1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This specialises functions with constant parameters. Constant parameters 10 // like function pointers and constant globals are propagated to the callee by 11 // specializing the function. The main benefit of this pass at the moment is 12 // that indirect calls are transformed into direct calls, which provides inline 13 // opportunities that the inliner would not have been able to achieve. That's 14 // why function specialisation is run before the inliner in the optimisation 15 // pipeline; that is by design. Otherwise, we would only benefit from constant 16 // passing, which is a valid use-case too, but hasn't been explored much in 17 // terms of performance uplifts, cost-model and compile-time impact. 18 // 19 // Current limitations: 20 // - It does not yet handle integer ranges. We do support "literal constants", 21 // but that's off by default under an option. 22 // - The cost-model could be further looked into (it mainly focuses on inlining 23 // benefits), 24 // 25 // Ideas: 26 // - With a function specialization attribute for arguments, we could have 27 // a direct way to steer function specialization, avoiding the cost-model, 28 // and thus control compile-times / code-size. 29 // 30 // Todos: 31 // - Specializing recursive functions relies on running the transformation a 32 // number of times, which is controlled by option 33 // `func-specialization-max-iters`. Thus, increasing this value and the 34 // number of iterations, will linearly increase the number of times recursive 35 // functions get specialized, see also the discussion in 36 // https://reviews.llvm.org/D106426 for details. Perhaps there is a 37 // compile-time friendlier way to control/limit the number of specialisations 38 // for recursive functions. 39 // - Don't transform the function if function specialization does not trigger; 40 // the SCCPSolver may make IR changes. 41 // 42 // References: 43 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable 44 // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q 45 // 46 //===----------------------------------------------------------------------===// 47 48 #include "llvm/Transforms/IPO/FunctionSpecialization.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/CodeMetrics.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/InlineCost.h" 53 #include "llvm/Analysis/InstructionSimplify.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Analysis/ValueLattice.h" 56 #include "llvm/Analysis/ValueLatticeUtils.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/Transforms/Scalar/SCCP.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/SCCPSolver.h" 62 #include "llvm/Transforms/Utils/SizeOpts.h" 63 #include <cmath> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "function-specialization" 68 69 STATISTIC(NumSpecsCreated, "Number of specializations created"); 70 71 static cl::opt<bool> ForceSpecialization( 72 "force-specialization", cl::init(false), cl::Hidden, cl::desc( 73 "Force function specialization for every call site with a constant " 74 "argument")); 75 76 static cl::opt<unsigned> MaxClones( 77 "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( 78 "The maximum number of clones allowed for a single function " 79 "specialization")); 80 81 static cl::opt<unsigned> MaxIncomingPhiValues( 82 "funcspec-max-incoming-phi-values", cl::init(4), cl::Hidden, cl::desc( 83 "The maximum number of incoming values a PHI node can have to be " 84 "considered during the specialization bonus estimation")); 85 86 static cl::opt<unsigned> MinFunctionSize( 87 "funcspec-min-function-size", cl::init(100), cl::Hidden, cl::desc( 88 "Don't specialize functions that have less than this number of " 89 "instructions")); 90 91 static cl::opt<bool> SpecializeOnAddress( 92 "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( 93 "Enable function specialization on the address of global values")); 94 95 // Disabled by default as it can significantly increase compilation times. 96 // 97 // https://llvm-compile-time-tracker.com 98 // https://github.com/nikic/llvm-compile-time-tracker 99 static cl::opt<bool> SpecializeLiteralConstant( 100 "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc( 101 "Enable specialization of functions that take a literal constant as an " 102 "argument")); 103 104 // Estimates the codesize savings due to dead code after constant propagation. 