerun the solver to notify the users of the modified callsites. 838 Solver.solveWhileResolvedUndefs(); 839 840 for (Function *F : OriginalFuncs) 841 if (FunctionMetrics[F].isRecursive) 842 promoteConstantStackValues(F); 843 844 return true; 845 } 846 847 void FunctionSpecializer::removeDeadFunctions() { 848 for (Function *F : FullySpecialized) { 849 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " 850 << F->getName() << "\n"); 851 if (FAM) 852 FAM->clear(*F, F->getName()); 853 F->eraseFromParent(); 854 } 855 FullySpecialized.clear(); 856 } 857 858 /// Clone the function \p F and remove the ssa_copy intrinsics added by 859 /// the SCCPSolver in the cloned version. 860 static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) { 861 ValueToValueMapTy Mappings; 862 Function *Clone = CloneFunction(F, Mappings); 863 Clone->setName(F->getName() + ".specialized." + Twine(NSpecs)); 864 removeSSACopy(*Clone); 865 return Clone; 866 } 867 868 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize, 869 SmallVectorImpl<Spec> &AllSpecs, 870 SpecMap &SM) { 871 // A mapping from a specialisation signature to the index of the respective 872 // entry in the all specialisation array. Used to ensure uniqueness of 873 // specialisations. 874 DenseMap<SpecSig, unsigned> UniqueSpecs; 875 876 // Get a list of interesting arguments. 877 SmallVector<Argument *> Args; 878 for (Argument &Arg : F->args()) 879 if (isArgumentInteresting(&Arg)) 880 Args.push_back(&Arg); 881 882 if (Args.empty()) 883 return false; 884 885 for (User *U : F->users()) { 886 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 887 continue; 888 auto &CS = *cast<CallBase>(U); 889 890 // The user instruction does not call our function. 891 if (CS.getCalledFunction() != F) 892 continue; 893 894 // If the call site has attribute minsize set, that callsite won't be 895 // specialized. 896 if (CS.hasFnAttr(Attribute::MinSize)) 897 continue; 898 899 // If the parent of the call site will never be executed, we don't need 900 // to worry about the passed value. 901 if (!Solver.isBlockExecutable(CS.getParent())) 902 continue; 903 904 // Examine arguments and create a specialisation candidate from the 905 // constant operands of this call site. 906 SpecSig S; 907 for (Argument *A : Args) { 908 Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); 909 if (!C) 910 continue; 911 LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " 912 << A->getName() << " : " << C->getNameOrAsOperand() 913 << "\n"); 914 S.Args.push_back({A, C}); 915 } 916 917 if (S.Args.empty()) 918 continue; 919 920 // Check if we have encountered the same specialisation already. 921 if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { 922 // Existing specialisation. Add the call to the list to rewrite, unless 923 // it's a recursive call. A specialisation, generated because of a 924 // recursive call may end up as not the best specialisation for all 925 // the cloned instances of this call, which result from specialising 926 // functions. Hence we don't rewrite the call directly, but match it with 927 // the best specialisation once all specialisations are known. 928 if (CS.getFunction() == F) 929 continue; 930 const unsigned Index = It->second; 931 AllSpecs[Index].CallSites.push_back(&CS); 932 } else { 933 // Calculate the specialisation gain. 934 Cost CodeSize; 935 unsigned Score = 0; 936 InstCostVisitor Visitor = getInstCostVisitorFor(F); 937 for (ArgInfo &A : S.Args) { 938 CodeSize += Visitor.getCodeSizeSavingsForArg(A.Formal, A.Actual); 939 Score += getInliningBonus(A.Formal, A.Actual); 940 } 941 CodeSize += Visitor.getCodeSizeSavingsFromPendingPHIs(); 942 943 unsigned CodeSizeSavings = getCostValue(CodeSize); 944 unsigned SpecSize = FuncSize - CodeSizeSavings; 945 946 auto IsProfitable = [&]() -> bool { 947 // No check required. 948 if (ForceSpecialization) 949 return true; 950 951 LLVM_DEBUG( 952 dbgs() << "FnSpecialization: Specialization bonus {Inlining = " 953 << Score << " (" << (Score * 100 / FuncSize) << "%)}\n"); 954 955 // Minimum inlining bonus. 956 if (Score > MinInliningBonus * FuncSize / 100) 957 return true; 958 959 LLVM_DEBUG( 960 dbgs() << "FnSpecialization: Specialization bonus {CodeSize = " 961 << CodeSizeSavings << " (" 962 << (CodeSizeSavings * 100 / FuncSize) << "%)}\n"); 963 964 // Minimum codesize savings. 965 if (CodeSizeSavings < MinCodeSizeSavings * FuncSize / 100) 966 return false; 967 968 // Lazily compute the Latency, to avoid unnecessarily computing BFI. 969 unsigned LatencySavings = 970 getCostValue(Visitor.getLatencySavingsForKnownConstants()); 971 972 LLVM_DEBUG( 973 dbgs() << "FnSpecialization: Specialization bonus {Latency = " 974 << LatencySavings << " (" 975 << (LatencySavings * 100 / FuncSize) << "%)}\n"); 976 977 // Minimum latency savings. 