105 // \p WorkList represents the basic blocks of a specialization which will 106 // eventually become dead once we replace instructions that are known to be 107 // constants. The successors of such blocks are added to the list as long as 108 // the \p Solver found they were executable prior to specialization, and only 109 // if they have a unique predecessor. 110 static Cost estimateBasicBlocks(SmallVectorImpl<BasicBlock *> &WorkList, 111 DenseSet<BasicBlock *> &DeadBlocks, 112 ConstMap &KnownConstants, SCCPSolver &Solver, 113 TargetTransformInfo &TTI) { 114 Cost CodeSize = 0; 115 // Accumulate the instruction cost of each basic block weighted by frequency. 116 while (!WorkList.empty()) { 117 BasicBlock *BB = WorkList.pop_back_val(); 118 119 // These blocks are considered dead as far as the InstCostVisitor 120 // is concerned. They haven't been proven dead yet by the Solver, 121 // but may become if we propagate the specialization arguments. 122 if (!DeadBlocks.insert(BB).second) 123 continue; 124 125 for (Instruction &I : *BB) { 126 // Disregard SSA copies. 127 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 128 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 129 continue; 130 // If it's a known constant we have already accounted for it. 131 if (KnownConstants.contains(&I)) 132 continue; 133 134 Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 135 136 LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C 137 << " for user " << I << "\n"); 138 CodeSize += C; 139 } 140 141 // Keep adding dead successors to the list as long as they are 142 // executable and they have a unique predecessor. 143 for (BasicBlock *SuccBB : successors(BB)) 144 if (Solver.isBlockExecutable(SuccBB) && 145 SuccBB->getUniquePredecessor() == BB) 146 WorkList.push_back(SuccBB); 147 } 148 return CodeSize; 149 } 150 151 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) { 152 if (auto *C = dyn_cast<Constant>(V)) 153 return C; 154 if (auto It = KnownConstants.find(V); It != KnownConstants.end()) 155 return It->second; 156 return nullptr; 157 } 158 159 Bonus InstCostVisitor::getBonusFromPendingPHIs() { 160 Bonus B; 161 while (!PendingPHIs.empty()) { 162 Instruction *Phi = PendingPHIs.pop_back_val(); 163 // The pending PHIs could have been proven dead by now. 164 if (isBlockExecutable(Phi->getParent())) 165 B += getUserBonus(Phi); 166 } 167 return B; 168 } 169 170 Bonus InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) { 171 // We have already propagated a constant for this user. 172 if (KnownConstants.contains(User)) 173 return {0, 0}; 174 175 // Cache the iterator before visiting. 176 LastVisited = Use ? KnownConstants.insert({Use, C}).first 177 : KnownConstants.end(); 178 179 Cost CodeSize = 0; 180 if (auto *I = dyn_cast<SwitchInst>(User)) { 181 CodeSize = estimateSwitchInst(*I); 182 } else if (auto *I = dyn_cast<BranchInst>(User)) { 183 CodeSize = estimateBranchInst(*I); 184 } else { 185 C = visit(*User); 186 if (!C) 187 return {0, 0}; 188 KnownConstants.insert({User, C}); 189 } 190 191 CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); 192 193 uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() / 194 BFI.getEntryFreq(); 195 196 Cost Latency = Weight * 197 TTI.getInstructionCost(User, TargetTransformInfo::TCK_Latency); 198 199 LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize 200 << ", Latency = " << Latency << "} for user " 201 << *User << "\n"); 202 203 Bonus B(CodeSize, Latency); 204 for (auto *U : User->users()) 205 if (auto *UI = dyn_cast<Instruction>(U)) 206 if (UI != User && isBlockExecutable(UI->getParent())) 207 B += getUserBonus(UI, User, C); 208 209 return B; 210 } 211 212 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { 213 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 214 215 if (I.getCondition() != LastVisited->first) 216 return 0; 217 218 auto *C = dyn_cast<ConstantInt>(LastVisited->second); 219 if (!C) 220 return 0; 221 222 BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); 223 // Initialize the worklist with the dead basic blocks. These are the 224 // destination labels which are different from the one corresponding 225 // to \p C. They should be executable and have a unique predecessor. 226 SmallVector<BasicBlock *> WorkList; 227 for (const auto &Case : I.cases()) { 228 BasicBlock *BB = Case.getCaseSuccessor(); 229 if (BB == Succ || !Solver.isBlockExecutable(BB) || 230 BB->getUniquePredecessor() != I.getParent()) 231 continue; 232 WorkList.push_back(BB); 233 } 234 235 return estimateBasicBlocks(WorkList, DeadBlocks, KnownConstants, Solver, TTI); 236 } 237 238 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { 239 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 240 241 if (I.getCondition() != LastVisited->first) 242 return 0; 243 244 BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); 245 // Initialize the worklist with the dead successor as long as 246 // it is executable and has a unique predecessor. 247 SmallVector<BasicBlock *> WorkList; 248 if (Solver.isBlockExecutable(Succ) && 249 Succ->getUniquePredecessor() == I.getParent()) 250 WorkList.push_back(Succ); 251 252 return estimateBasicBlocks(WorkList, DeadBlocks, KnownConstants, Solver, TTI); 253 } 254 255 Constant *InstCostVisitor::visitPHINode(PHINode &I) { 256 if (I.getNumIncomingValues() > MaxIncomingPhiValues) 257 return nullptr; 258 259 bool Inserted = VisitedPHIs.insert(&I).second; 260 Constant *Const = nullptr; 261 262 for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { 263 Value *V = I.getIncomingValue(Idx); 264 if (auto *Inst = dyn_cast<Instruction>(V)) 265 if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx))) 266 continue; 267 Constant *C = findConstantFor(V, KnownConstants); 268 if (!C) { 269 if (Inserted) 270 PendingPHIs.push_back(&I); 271 return nullptr; 272 } 273 if (!Const) 274 Const = C; 275 else if (C != Const) 276 return nullptr; 277 } 278 return Const; 279 } 280 281 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { 282 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 283 284 if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) 285 return LastVisited->second; 286 return nullptr; 287 } 288 289 Constant *InstCostVisitor::visitCallBase(CallBase &I) { 290 Function *F = I.getCalledFunction(); 291 if (!F || !canConstantFoldCallTo(&I, F)) 292 return nullptr; 293 294 SmallVector<Constant *, 8> Operands; 295 Operands.reserve(I.getNumOperands()); 296 297 for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { 298 Value *V = I.getOperand(Idx); 299 Constant *C = findConstantFor(V, KnownConstants); 300 if (!C) 301 return nullptr; 302 Operands.push_back(C); 303 } 304 305 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 306 return ConstantFoldCall(&I, F, Ops); 307 } 308 309 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { 310 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 311 312 if (isa<ConstantPointerNull>(LastVisited->second)) 313 return nullptr; 314 return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); 315 } 316 317 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { 318 SmallVector<Constant *, 8> Operands; 319 Operands.reserve(I.getNumOperands()); 320 321 for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { 322 Value *V = I.getOperand(Idx); 323 Constant *C = findConstantFor(V, KnownConstants); 324 if (!C) 325 return nullptr; 326 Operands.push_back(C); 327 } 328 329 auto Ops = ArrayRef(Operands.begin(), Operands.end()); 330 return ConstantFoldInstOperands(&I, Ops, DL); 331 } 332 333 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { 334 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 335 336 if (I.getCondition() != LastVisited->first) 337 return nullptr; 338 339 Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() 340 : I.getTrueValue(); 341 Constant *C = findConstantFor(V, KnownConstants); 342 return C; 343 } 344 345 Constant *InstCostVisitor::visitCastInst(CastInst &I) { 346 return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, 347 I.getType(), DL); 348 } 349 350 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { 351 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 352 353 bool Swap = I.getOperand(1) == LastVisited->first; 354 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 355 Constant *Other = findConstantFor(V, KnownConstants); 356 if (!Other) 357 return nullptr; 358 359 Constant *Const = LastVisited->second; 360 return Swap ? 361 ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL) 362 : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); 363 } 364 365 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { 366 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 367 368 return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); 369 } 370 371 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { 372 assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); 373 374 bool Swap = I.getOperand(1) == LastVisited->first; 375 Value *V = Swap ? I.getOperand(0) : I.getOperand(1); 376 Constant *Other = findConstantFor(V, KnownConstants); 377 if (!Other) 378 return nullptr; 379 380 Constant *Const = LastVisited->second; 381 return dyn_cast_or_null<Constant>(Swap ? 