978 if (LatencySavings < MinLatencySavings * FuncSize / 100) 979 return false; 980 // Maximum codesize growth. 981 if ((FunctionGrowth[F] + SpecSize) / FuncSize > MaxCodeSizeGrowth) 982 return false; 983 984 Score += std::max(CodeSizeSavings, LatencySavings); 985 return true; 986 }; 987 988 // Discard unprofitable specialisations. 989 if (!IsProfitable()) 990 continue; 991 992 // Create a new specialisation entry. 993 auto &Spec = AllSpecs.emplace_back(F, S, Score, SpecSize); 994 if (CS.getFunction() != F) 995 Spec.CallSites.push_back(&CS); 996 const unsigned Index = AllSpecs.size() - 1; 997 UniqueSpecs[S] = Index; 998 if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) 999 It->second.second = Index + 1; 1000 } 1001 } 1002 1003 return !UniqueSpecs.empty(); 1004 } 1005 1006 bool FunctionSpecializer::isCandidateFunction(Function *F) { 1007 if (F->isDeclaration() || F->arg_empty()) 1008 return false; 1009 1010 if (F->hasFnAttribute(Attribute::NoDuplicate)) 1011 return false; 1012 1013 // Do not specialize the cloned function again. 1014 if (Specializations.contains(F)) 1015 return false; 1016 1017 // If we're optimizing the function for size, we shouldn't specialize it. 1018 if (shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 1019 return false; 1020 1021 // Exit if the function is not executable. There's no point in specializing 1022 // a dead function. 1023 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 1024 return false; 1025 1026 // It wastes time to specialize a function which would get inlined finally. 1027 if (F->hasFnAttribute(Attribute::AlwaysInline)) 1028 return false; 1029 1030 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 1031 << "\n"); 1032 return true; 1033 } 1034 1035 Function *FunctionSpecializer::createSpecialization(Function *F, 1036 const SpecSig &S) { 1037 Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1); 1038 1039 // The original function does not neccessarily have internal linkage, but the 1040 // clone must. 1041 Clone->setLinkage(GlobalValue::InternalLinkage); 1042 1043 // Initialize the lattice state of the arguments of the function clone, 1044 // marking the argument on which we specialized the function constant 1045 // with the given value. 1046 Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); 1047 Solver.markBlockExecutable(&Clone->front()); 1048 Solver.addArgumentTrackedFunction(Clone); 1049 Solver.addTrackedFunction(Clone); 1050 1051 // Mark all the specialized functions 1052 Specializations.insert(Clone); 1053 ++NumSpecsCreated; 1054 1055 return Clone; 1056 } 1057 1058 /// Compute the inlining bonus for replacing argument \p A with constant \p C. 1059 /// The below heuristic is only concerned with exposing inlining 1060 /// opportunities via indirect call promotion. If the argument is not a 1061 /// (potentially casted) function pointer, give up. 1062 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) { 1063 Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); 1064 if (!CalledFunction) 1065 return 0; 1066 1067 // Get TTI for the called function (used for the inline cost). 1068 auto &CalleeTTI = (GetTTI)(*CalledFunction); 1069 1070 // Look at all the call sites whose called value is the argument. 1071 // Specializing the function on the argument would allow these indirect 1072 // calls to be promoted to direct calls. If the indirect call promotion 1073 // would likely enable the called function to be inlined, specializing is a 1074 // good idea. 1075 int InliningBonus = 0; 1076 for (User *U : A->users()) { 1077 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 1078 continue; 1079 auto *CS = cast<CallBase>(U); 1080 if (CS->getCalledOperand() != A) 1081 continue; 1082 if (CS->getFunctionType() != CalledFunction->getFunctionType()) 1083 continue; 1084 1085 // Get the cost of inlining the called function at this call site. Note 1086 // that this is only an estimate. The called function may eventually 1087 // change in a way that leads to it not being inlined here, even though 1088 // inlining looks profitable now. For example, one of its called 1089 // functions may be inlined into it, making the called function too large 1090 // to be inlined into this call site. 1091 // 1092 // We apply a boost for performing indirect call promotion by increasing 1093 // the default threshold by the threshold for indirect calls. 