382 simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL)) 383 : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL))); 384 } 385 386 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, 387 CallInst *Call) { 388 Value *StoreValue = nullptr; 389 for (auto *User : Alloca->users()) { 390 // We can't use llvm::isAllocaPromotable() as that would fail because of 391 // the usage in the CallInst, which is what we check here. 392 if (User == Call) 393 continue; 394 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 395 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 396 return nullptr; 397 continue; 398 } 399 400 if (auto *Store = dyn_cast<StoreInst>(User)) { 401 // This is a duplicate store, bail out. 402 if (StoreValue || Store->isVolatile()) 403 return nullptr; 404 StoreValue = Store->getValueOperand(); 405 continue; 406 } 407 // Bail if there is any other unknown usage. 408 return nullptr; 409 } 410 411 if (!StoreValue) 412 return nullptr; 413 414 return getCandidateConstant(StoreValue); 415 } 416 417 // A constant stack value is an AllocaInst that has a single constant 418 // value stored to it. Return this constant if such an alloca stack value 419 // is a function argument. 420 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, 421 Value *Val) { 422 if (!Val) 423 return nullptr; 424 Val = Val->stripPointerCasts(); 425 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 426 return ConstVal; 427 auto *Alloca = dyn_cast<AllocaInst>(Val); 428 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 429 return nullptr; 430 return getPromotableAlloca(Alloca, Call); 431 } 432 433 // To support specializing recursive functions, it is important to propagate 434 // constant arguments because after a first iteration of specialisation, a 435 // reduced example may look like this: 436 // 437 // define internal void @RecursiveFn(i32* arg1) { 438 // %temp = alloca i32, align 4 439 // store i32 2 i32* %temp, align 4 440 // call void @RecursiveFn.1(i32* nonnull %temp) 441 // ret void 442 // } 443 // 444 // Before a next iteration, we need to propagate the constant like so 445 // which allows further specialization in next iterations. 446 // 447 // @funcspec.arg = internal constant i32 2 448 // 449 // define internal void @someFunc(i32* arg1) { 450 // call void @otherFunc(i32* nonnull @funcspec.arg) 451 // ret void 452 // } 453 // 454 // See if there are any new constant values for the callers of \p F via 455 // stack variables and promote them to global variables. 456 void FunctionSpecializer::promoteConstantStackValues(Function *F) { 457 for (User *U : F->users()) { 458 459 auto *Call = dyn_cast<CallInst>(U); 460 if (!Call) 461 continue; 462 463 if (!Solver.isBlockExecutable(Call->getParent())) 464 continue; 465 466 for (const Use &U : Call->args()) { 467 unsigned Idx = Call->getArgOperandNo(&U); 468 Value *ArgOp = Call->getArgOperand(Idx); 469 Type *ArgOpType = ArgOp->getType(); 470 471 if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) 472 continue; 473 474 auto *ConstVal = getConstantStackValue(Call, ArgOp); 475 if (!ConstVal) 476 continue; 477 478 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 479 GlobalValue::InternalLinkage, ConstVal, 480 "funcspec.arg"); 481 if (ArgOpType != ConstVal->getType()) 482 GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType); 483 484 Call->setArgOperand(Idx, GV); 485 } 486 } 487 } 488 489 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 490 // interfere with the promoteConstantStackValues() optimization. 491 static void removeSSACopy(Function &F) { 492 for (BasicBlock &BB : F) { 493 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 494 auto *II = dyn_cast<IntrinsicInst>(&Inst); 495 if (!II) 496 continue; 497 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 498 continue; 499 Inst.replaceAllUsesWith(II->getOperand(0)); 500 Inst.eraseFromParent(); 501 } 502 } 503 } 504 505 /// Remove any ssa_copy intrinsics that may have been introduced. 506 void FunctionSpecializer::cleanUpSSA() { 507 for (Function *F : Specializations) 508 removeSSACopy(*F); 509 } 510 511 512 template <> struct llvm::DenseMapInfo<SpecSig> { 513 static inline SpecSig getEmptyKey() { return {~0U, {}}; } 514 515 static inline SpecSig getTombstoneKey() { return {~1U, {}}; } 516 517 static unsigned getHashValue(const SpecSig &S) { 518 return static_cast<unsigned>(hash_value(S)); 519 } 520 521 static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { 522 return LHS == RHS; 523 } 524 }; 525 526 FunctionSpecializer::~FunctionSpecializer() { 527 LLVM_DEBUG( 528 if (NumSpecsCreated > 0) 529 dbgs() << "FnSpecialization: Created " << NumSpecsCreated 530 << " specializations in module " << M.getName() << "\n"); 531 // Eliminate dead code. 532 removeDeadFunctions(); 533 cleanUpSSA(); 534 } 535 536 /// Attempt to specialize functions in the module to enable constant 537 /// propagation across function boundaries. 538 /// 539 /// \returns true if at least one function is specialized. 540 bool FunctionSpecializer::run() { 541 // Find possible specializations for each function. 542 SpecMap SM; 543 SmallVector<Spec, 32> AllSpecs; 544 unsigned NumCandidates = 0; 545 for (Function &F : M) { 546 if (!isCandidateFunction(&F)) 547 continue; 548 549 auto [It, Inserted] = FunctionMetrics.try_emplace(&F); 550 CodeMetrics &Metrics = It->second; 551 //Analyze the function. 552 if (Inserted) { 553 SmallPtrSet<const Value *, 32> EphValues; 554 CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); 555 for (BasicBlock &BB : F) 556 Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); 557 } 558 559 // If the code metrics reveal that we shouldn't duplicate the function, 560 // or if the code size implies that this function is easy to get inlined, 561 // then we shouldn't specialize it. 562 if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || 563 (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) && 564 Metrics.NumInsts < MinFunctionSize)) 565 continue; 566 567 // TODO: For now only consider recursive functions when running multiple 568 // times. This should change if specialization on literal constants gets 569 // enabled. 570 if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant) 571 continue; 572 573 int64_t Sz = *Metrics.NumInsts.getValue(); 574 assert(Sz > 0 && "CodeSize should be positive"); 575 // It is safe to down cast from int64_t, NumInsts is always positive. 576 unsigned SpecCost = static_cast<unsigned>(Sz); 577 578 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " 579 << F.getName() << " is " << SpecCost << "\n"); 580 581 if (Inserted && Metrics.isRecursive) 582 promoteConstantStackValues(&F); 583 584 if (!findSpecializations(&F, SpecCost, AllSpecs, SM)) { 585 LLVM_DEBUG( 586 dbgs() << "FnSpecialization: No possible specializations found for " 587 << F.getName() << "\n"); 588 continue; 589 } 590 591 ++NumCandidates; 592 } 593 594 if (!NumCandidates) { 595 LLVM_DEBUG( 596 dbgs() 597 << "FnSpecialization: No possible specializations found in module\n"); 598 return false; 599 } 600 601 // Choose the most profitable specialisations, which fit in the module 602 // specialization budget, which is derived from maximum number of 603 // specializations per specialization candidate function. 604 auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { 605 return AllSpecs[I].Score > AllSpecs[J].Score; 606 }; 607 const unsigned NSpecs = 608 std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); 609 SmallVector<unsigned> BestSpecs(NSpecs + 1); 610 std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); 611 if (AllSpecs.size() > NSpecs) { 612 LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " 613 << "the maximum number of clones threshold.\n" 614 << "FnSpecialization: Specializing the " 615 << NSpecs 616 << " most profitable candidates.\n"); 617 std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); 618 for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { 619 BestSpecs[NSpecs] = I; 620 std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 621 std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); 622 } 623 } 624 625 LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; 626 for (unsigned I = 0; I < NSpecs; ++I) { 627 const Spec &S = AllSpecs[BestSpecs[I]]; 628 dbgs() << "FnSpecialization: Function " << S.F->getName() 629 << " , score " << S.Score << "\n"; 630 for (const ArgInfo &Arg : S.Sig.Args) 631 dbgs() << "FnSpecialization: FormalArg = " 632 << Arg.Formal->getNameOrAsOperand() 633 << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() 634 << "\n"; 635 }); 636 637 // Create the chosen specializations. 638 SmallPtrSet<Function *, 8> OriginalFuncs; 639 SmallVector<Function *> Clones; 640 for (unsigned I = 0; I < NSpecs; ++I) { 641 Spec &S = AllSpecs[BestSpecs[I]]; 642 S.Clone = createSpecialization(S.F, S.Sig); 643 644 // Update the known call sites to call the clone. 