1094 auto Params = getInlineParams(); 1095 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 1096 InlineCost IC = 1097 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 1098 1099 // We clamp the bonus for this call to be between zero and the default 1100 // threshold. 1101 if (IC.isAlways()) 1102 InliningBonus += Params.DefaultThreshold; 1103 else if (IC.isVariable() && IC.getCostDelta() > 0) 1104 InliningBonus += IC.getCostDelta(); 1105 1106 LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus 1107 << " for user " << *U << "\n"); 1108 } 1109 1110 return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0; 1111 } 1112 1113 /// Determine if it is possible to specialise the function for constant values 1114 /// of the formal parameter \p A. 1115 bool FunctionSpecializer::isArgumentInteresting(Argument *A) { 1116 // No point in specialization if the argument is unused. 1117 if (A->user_empty()) 1118 return false; 1119 1120 Type *Ty = A->getType(); 1121 if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || 1122 (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) 1123 return false; 1124 1125 // SCCP solver does not record an argument that will be constructed on 1126 // stack. 1127 if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) 1128 return false; 1129 1130 // For non-argument-tracked functions every argument is overdefined. 1131 if (!Solver.isArgumentTrackedFunction(A->getParent())) 1132 return true; 1133 1134 // Check the lattice value and decide if we should attemt to specialize, 1135 // based on this argument. No point in specialization, if the lattice value 1136 // is already a constant. 1137 bool IsOverdefined = Ty->isStructTy() 1138 ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) 1139 : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); 1140 1141 LLVM_DEBUG( 1142 if (IsOverdefined) 1143 dbgs() << "FnSpecialization: Found interesting parameter " 1144 << A->getNameOrAsOperand() << "\n"; 1145 else 1146 dbgs() << "FnSpecialization: Nothing to do, parameter " 1147 << A->getNameOrAsOperand() << " is already constant\n"; 1148 ); 1149 return IsOverdefined; 1150 } 1151 1152 /// Check if the value \p V (an actual argument) is a constant or can only 1153 /// have a constant value. Return that constant. 1154 Constant *FunctionSpecializer::getCandidateConstant(Value *V) { 1155 if (isa<PoisonValue>(V)) 1156 return nullptr; 1157 1158 // Select for possible specialisation values that are constants or 1159 // are deduced to be constants or constant ranges with a single element. 1160 Constant *C = dyn_cast<Constant>(V); 1161 if (!C) 1162 C = Solver.getConstantOrNull(V); 1163 1164 // Don't specialize on (anything derived from) the address of a non-constant 1165 // global variable, unless explicitly enabled. 1166 if (C && C->getType()->isPointerTy() && !C->isNullValue()) 1167 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 1168 GV && !(GV->isConstant() || SpecializeOnAddress)) 1169 return nullptr; 1170 1171 return C; 1172 } 1173 1174 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, 1175 const Spec *End) { 1176 // Collect the call sites that need updating. 1177 SmallVector<CallBase *> ToUpdate; 1178 for (User *U : F->users()) 1179 if (auto *CS = dyn_cast<CallBase>(U); 1180 CS && CS->getCalledFunction() == F && 1181 Solver.isBlockExecutable(CS->getParent())) 1182 ToUpdate.push_back(CS); 1183 1184 unsigned NCallsLeft = ToUpdate.size(); 1185 for (CallBase *CS : ToUpdate) { 1186 bool ShouldDecrementCount = CS->getFunction() == F; 1187 1188 // Find the best matching specialisation. 1189 const Spec *BestSpec = nullptr; 1190 for (const Spec &S : make_range(Begin, End)) { 1191 if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) 1192 continue; 1193 1194 if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { 1195 unsigned ArgNo = Arg.Formal->getArgNo(); 1196 return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; 1197 })) 1198 continue; 1199 1200 BestSpec = &S; 1201 } 1202 1203 if (BestSpec) { 1204 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS 1205 << " to call " << BestSpec->Clone->getName() << "\n"); 1206 CS->setCalledFunction(BestSpec->Clone); 1207 ShouldDecrementCount = true; 1208 } 1209 1210 if (ShouldDecrementCount) 1211 --NCallsLeft; 1212 } 1213 1214 // If the function has been completely specialized, the original function 1215 // is no longer needed. Mark it unreachable. 1216 if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { 1217 Solver.markFunctionUnreachable(F); 1218 FullySpecialized.insert(F); 1219 } 1220 } 1221