645 for (CallBase *Call : S.CallSites) { 646 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call 647 << " to call " << S.Clone->getName() << "\n"); 648 Call->setCalledFunction(S.Clone); 649 } 650 651 Clones.push_back(S.Clone); 652 OriginalFuncs.insert(S.F); 653 } 654 655 Solver.solveWhileResolvedUndefsIn(Clones); 656 657 // Update the rest of the call sites - these are the recursive calls, calls 658 // to discarded specialisations and calls that may match a specialisation 659 // after the solver runs. 660 for (Function *F : OriginalFuncs) { 661 auto [Begin, End] = SM[F]; 662 updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); 663 } 664 665 for (Function *F : Clones) { 666 if (F->getReturnType()->isVoidTy()) 667 continue; 668 if (F->getReturnType()->isStructTy()) { 669 auto *STy = cast<StructType>(F->getReturnType()); 670 if (!Solver.isStructLatticeConstant(F, STy)) 671 continue; 672 } else { 673 auto It = Solver.getTrackedRetVals().find(F); 674 assert(It != Solver.getTrackedRetVals().end() && 675 "Return value ought to be tracked"); 676 if (SCCPSolver::isOverdefined(It->second)) 677 continue; 678 } 679 for (User *U : F->users()) { 680 if (auto *CS = dyn_cast<CallBase>(U)) { 681 //The user instruction does not call our function. 682 if (CS->getCalledFunction() != F) 683 continue; 684 Solver.resetLatticeValueFor(CS); 685 } 686 } 687 } 688 689 // Rerun the solver to notify the users of the modified callsites. 690 Solver.solveWhileResolvedUndefs(); 691 692 for (Function *F : OriginalFuncs) 693 if (FunctionMetrics[F].isRecursive) 694 promoteConstantStackValues(F); 695 696 return true; 697 } 698 699 void FunctionSpecializer::removeDeadFunctions() { 700 for (Function *F : FullySpecialized) { 701 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " 702 << F->getName() << "\n"); 703 if (FAM) 704 FAM->clear(*F, F->getName()); 705 F->eraseFromParent(); 706 } 707 FullySpecialized.clear(); 708 } 709 710 /// Clone the function \p F and remove the ssa_copy intrinsics added by 711 /// the SCCPSolver in the cloned version. 712 static Function *cloneCandidateFunction(Function *F) { 713 ValueToValueMapTy Mappings; 714 Function *Clone = CloneFunction(F, Mappings); 715 removeSSACopy(*Clone); 716 return Clone; 717 } 718 719 bool FunctionSpecializer::findSpecializations(Function *F, unsigned SpecCost, 720 SmallVectorImpl<Spec> &AllSpecs, 721 SpecMap &SM) { 722 // A mapping from a specialisation signature to the index of the respective 723 // entry in the all specialisation array. Used to ensure uniqueness of 724 // specialisations. 725 DenseMap<SpecSig, unsigned> UniqueSpecs; 726 727 // Get a list of interesting arguments. 728 SmallVector<Argument *> Args; 729 for (Argument &Arg : F->args()) 730 if (isArgumentInteresting(&Arg)) 731 Args.push_back(&Arg); 732 733 if (Args.empty()) 734 return false; 735 736 for (User *U : F->users()) { 737 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 738 continue; 739 auto &CS = *cast<CallBase>(U); 740 741 // The user instruction does not call our function. 742 if (CS.getCalledFunction() != F) 743 continue; 744 745 // If the call site has attribute minsize set, that callsite won't be 746 // specialized. 747 if (CS.hasFnAttr(Attribute::MinSize)) 748 continue; 749 750 // If the parent of the call site will never be executed, we don't need 751 // to worry about the passed value. 752 if (!Solver.isBlockExecutable(CS.getParent())) 753 continue; 754 755 // Examine arguments and create a specialisation candidate from the 756 // constant operands of this call site. 757 SpecSig S; 758 for (Argument *A : Args) { 759 Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); 760 if (!C) 761 continue; 762 LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " 763 << A->getName() << " : " << C->getNameOrAsOperand() 764 << "\n"); 765 S.Args.push_back({A, C}); 766 } 767 768 if (S.Args.empty()) 769 continue; 770 771 // Check if we have encountered the same specialisation already. 772 if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { 773 // Existing specialisation. Add the call to the list to rewrite, unless 774 // it's a recursive call. A specialisation, generated because of a 775 // recursive call may end up as not the best specialisation for all 776 // the cloned instances of this call, which result from specialising 777 // functions. Hence we don't rewrite the call directly, but match it with 778 // the best specialisation once all specialisations are known. 779 if (CS.getFunction() == F) 780 continue; 781 const unsigned Index = It->second; 782 AllSpecs[Index].CallSites.push_back(&CS); 783 } else { 784 // Calculate the specialisation gain. 785 Bonus B; 786 InstCostVisitor Visitor = getInstCostVisitorFor(F); 787 for (ArgInfo &A : S.Args) 788 B += getSpecializationBonus(A.Formal, A.Actual, Visitor); 789 B += Visitor.getBonusFromPendingPHIs(); 790 791 LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization score {CodeSize = " 792 << B.CodeSize << ", Latency = " << B.Latency 793 << "}\n"); 794 795 // Discard unprofitable specialisations. 796 if (!ForceSpecialization && B.Latency <= SpecCost - B.CodeSize) 797 continue; 798 799 // Create a new specialisation entry. 800 auto &Spec = AllSpecs.emplace_back(F, S, B.Latency); 801 if (CS.getFunction() != F) 802 Spec.CallSites.push_back(&CS); 803 const unsigned Index = AllSpecs.size() - 1; 804 UniqueSpecs[S] = Index; 805 if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) 806 It->second.second = Index + 1; 807 } 808 } 809 810 return !UniqueSpecs.empty(); 811 } 812 813 bool FunctionSpecializer::isCandidateFunction(Function *F) { 814 if (F->isDeclaration() || F->arg_empty()) 815 return false; 816 817 if (F->hasFnAttribute(Attribute::NoDuplicate)) 818 return false; 819 820 // Do not specialize the cloned function again. 821 if (Specializations.contains(F)) 822 return false; 823 824 // If we're optimizing the function for size, we shouldn't specialize it. 825 if (F->hasOptSize() || 826 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 827 return false; 828 829 // Exit if the function is not executable. There's no point in specializing 830 // a dead function. 831 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 832 return false; 833 834 // It wastes time to specialize a function which would get inlined finally. 835 if (F->hasFnAttribute(Attribute::AlwaysInline)) 836 return false; 837 838 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 839 << "\n"); 840 return true; 841 } 842 843 Function *FunctionSpecializer::createSpecialization(Function *F, 844 const SpecSig &S) { 845 Function *Clone = cloneCandidateFunction(F); 846 847 // The original function does not neccessarily have internal linkage, but the 848 // clone must. 849 Clone->setLinkage(GlobalValue::InternalLinkage); 850 851 // Initialize the lattice state of the arguments of the function clone, 852 // marking the argument on which we specialized the function constant 853 // with the given value. 854 Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); 855 Solver.markBlockExecutable(&Clone->front()); 856 Solver.addArgumentTrackedFunction(Clone); 857 Solver.addTrackedFunction(Clone); 858 859 // Mark all the specialized functions 860 Specializations.insert(Clone); 861 ++NumSpecsCreated; 862 863 return Clone; 864 } 865 866 /// Compute a bonus for replacing argument \p A with constant \p C. 867 Bonus FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C, 868 InstCostVisitor &Visitor) { 869 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " 870 << C->getNameOrAsOperand() << "\n"); 871 872 Bonus B; 873 for (auto *U : A->users()) 874 if (auto *UI = dyn_cast<Instruction>(U)) 875 if (Visitor.isBlockExecutable(UI->getParent())) 876 B += Visitor.getUserBonus(UI, A, C); 877 878 LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = " 879 << B.CodeSize << ", Latency = " << B.Latency 880 << "} for argument " << *A << "\n"); 881 882 // The below heuristic is only concerned with exposing inlining 883 // opportunities via indirect call promotion. If the argument is not a 884 // (potentially casted) function pointer, give up. 885 // 886 // TODO: Perhaps we should consider checking such inlining opportunities 887 // while traversing the users of the specialization arguments ? 888 Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); 889 if (!CalledFunction) 890 return B; 891 892 // Get TTI for the called function (used for the inline cost). 893 auto &CalleeTTI = (GetTTI)(*CalledFunction); 894 895 // Look at all the call sites whose called value is the argument. 896 // Specializing the function on the argument would allow these indirect 897 // calls to be promoted to direct calls. If the indirect call promotion 898 // would likely enable the called function to be inlined, specializing is a 899 // good idea. 900 int InliningBonus = 0; 901 for (User *U : A->users()) { 902 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 903 continue; 904 auto *CS = cast<CallBase>(U); 905 if (CS->getCalledOperand() != A) 906 continue; 907 if (CS->getFunctionType() != CalledFunction->getFunctionType()) 908 continue; 909 910 // Get the cost of inlining the called function at this call site. Note 911 // that this is only an estimate. The called function may eventually 912 // change in a way that leads to it not being inlined here, even though 913 // inlining looks profitable now. For example, one of its called 914 // functions may be inlined into it, making the called function too large 915 // to be inlined into this call site. 916 // 917 // We apply a boost for performing indirect call promotion by increasing 918 // the default threshold by the threshold for indirect calls. 919 auto Params = getInlineParams(); 920 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 921 InlineCost IC = 922 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 923 924 // We clamp the bonus for this call to be between zero and the default 925 // threshold. 926 if (IC.isAlways()) 927 InliningBonus += Params.DefaultThreshold; 928 else if (IC.isVariable() && IC.getCostDelta() > 0) 929 InliningBonus += IC.getCostDelta(); 930 931 LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus 932 << " for user " << *U << "\n"); 933 } 934 935 return B += {0, InliningBonus}; 936 } 937 938 /// Determine if it is possible to specialise the function for constant values 939 /// of the formal parameter \p A. 940 bool FunctionSpecializer::isArgumentInteresting(Argument *A) { 941 // No point in specialization if the argument is unused. 942 if (A->user_empty()) 943 return false; 944 945 Type *Ty = A->getType(); 946 if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || 947 (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) 948 return false; 949 950 // SCCP solver does not record an argument that will be constructed on 951 // stack. 952 if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) 953 return false; 954 955 // For non-argument-tracked functions every argument is overdefined. 956 if (!Solver.isArgumentTrackedFunction(A->getParent())) 957 return true; 958 959 // Check the lattice value and decide if we should attemt to specialize, 960 // based on this argument. No point in specialization, if the lattice value 961 // is already a constant. 962 bool IsOverdefined = Ty->isStructTy() 963 ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) 964 : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); 965 966 LLVM_DEBUG( 967 if (IsOverdefined) 968 dbgs() << "FnSpecialization: Found interesting parameter " 969 << A->getNameOrAsOperand() << "\n"; 970 else 971 dbgs() << "FnSpecialization: Nothing to do, parameter " 972 << A->getNameOrAsOperand() << " is already constant\n"; 973 ); 974 return IsOverdefined; 975 } 976 977 /// Check if the value \p V (an actual argument) is a constant or can only 978 /// have a constant value. Return that constant. 979 Constant *FunctionSpecializer::getCandidateConstant(Value *V) { 980 if (isa<PoisonValue>(V)) 981 return nullptr; 982 983 // Select for possible specialisation values that are constants or 984 // are deduced to be constants or constant ranges with a single element. 985 Constant *C = dyn_cast<Constant>(V); 986 if (!C) 987 C = Solver.getConstantOrNull(V); 988 989 // Don't specialize on (anything derived from) the address of a non-constant 990 // global variable, unless explicitly enabled. 991 if (C && C->getType()->isPointerTy() && !C->isNullValue()) 992 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 993 GV && !(GV->isConstant() || SpecializeOnAddress)) 994 return nullptr; 995 996 return C; 997 } 998 999 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, 1000 const Spec *End) { 1001 // Collect the call sites that need updating. 1002 SmallVector<CallBase *> ToUpdate; 1003 for (User *U : F->users()) 1004 if (auto *CS = dyn_cast<CallBase>(U); 1005 CS && CS->getCalledFunction() == F && 1006 Solver.isBlockExecutable(CS->getParent())) 1007 ToUpdate.push_back(CS); 1008 1009 unsigned NCallsLeft = ToUpdate.size(); 1010 for (CallBase *CS : ToUpdate) { 1011 bool ShouldDecrementCount = CS->getFunction() == F; 1012 1013 // Find the best matching specialisation. 1014 const Spec *BestSpec = nullptr; 1015 for (const Spec &S : make_range(Begin, End)) { 1016 if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) 1017 continue; 1018 1019 if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { 1020 unsigned ArgNo = Arg.Formal->getArgNo(); 1021 return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; 1022 })) 1023 continue; 1024 1025 BestSpec = &S; 1026 } 1027 1028 if (BestSpec) { 1029 LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS 1030 << " to call " << BestSpec->Clone->getName() << "\n"); 1031 CS->setCalledFunction(BestSpec->Clone); 1032 ShouldDecrementCount = true; 1033 } 1034 1035 if (ShouldDecrementCount) 1036 --NCallsLeft; 1037 } 1038 1039 // If the function has been completely specialized, the original function 1040 // is no longer needed. Mark it unreachable. 1041 if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { 1042 Solver.markFunctionUnreachable(F); 1043 FullySpecialized.insert(F); 1044 } 1045 } 1046